
CHAPTER 1 Automating with Python 7

05_9781394371426-ch01.indd 7 Trim size: 7.375 in × 9.25 in October 23, 2025 7:19 AM

Chapter 1
 Automating with Python

 W elcome to Python automation! In this chapter, you explore why Python
is the ideal language for automating mundane, time-consuming com-
puter tasks. If you’ve ever found yourself stuck doing the same boring

computer chores over and over — like renaming a bazillion fi les, sorting through
spreadsheets, or downloading stuff from the web — Python may just become your
new best friend. It’s a programming language that’s easy to pick up, even if you’re
not a tech wizard, and it’s perfect for automating those mind-numbing tasks that
eat up your time. Think of Python as a trusty robot assistant: You tell it what to do
in plain, simple words (well, code), and it does your work in no time at all.

 What makes Python so great for automation is the fact that it has a little some-
thing for everyone. Python has built-in tools to handle all sorts of everyday
tasks — like managing fi les, crunching data, bossing around your computer —
and a huge pile of free add-ons (called libraries) can do even fancier things, like
scraping websites or sending emails. You don’t need to be a coding genius to get
started — just a few lines of Python can save you hours of clicking and typing.
So, whether you’re organizing your music collection or taming a messy inbox,
Python’s got your back, making life a whole lot easier with a few friendly
commands.

 IN THIS CHAPTER

» Deciding on a programming language

» Mastering Python language basics

» Getting up and running with Python

CO
PYRIG

HTED
 M

ATERIA
L

8 PART 1 Getting Started with Python Automation

05_9781394371426-ch01.indd 8	 Trim size: 7.375 in × 9.25 in� October 23, 2025 7:19 AM

Choosing a Programming Language
There are many programming languages in the world. They have names like C#,
Go, Java, JavaScript, Python, and TypeScript, to name a few. The TIOBE Index
(www.tiobe.com/tiobe-index) consistently ranks Python as the most popular
language of our time.

JavaScript is great for creating web apps, but it’s rarely used for anything else.
Python excels at AI and automation. In fact, Python has so many ready-to-use
modules designed for automation that it would probably be crazy to use any
language other than Python for the kinds of automation scripts you’ll see
throughout this book.

THINKING LIKE A SOFTWARE ENGINEER:
PUTTING ARTIFICIAL INTELLIGENCE TO
WORK FOR YOU
Writing Python automation requires writing computer code. This book isn’t a replace-
ment for a beginner’s tutorial on the entire Python language. Instead, it’s a collection
of Python automation scripts, designed to automate and simplify mundane, time-
consuming computer tasks.

These days, most software engineers (people who write computer code for a living)
use artificial intelligence (AI) to help with writing code. Sure, you’ll hear many software
engineers complain that AI can’t write code as well as they can, but that sentiment may
be rooted in feeling threatened.

In addition to writing code, AI can easily answer any questions that come up along
the way as you’re using this book. If I throw some terminology at you that leaves you
scratching your head, ask AI to explain things. If some code leaves you stymied, show
the code to AI and ask it to explain the code to you.

You can even tell AI to write an entire script for you, doing exactly what a script in this
book does. But don’t be surprised if the code you get from AI looks different from
what’s in this book. Python offers many tools and techniques for accomplishing any
task. There’s no telling exactly how AI will generate code to perform some feat. If AI
gives you a script that looks nothing like the script in this book, that doesn’t mean one
is right and the other is wrong — you probably just have two scripts that do the same
thing in different ways. That’s not unusual. They say there’s more than one way to bake
a cake. Likewise, there’s more than one way to write a script to accomplish some task.

CHAPTER 1 Automating with Python 9

05_9781394371426-ch01.indd 9	 Trim size: 7.375 in × 9.25 in� October 23, 2025 7:19 AM

There’s a lot to like about Python — and many reasons to learn Python beyond
automation. For one, many people regard Python as the easiest language for many
beginners to learn. Python’s syntax is clean and simple — it reads almost
like English.

You’re never stuck without information with Python. There are endless tutorials,
forums, and free libraries (premade code you can borrow) to help you out. Virtually
every modern AI chatbot is perfectly capable of writing Python code for you and
answering any questions about Python that pop into your head.

Python lets you write short, powerful code. What may take 20 lines in another
language often takes just a few lines in Python. That means less typing and fewer
mistakes to try to ferret out. Plus, modern AI can debug your existing code as eas-
ily as it can write code for you.

Let’s zoom in on automation — the topic of this book. When it comes to automa-
tion, Python is a superstar. Whether you’re on Linux, macOS, or Windows, Python
works like a charm. Write your automation script once, and it’ll run anywhere. No
need to reinvent the wheel for different systems.

With Python, you can write a quick script to handle many tasks in minutes.
Although the following code below may not mean much to you right now, it illus-
trates how you can take a daunting task, like renaming hundreds of files in a
folder, with just a few lines of code:

import os

for filename in os.listdir("."):

 os.rename(filename, filename.replace("old", "new"))

Tiny bits of code like that can handle big automation tasks.

Beyond file tasks, Python plays nice with application programming interface
(APIs; define here), databases, Microsoft Excel files, and AI. If you’re automating
something like “Check my email, grab attachments, and update a spreadsheet,”
Python can tie it all together smoothly.

APIs allow Python to interact with AI and other powerful online capabilities,
without your having to reinvent the wheel or host huge files on your own com-
puter. APIs are a hallmark of modern computing, and you definitely want to use a
programming language that makes API access easy.

10 PART 1 Getting Started with Python Automation

05_9781394371426-ch01.indd 10	 Trim size: 7.375 in × 9.25 in� October 23, 2025 7:19 AM

Learning Python is like giving yourself a superpower. Python is easy to start,
endlessly useful, and when it comes to automation, unbeatable. You’ll save time,
impress your friends (or boss), and maybe even have some fun along the way.
Perhaps best of all, Python is completely free.

Have I convinced you to choose Python yet?

Understanding Python Syntax
Every language has certain rules of syntax that outline how you must arrange
words in order for them to make sense. Like, “Teddy, jump three times!” If you
say it all jumbled up, or leave out words, like “Jump Teddy three,” Teddy may get
confused and not know what to do. In programming, syntax is the same thing —
you need to order the words so the computer understands what you want. Syntax
is just the rules for putting words and symbols in the right order.

Some programming languages require lots of punctuation, in addition to words,
as part of their syntax. That gets tiresome and makes learning more difficult.
I’ll give you a simple example — a piece of code that checks whether a number is
even or odd and prints a message — in both JavaScript and Python.

JavaScript seems very “busy” with parentheses, curly brackets, and semicolons:

function checkEvenOrOdd(number) {

 if (number % 2 === 0) {

 console.log("The number " + number + " is even!");
 } else {

 console.log("The number " + number + " is odd!");
 }

}

checkEvenOrOdd(7);

That code looks like something written by aliens. But that’s what a JavaScript
requires. You’ve got:

	» Curly brackets {} to wrap the function and the if...else blocks.

	» Parentheses () for the function definition and the if condition.

	» A semicolon (;) at the end of each line (JavaScript loves semicolons).

CHAPTER 1 Automating with Python 11

05_9781394371426-ch01.indd 11	 Trim size: 7.375 in × 9.25 in� October 23, 2025 7:19 AM

Now here’s the same thing in Python:

def check_even_or_odd(number):

 if number % 2 == 0:

 print(f"The number {number} is even!")

 else:

 print(f"The number {number} is odd!")

check_even_or_odd(7)

Granted, it’s still not plain English. But it’s much, much cleaner and simpler.
Here’s what’s special about Python:

	» No curly brackets! Python uses indentation (those spaces at the start of lines)
to know what’s inside the function or if...else. It’s like the code is
breathing — it looks airy and neat.

	» Fewer parentheses — only needed for the function definition, not the if
condition.

	» No semicolons — Python doesn’t need them, so the code is less cluttered.

As an experienced instructor who has taught thousands of software developers,
I can assure that all the curly brackets and semicolons are the toughest things
for beginners to get used to — they’re among the main things that drive people
away from learning to code. Learning Python first lets you dodge that bullet.

Getting Python
Python is super lightweight and doesn’t demand much from your hardware, which
is one reason it’s so popular. Think of this as the “minimum stuff” your computer
needs to run Python and get started with coding or automation.

Identifying the hardware requirements
You can run Python on almost any modern computer. That doesn’t include mobile
devices like phones and tablets, but it does include most desktops and laptops.
Here’s what you’ll need at the bare minimum:

	» Python works on Linux, macOS, Windows (7, 8, 10, or 11), and even some
mobile systems. Basically, if it’s a computer from the last 10 to 15 years,
you’re good!

12 PART 1 Getting Started with Python Automation

05_9781394371426-ch01.indd 12	 Trim size: 7.375 in × 9.25 in� October 23, 2025 7:19 AM

	» Any modern processor, including Apple M series, or even just a basic
processor like an Intel or AMD processor works fine. Even a 1 gigahertz (GHz)
single-core central processing unit (CPU) can handle it, but it may feel slow for
big projects.

	» In terms of random access memory (RAM), 512 megabytes (MB) is enough to
run Python itself, but 2GB or more is better if you’re doing anything practical
(like automation or running other programs at the same time). Most modern
computers have 8GB of RAM or more, so you’re probably covered.

	» Python’s installer is tiny — about 30MB to 50MB to download and install. You’ll
want at least 100MB to 200MB of free space for Python, its libraries, and your
own code files. If you’re adding big libraries (like for data science), a few
gigabytes of free space is smart.

	» No special graphics card or graphics processing unit (GPU) is needed. Python
runs in a text window, so any basic screen works.

To get your system specs in Windows, press Windows+I to open Settings and
choose System ➪   About. On a Mac, click the Apple menu in the upper-left corner
of your screen, and choose About This Mac.

If you’re automating something heavy — like controlling a web browser with
selenium or processing tons of files — you’ll want more RAM (maybe 8GB) and a
faster CPU. But for most people learning Python, and for everyday automation
(like renaming files or sending emails), even a cheap laptop is probably sufficient,
as long it’s not a Chromebook or a similar device with a mobile operating system.

Installing Python
To use Python, you may first have to install it on your computer. Some Mac com-
puters come with Python version 2 preinstalled. But these days, you really need to
use Python 3, so plan on installing Python yourself. It’s free, it’s easy, and I can
give you the steps. However, I can’t tell you exactly what you’ll see when you
browse to the Python website, because websites change often. If you’re using a
Mac or Windows PC, follow these steps (if you’re using Linux, see the nearby
sidebar):

1.	 Go to www.python.org.

2.	 Click Downloads and click either Mac or Windows.

You don’t technically need to click Mac or Windows — the website will detect
which operating system you’re using and when you hover your mouse over
Downloads (as I did in Figure 1-1), you’ll see the option to download the correct

CHAPTER 1 Automating with Python 13

05_9781394371426-ch01.indd 13	 Trim size: 7.375 in × 9.25 in� October 23, 2025 7:19 AM

version. As you can see in the figure, I was using Windows, so the website
offered that automatically.

3.	 Click the button that shows the current version number.

In Figure 1-1, the version is 3.13.2, but the number you see may be different.

4.	 Open the folder to which you downloaded Python.

This is usually your Downloads folder.

5.	 Double-click the icon of the downloaded file.

6.	 Follow the onscreen instructions to Install (or Upgrade Now if you’re
given that option).

FIGURE 1-1:
Download

options from the
Python website.

INSTALLING PYTHON ON LINUX
Most Linux distributions come with Python preinstalled (usually Python 3). There are
many different Linux distributions (or distros), including Arch, Debian, Fedora, and
Ubuntu. I can’t give step-by-step instructions for each. But a good starting point may
be to determine whether you already have Linux installed and, if so, which version.
You should be able to do so following these steps:

1.	 Press Ctrl+Alt+T to open the Terminal.

2.	 Type the following and press Enter:

python3 --version

(continued)

14 PART 1 Getting Started with Python Automation

05_9781394371426-ch01.indd 14	 Trim size: 7.375 in × 9.25 in� October 23, 2025 7:19 AM

If the command returns something like Python 3.12.2, Python is installed. If you get an
error, try the following command:

python --version

If you get an error message on both tries, or you want a newer version of Python, you
can still install Python from the Python website. Download and install the Gzipped
source tarball or XZ compressed source tarball file. Or check the documenta-
tion for your specific Linux distribution for recommendations. Optionally, you can also
ask any AI for recommendations related to your specific Linux distro.

(continued)

