
E
N

G
IN

E
E

R
IN

G
 T

IM
E

 A
U

D
IT

Engineering Time Audit

Most engineering teams assume they're spending most of their time building for
customers, but they rarely measure it. This playbook provides a fast and practical

way to audit where your engineering hours are truly allocated: features,
infrastructure, compliance, fire drills, or duplicated work. No tools required, just a

willingness to look under the hood and fix what’s slowing you down.

Input Checklist & Quick Estimators

Where Do Your Hours Go?

Why This Matters

You pay engineers to create value for your customers. Every hour diverted to
plumbing, duplicate tooling, or after‑hours firefighting chips away at that goal. This
playbook demonstrates how to measure the split, regardless of whether you have
perfect data. When you can quantify the drag, you can remove it.

Input Why It’s Critical Fast Way to Get a Number

Total Engineering‑Hours
/ Month

Baseline for every other
metric.

Head‑count × 160 productive hours (40 h
× 4 weeks) if you don’t track time.

Feature Development %
Direct fuel for customer‑visible
change.

Filter last month’s tickets/PRs tagged feature.

If tags are missing, assume 50 % of engineer
time for younger SaaS teams and 35 % for
mature products.

Infrastructure Build &
Automation %

Shows how much effort is
spent on wiring/managing AWS
instead of shipping features.

Count tickets/commits to IaC repos.
No data? Start with 10% of Total Eng. Hours

Rock Valley Tech

Input Why It’s Critical Fast Way to Get a Number

Technical Debt Reduction %
Investment that prevents
tomorrow’s drag.

Tickets labeled refactor, cleanup,
upgrade.

Lacking labels? Default to 10 % of
Total Eng. Hours.

Unplanned Fire‑Fighting %
Pure delivery drag—pages,
reversions, manual fixes.

PagerDuty export → sum “Time to
resolve”.

If no tool is available, multiply
on-call hours by the average
number of incidents per month.

Pattern Spread Score
• Build paths (CI configs)
• Runtime stacks (languages)
• Infrastructure definitions (IaC vs
scripts)
• System Interface variants

Measures the cost of “too many
ways to do the same job.” More
variants = more context
switching.

See the next section for more
info

Shared Systems Count
• Infrastructure modules
• CI/CD pipelines
• Internal libraries/utilities
• Network/topology configs
• Monitoring/alerting baselines

Measures how much your
organization avoids reinvention.
The more teams share proven
components, the more
engineering time is allocated to
product work instead of rework.

Inventory anything used across
teams without modification:
CDK/Terraform modules,
reusable GitHub Actions, internal
Python/Node packages, shared
VPCs, or templated dashboards.

TL;DR — Just want a fast score?

1. Count your patterns across four areas: Delivery Methods, Code Patterns, Infra
Types, and Interfaces.

 2. Plug them into this formula:

 3. Use the result to find your penalty on the Engineering Scorecard.

Most small to mid-sized teams fall between 3 and 7. Capped at 10 to avoid
distortion.

E
N

G
IN

E
E

R
IN

G
 T

IM
E

 A
U

D
IT

Pattern Spread Score (PSS)
Caveat: This part requires some finesse.

PSS measures architectural sprawl—how many different ways your team builds,
runs, and connects code. It’s not about “bad” patterns; it’s about how much
cognitive overhead engineers absorb just to get things done. Reducing variation
and increasing reuse are key ways to reclaim engineering time.

Rock Valley Tech

https://docs.google.com/document/d/1HgzbZWCdpbTOGI2Wu_FsmuejGjDda6LKTPGrRsqsuzk/edit?tab=t.0#heading=h.bla83g7gpkk7
https://docs.google.com/document/d/1HgzbZWCdpbTOGI2Wu_FsmuejGjDda6LKTPGrRsqsuzk/edit?tab=t.0#heading=h.bla83g7gpkk7

E
N

G
IN

E
E

R
IN

G
 T

IM
E

 A
U

D
IT

Rock Valley Tech

What goes into PSS?

Example

Category Ask This Question Count Examples

Delivery Methods
How many distinct ways does
your code get deployed or
released?

Monolith, microservices,
Lambda, on-prem, mobile

Code Patterns
How many languages,
frameworks, or runtimes are
actively used?

Python/Django, Node/Express,
Go, Java/Spring

Infra Types
How many infrastructure
platforms require configuration
and maintenance?

ECS, Lambda, Kubernetes, EC2,
Kafka, Redis, Snowflake

Interfaces
How does your code
communicate across
boundaries?

REST, GraphQL, gRPC, event
buses, file-based, CLI

Tip: Group minor variants (e.g., 3 REST APIs = 1), but count fundamentally different
systems separately.

PSS Penalty - (used below): min(0.05 × max(PSS–5,0), 0.3). Subtract 5% of feature
hrs times leverage for every PSS above 5. Cap at 30%. Used in the Customer-
Visible % metric below.

Pattern Category Count

Delivery Methods 2 (monolith + serverless)

Code Patterns 3 (Python/Django, Node, Go)

Infra Types 2 (ECS + Lambda)

Interfaces 2 (REST + gRPC)

PSS √(2×3×2×2) = √24 ≈ 4.9

E
N

G
IN

E
E

R
IN

G
 T

IM
E

 A
U

D
IT

Rock Valley Tech

Reading the Scorecard

Turning Inputs into Metrics

1. Feature Hours= Feature Development Hours.

2. Infrastructure Tax Hours= (Infrastructure Build & Automation %) x Total
Engineering Hours

3. Technical Debt Investment Hours= Tech Debt Reduction % x Total
Engineering Hours

4. Fire‑Fighting Hours= Unplanned % x Total Engineering‑Hours

5. Pattern Spread Score (PSS)= √(delivery-path variants × runtime variants ×
infra config variants × system interface variants) , capped at 10

6. Leverage Multiplier= 1 + .2 * log₂(Shared Systems Count + 1).
a.Sub-linear growth and cap the multiplier at 2.0 to maintain model

realism.

7. Customer-Visible % = (Feature Hours × Leverage Multiplier – PSS penalty
hours) ÷ Total Engineering‑Hours.

Customer‑Visible % What It Tells You Immediate Move

> 65 %
Engineers focus on value;
plumbing is lightweight.

Fortify automated tests so
quality keeps pace.

45 – 65 %
Balanced, but efficiency gains are
on the table.

Raise the Leverage Multiplier
≥ 0.8 by sharing CDK modules.

< 45 % Delivery is stuck in the mud.
Consolidate duplicate build
paths, migrate to AWS managed
services, cut PSS in half.

E
N

G
IN

E
E

R
IN

G
 T

IM
E

 A
U

D
IT

Rock Valley Tech

An Example: 10 engineers 1500 hours/month

Here’s a simplified example to show how the playbook works in practice. A 10-
person team inputs their rough time estimates and receives a clear breakdown of
where engineering hours are being allocated—and how much is translating into
product output.

Input Value

Feature Dev % 40%

Infra % 12%

Tech Debt % 10%

Fire-Fighting 8%

PSS Components 2× delivery × 3× runtimes × 2× infra × 2× interfaces → √24 ≈ 4.9

Shared Systems 5

Metrics

Metric Result

Infra Tax Hours .12 x 1,500 = 180

Tech Debt Hours .1 ÷ 1,500 = 150

Fire-Fighting Hours .08 x 1,500 = 120

PSS Penalty (PSS = 4.9 → no penalty)

Leverage Multiplier 1 + .2 * log₂(5+1) ≈ 1.52

Customer-Visible % (600 × 1.52 x (1 - PSS)) ÷ 1,500 = 61%

Interpretation: A well-balanced team with solid output and good tech-debt
investment. PSS is under control, and the infrastructure cost is reasonable.

E
N

G
IN

E
E

R
IN

G
 T

IM
E

 A
U

D
IT

Rock Valley Tech

Now What? Turn Hours Into Dollars

Once you have the metrics, you can translate engineering time into dollar impact—
whether it’s surfacing waste, sizing technical debt risk, or demonstrating the
payoff of standardization.

3 Ways Teams Leak or Reclaim Engineering Budget

Scenario What to Watch $ Formula

 1. Overspending on internal work (Infra +
Tech Debt + Fire-Fighting > 35%)

Non-Customer-Visible
Hours

Waste = (NCV Hours – Target %) ×
Loaded Hourly Cost

2. Underfunding tech health
(Tech Debt < 10% or Fire-Fighting > 10%)

Tech-Debt Hours or Fire-
Fighting Hours

Future Drag = Deficit Hours × 4 ×
Loaded Hourly Cost

3. Pattern sprawl penalty (high PSS) PSS Penalty Hours
Chaos Cost = PSS Penalty Hours ×
Loaded Hourly Cost

Rule of thumb: Every 10% misallocation in a 10-person org = $150k/year in hidden
cost or untapped output.

The Virtuous Cycle: Standardization ROI

Making one investment to reduce sprawl can unlock hundreds of hours a month—
here’s how that plays out:

1. Standardize once → 2 platform engineers spend 4 weeks creating a hardened
VPC + baseline pipeline.

2. Reuse across teams → 4 product teams adopt it; PSS drops 4 points and frees
80 hours/month/team.

3. Reinvest time → Feature hours go up, Customer-Visible % crosses 60%.

4. Compounding gains → Lower infra tax + higher reuse = faster delivery over
time.

E
N

G
IN

E
E

R
IN

G
 T

IM
E

 A
U

D
IT

Rock Valley Tech

ROI Snapshot

Summing Up

The point of all this isn’t to track hours for the sake of reporting—it’s to reclaim
control over your engineering investment. When you understand where the time
goes, you can shift it. Shared systems beat one-offs. Simplicity beats cleverness.
And standardization—done well—doesn’t slow teams down, it frees them up. Use
this playbook and accompanying calculator to drive sharper conversations and
keep engineers focused on what moves the product forward.

This is why tracking time and reuse matters—it turns small platform investments
into exponential gains in product value.

Line Item Value

Cost (2 eng × 4 weeks @ $10k/month) $20,000

Hours saved in month 1 (4 teams × 80 h) 320 h

Value per hour (loaded) $75

Payback < 1 month

https://docs.google.com/spreadsheets/d/1G39sjk1kPHcGjMIBlVzPLdmDWopJR1g-pkwL8cRC0t0/edit?usp=sharing

