GENERATIVE ALTECHNOLOGY ECOSYSTEM

Responsible & Sustainable AI: A Field Guide implementation at Scale

IT Toolkit for

Generative Al Value Chain Examples
Al System Lifecycle
Sustainability factors and options

Al system inputs & outputs

Infrastructure environmental impacts

> E = Energy C = Carbon W = Water

1 = Scope 1 2 =

3 =

= Scope 2	Excavation and/or circul			
= Scope 3	materials			

OLIVEIVITVE / II TEOITIVOEGOT EGGGTOTEIVI								
Technology	Data-center hosting	Open/closed source trained LL models		Use cases		Al-accelerated end-user services/devices		
Google TPU v5e	Google Cloud	Gemini 1.5 Pro		Clinical trial design		Web portal, medical dashboards		
NVIDIA H100	Azure	OpenAl GPT-4		Financial Services Chatbot		Embedded in Microsoft 365 Copilot		
Amazon Trainium	AWS Europe	Meta LLaMA 3		Predictive maintenance & part design		Factory tablet dashboard, digital twins		
Infrastructure GPU TPU CPU	Hosting GPU TPU CPU	Training Development Production	(Post) Training • Fine tuning • Retraining	Evaluation • Quality • Safety • Impact	Inference • Use cases • Value add	End-user function • Prompt handling • Function handling • Al @ devi ce	End-user devices Laptops Mobile Etc.	
Efficiency	Efficiency	Model architecture	Efficiency/ reasoning	Accuracy	Business cases &	Prompt handling	Energy saving techniques	

Capacity

Data Center

· Energy savings

· On-demand provisioning

Continuous rightsizing

· Hardware lifecycle

techniques

Transparency

 Operations Curation

• Collection

C: Embodied or attributed

Augmentation Creation IP /ownership

Data - Specialized Collection

Pruning/compression

Fixed precision training

Modular training

· Rendering

· Federated learning

- Labeling (conditions)
- Proprietary

E: Training + Infra.

W: Cooling

C: Embodied or attributed.

- es (Al act)

C: Embodied or attributed

- Revenue

W: Cooling

- Ease

- · Al chips in end-user devices
- HW lifecycle/lifespan
- Support/software

Minerals

· Bill of material

· Energy savings

techniques

· Support/software

· GPU generations.

- Sourc
- Wirgin/circula

C: Embodied -3

W: Manu factur ing

Waste

Data - Generic

- Processing

W: Cooling

· Quantization

Hyperparameter

optimization

Model lifecycle

· Pre-trained models

Variations

Data - Test

Principles

Testing

Explainability

· Responsible Al

· Ethical guardrails

Environmental

guardrails

- Values
- Constraints
- · Regulations/polici
- Carbon limits

W: Cooling

Outcomes

trade-offs

modularity

Maintenance

· Impact monitoring

· Agents orchestration/

Performance monitoring

- Productivity
- Efficiency · Carbon savings
- Cost
- Waste

UX/UI

· Conversations/agents

· Embedded Al function

∘ SW & HW

- Speed
- Quality

· Bill of material

Sources

Minerals

- · Virgin/circular
- Waste
- E: Dig. workplace + In fr a. C: Embodied or attributed
 - C: Company attrib . -2
 - - C: Embodied -3
 - W: Manufacturing

Logistics & Packaging

E: C:

W:

E: Infra AI Supplier

C: Embodied - 3

W: Supplier

C: Embodied -3

W: Cooling

Infrastructure

Compute, Storage, Networking Orchestration, Monitoring, etc.) E: Infra co. usi ng Al

W: N/A

C:Company attrib. - 2

W: Operating company

Logistics & Packaging E:

C:

W:

Office (Scope2) Excavation and/or circular Home (Scope3) materials

DC -Technology supplier (Scope 3) or DC operating company (Scope 2) allocated

Ecosystem Purpose and Use

Purpose:

The model emphasizes that Al's environmental impact extends far beyond the moment of use (inference), encompassing manufacturing, training, infrastructure, and end-of-life. The model can be used to better understand the stages of inputs and outputs of Al system capabilities and functionalities, and their relevant environmental sustainability impact areas.

Use this model to:

- Conduct lifecycle sustainability assessments for AI projects
- Align Al infrastructure procurement and data strategy with ESG goals
- Improve transparency and reporting for Scope 3 emissions
- Educate stakeholders on where sustainability and ethical risks are embedded in the Al pipeline
- Adjust the ecosystem elements for the specific Al models and the Al accelerated end-user devices in use and attribute the (additional) footprint stemming from Al adoption/integration.

What the model depicts:

This model describes different elements of and steps within the enterprise AI technology ecosystem, putting them in a logical order and indicating impact elements at each stage.

- Gen Al value chain -This top row shows the broad functional flow of Gen Al systems from infrastructure to user-facing applications. Three hypothetical examples are included in these rows.
- Al System Lifecycle -This row tracks major lifecycle stages for Gen Al systems, from hardware to model use.
- Sustainability factors and options -This row highlights technical decisions and optimization levers that influence energy/carbon/water impact
- Al system inputs and outputs -This row outlines the core resources and data flows required for building and running Gen Al systems, as well as the value-driving outcomes of the application/tool
- Infrastructure environmental impacts -The model's base depicts the foundational IT infrastructure and its relevant Energy (E), Carbon (C), and Water (W) footprints

Ecosystem Stages and Sustainability Factors

Model elements and their sustainability impacts:

Raw material and hardware manufacturing (not shown in ecosystem model)

Elements:

- Minerals: Feedstock sourcing (virgin vs. circular), bill of materials
- Manufacturing: Embodied carbon, energy, water

Sustainability factors: Scope 3 emissions from suppliers; energy and water use during production

Compute infrastructure and hosting

Elements:

- Data centers: Storage, compute, networking, orchestrations
- Suppliers vs. operators: Scope 2 vs. Scope 3 allocation
- Sustainability factors: Location-specific energy mix for data center operations; carbon (embodied or company attributed Scope 2); water for cooling systems; capacity planning

Data for training and testing

Elements:

- Generic Data: Collection, processing, augmentation, IP
- Specialized Data: Labeling, proprietary datasets
- Test data: Validation against constraints, regulations (e.g., Al Act), ethical/principle-based filters Sustainability considerations: Energy and infrastructure tied to data processing and hosting

Ecosystem Stages and Sustainability Factors - Continued

Model elements and their sustainability impacts:

Model training and inference

Elements:

- Open/closed source LLMs: GPT, Claude, LLaMA, etc.
- Functionality: Orchestration, modularity, performance optimization
- Prompt handling: Embedded AI functions in software/hardware

Sustainability factors: Energy (use phase + infrastructure); Carbon (embodied or attributed)

Use Cases

Elements:

- · Business cases: Productivity, revenue, efficiency, carbon reduction, and waste
- Applications: Co-pilots, enterprise Al tools, embedded functions, agents

Sustainability factors: Trade-offs between performance and environmental efficiency

End-User Devices

Elements:

- Hardware: Laptops, mobile, Al PCs, cameras, vehicles (e.g., drones)
- Al performance features: On-device Al, modular inference
- UX/UI: Speed, ease, quality of AI-enabled experiences

Sustainability factors: Manufacturing Scope 3 emissions and water use; device lifespan and lifecycle management for circularity