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Chapter 1

Data, Statistics,
and Decisions

tatistics? That’s all about crunching numbers into arcane-looking formulas,

right? Not really. Statistics, first and foremost, is about decision-making.

Some number-crunching is involved, of course, but the primary goal is to
use numbers to make decisions. Statisticians look at data and wonder what the
numbers are saying. What kinds of trends are in the data? What kinds of predic-
tions are possible? What conclusions can you make?

To make sense of data and answer these questions, statisticians have developed a
wide variety of analytical tools.

About the number-crunching part: If you had to do it via pencil-and-paper
(or with the aid of a pocket calculator), you’d soon grow discouraged with the
amount of computation involved and the errors that might creep in. Software like
Python helps you crunch the data and compute the numbers. As a bonus, working
with Python can also help you comprehend statistical concepts.

Although Python is an all-purpose computing language, many of its libraries

make it ideal for statistical work. I wrote this book to show you how to use these
libraries and the statistical tools they make available.
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The Statistical (and Related) Notions
You Just Have to Know
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The analytical tools you find in Python are based on statistical concepts I help you
explore in the remainder of this chapter. As you’ll see, these concepts are based on
common sense.

Samples and populations

If you watch TV on election night, you know that one exciting occurrence that
takes place before the main event is the prediction of the outcome immediately
after the polls close (and before all the votes are counted). How is it that pundits
almost always get it right?

The idea is to talk to a sample of voters right after they vote. If they’re truthful
about how they marked their ballots, and if the sample is representative of the
population of voters, analysts can use the sample data to draw conclusions about
the population.

That, in a nutshell, is what statistics is all about — using the data from samples
to draw conclusions about populations.

Here’s another example. Imagine that your job is to find the average height of
10-year-old children in the United States. Because you probably wouldn’t have the
time or the resources to measure every child, you’d measure the heights of a rep-
resentative sample. Then you’d average those heights and use that average as the
estimate of the population average.

Estimating the population average is one kind of inference that statisticians make
from sample data. I discuss inference in more detail in the later section “Inferen-
tial Statistics: Testing Hypotheses.”

Here’s some important terminology: Properties of a population (like the popula-
tion average) are called parameters, and properties of a sample (like the sample
average) are called statistics. If your only concern is the sample properties (like the
heights of the children in your sample), the statistics you calculate are descriptive.
If you’re concerned about estimating the population properties, your statistics are
inferential.
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FIGURE 1-1:

The relationship
between
populations,
samples,
parameters, and
statistics.

Now for an important convention about notation: Statisticians use Greek letters
(u, 6. p) to stand for parameters, and English letters (X, s, r) to stand for statistics.
Figure 1-1 summarizes the relationship between populations and samples, and
between parameters and statistics.
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Variables: Dependent and independent

A variable is something that can take on different values at different times — like
your age, the value of the dollar against other currencies, or the number of games
your favorite sports team wins. Something that can have only one value is a
constant. Scientists tell us that the speed of light is a constant, and we use the
constant « to calculate the area of a circle.

Statisticians work with independent variables and dependent variables. In any study
or experiment, you'll find both kinds. Statisticians assess the relationship
between them.

Imagine a computerized training method designed to increase a person’s IQ. How
would a researcher find out whether this method does what it’s supposed to do?
First, that person would randomly assign a sample of people to one of two groups.
One group would receive the training method, and the other would complete
another kind of computer-based activity — like reading text on a website. Before
and after each group completes its activities, the researcher measures each per-
son’s IQ. What happens next? I discuss that topic in the later section “Inferential
Statistics: Testing Hypotheses.”

For now, understand that the independent variable here is Type of Activity. The

two possible values of this variable are IQ Training and Reading Text. The depen-
dent variable is the change in IQ from Before to After.
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A dependent variable is what a researcher measures. In an experiment, an inde-
pendent variable is what a researcher manipulates. In other contexts, a researcher
can’t manipulate an independent variable. Instead, they note naturally occurring
values of the independent variable and how they affect a dependent variable.

In general, the objective is to find out whether changes in an independent variable
are associated with changes in a dependent variable.

In the examples that appear throughout this book, I show you how to use Python
to calculate characteristics of groups of scores or to compare groups of scores.
Whenever I show you a group of scores, I’m talking about the values of a depen-
dent variable.

Types of data

When you do statistical work, you can run into four kinds of data. And when you
work with a variable, the way you work with it depends on what kind of data it is.
The first kind is nominal data. If a set of numbers happens to be nominal data, the
numbers are labels — their values don’t signify anything. On a sports team, the
jersey numbers are nominal. They just identify the players.

The next kind is ordinal data. In this data type, the numbers are more than just
labels. As the name ordinal might tell you, the order of the numbers is important.
If I were to ask you to rank ten foods from the one you like best (1) to the one you
like least (10), we’d have a set of ordinal data.

But the difference between your third-favorite food and your fourth-favorite food
might not be the same as the difference between your ninth-favorite and your
tenth-favorite. So this type of data lacks equal intervals and equal differences.

Interval data gives us equal differences. The Fahrenheit scale of temperature is a
good example. The difference between 30° and 40° is the same as the difference
between 90° and 100°. So each degree is an interval.

People are sometimes surprised to find out that on the Fahrenheit scale, a tem-
perature of 80° is not twice as hot as 40°. For ratio statements (“twice as much
as,” “half as much as”) to make sense, zero has to mean the complete absence of
the thing you’re measuring. A temperature of 0° F doesn’t mean the complete
absence of heat — it’s just an arbitrary point on the Fahrenheit scale. (The same
holds true for Celsius.)

The fourth kind of data, ratio, provides a meaningful zero point. On the Kelvin
scale of temperature, zero means “absolute zero,” where all molecular motion
(the basis of heat) stops. So 200° Kelvin is twice as hot as 100° Kelvin. Another
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example is length. Eight inches is twice as long as 4 inches. Zero inches means “a
complete absence of length.”

An independent variable or a dependent variable can be either nominal, ordinal,
interval, or ratio. The analytical tools you use depend on the type of data you
work with.

A little probability

When statisticians make decisions, they use probability to express their confi-
dence about those decisions. They can never be absolutely certain about what they
decide. They can only tell you how probable their conclusions are.

What do I mean by probability? Mathematicians and philosophers might give you
complex definitions. In my experience, however, the best way to understand
probability is in terms of examples.

Here’s a simple example: If you toss a coin, what’s the probability that it turns up
heads? If the coin is fair, you might figure that you have a 50-50 chance of heads
and a 50-50 chance of tails. And you’d be right. In terms of the kinds of numbers
associated with probability, that’s V2.

Think about rolling a fair die (one member of a pair of dice). What’s the probabil-
ity that you roll a 4? Well, a die has six faces and one of them is 4, so that’s 6. Still
another example: Select 1 card at random from a standard deck of 52 cards. What’s
the probability that it’s a diamond? A deck of cards has four suits, so that’s Ya.

These examples tell you that if you want to know the probability that an event
occurs, count how many ways that event can happen and divide by the total num-
ber of events that can happen. In the first two examples (heads, 4), the event
you’re interested in happens in only one way. For the coin, you divide 1 by 2. For
the die, you divide 1 by 6. In the third example (diamond), the event can happen
in 1 of 13 ways (ace through king), so you divide 13 by 52 (to get Y/a).

Now for a slightly more complicated example. Toss a coin and roll a die at the
same time. What'’s the probability of tails and a 4? Think about all the possible
events that can happen when you toss a coin and roll a die at the same time.
You could have tails and 1 through 6, or heads and 1 through 6. That adds up to
12 possibilities. The tails-and-4 combination can happen only one way. So the
probability is ,.

In general, the formula for the probability that a particular event occurs is

Number of ways the event can occur

Pr(event) = Total number of possible events
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At the beginning of this section, I say that statisticians express their confidence
about their conclusions in terms of probability, which is why I brought all this up
in the first place. This line of thinking leads to conditional probability — the prob-
ability that an event occurs given that some other event occurs. Suppose that I roll
a die, look at it (so that you don’t see it), and tell you that I rolled an odd number.
What’s the probability that I've rolled a 5? Ordinarily, the probability of a 5 is Ve,
but “I rolled an odd number” narrows it down. That piece of information elimi-
nates the three even numbers (2, 4, 6) as possibilities. Only the three odd numbers
(1, 3, 5) are possible, so the probability is V5.

What’s the big deal about conditional probability? What role does it play in statis-
tical analysis? Read on.

Inferential Statistics: Testing Hypotheses

14

Before any statistician begins a study, they draw up a tentative explanation — a
hypothesis that tells why the data might come out a certain way. After gathering all
the data, the statistician has to decide whether to reject the hypothesis.

That decision is the answer to a conditional probability question — what’s the
probability of obtaining the data, given that this hypothesis is correct? Statisti-
cians have tools that calculate the probability. If the probability turns out to be
low, the statistician rejects the hypothesis.

Back to coin-tossing for an example: Imagine that you’re interested in whether a
particular coin is fair — whether it has an equal chance of heads or tails on any
toss. Let’s start with “The coin is fair” as the hypothesis.

To test the hypothesis, you’d toss the coin a number of times — let’s say 100.
These 100 tosses are the sample data. If the coin is fair (as per the hypothesis),
you’d expect 50 heads and 50 tails.

If it’s 99 heads and 1 tail, you’d surely reject the fair-coin hypothesis: The condi-
tional probability of 99 heads and 1 tail given a fair coin is very low. Of course, the
coin could still be fair and you could, quite by chance, get a 99-1 split, right? Sure.
You never really know. You have to gather the sample data (the 100-toss results)
and then decide. Your decision might be right, or it might not.

Juries make these types of decisions. In the United States, the starting hypothesis
is that the defendant is not guilty (“innocent until proven guilty”). Think of the
evidence as data. Jury members consider the evidence and answer a conditional
probability question: What’s the probability of the evidence, given that the defen-
dant is not guilty? Their answer determines the verdict.

PART 1 Getting Started with Statistical Analysis with Python



REMEMBER

Null and alternative hypotheses

Think again about that coin-tossing study I just mentioned. The sample data are
the results from the 100 tosses. I said that we can start with the hypothesis that
the coin is fair. This starting point is called the null hypothesis. The statistical
notation for the null hypothesis is H,. According to this hypothesis, any heads-
tails split in the data is consistent with a fair coin. Think of it as the idea that
nothing in the sample data is out of the ordinary.

An alternative hypothesis is possible — that the coin isn’t a fair one and it’s
loaded to produce an unequal number of heads and tails. This hypothesis says that
any heads-tails split is consistent with an unfair coin. This alternative hypothesis
is called, believe it or not, the alternative hypothesis. The statistical notation for the
alternative hypothesis is H,.

Now toss the coin 100 times and note the number of heads and tails. If the results
are something like 90 heads and 10 tails, it’s a good idea to reject H,. If the results
are around 50 heads and 50 tails, don’t reject H,..

Similar ideas apply to the IQ example I gave earlier. One sample receives the
computer-based IQ training method, and the other participates in a different
computer-based activity — like reading text on a website. Before and after each
group completes its activities, the researcher measures each person’s IQ. The null
hypothesis, H,, is that one group’s improvement isn’t different from the other.
If the improvements are greater with the IQ training than with the other
activity — so much greater that it’s unlikely that the two aren’t different from one
another — reject H,. If they’re not, don’t reject H,..

Notice that I did not say “accept H,.” The way the logic works, you never accept a
hypothesis. You either reject H, or don’t reject H,. In a jury trial, the verdict is
either “guilty” (reject the null hypothesis of “not guilty”) or “not guilty” (don’t
reject H)). “Innocent” (acceptance of the null hypothesis) is not a possible verdict.

Notice also that in the coin-tossing example, I said “around 50 heads and
50 tails.” What does around mean? Also, I said that if it’s 90-10, reject H,. What
about 85-15? 80-20? 70-30? Exactly how much different from 50-50 does the
split have to be for you to reject H,? In the IQ training example, how much greater
does the IQ improvement have to be to reject H,?

I won’t answer these questions now. Statisticians have formulated decision rules
for situations like this, and I'll help you explore those rules throughout this book.

CHAPTER 1 Data, Statistics, and Decisions 15



16

Two types of error

Whenever you evaluate data and decide to reject H, or not reject H, you can never
be absolutely sure. You never really know the “true” state of the world. In the
coin-tossing example, that means you can’t be certain whether the coin is fair.
All you can do is make a decision based on the sample data. If you want to know
for sure about the coin, you have to have the data for the entire population of
tosses — which means you have to keep tossing the coin until the end of time.

Because you’re never certain about your decisions, you can make an error either
way you decide. As I mention earlier, the coin could be fair, and you just happen
to get 99 heads in 100 tosses. That’s not likely, and that’s why you reject H if that
happens. It’s also possible that the coin is biased, yet you just happen to toss 50
heads in 100 tosses. Again, that’s not likely, and you don’t reject H, in that case.

Although those errors aren’t likely, they’re possible. They lurk in every study that
involves inferential statistics. Statisticians have named them Type I errors and
Type II errors.

If you reject H, and you shouldn’t, that’s a Type I error. In the coin example, that’s
rejecting the hypothesis that the coin is fair when in reality it’s a fair coin.

If you don’t reject H, and you should have, that’s a Type II error. It happens when
you don’t reject the hypothesis that the coin is fair, and in reality, it’s biased.

How do you know whether you’ve made either type of error? You don’t — at least
not right after you make the decision to reject or not reject H,. (If it’s possible to
know, you wouldn’t make the error in the first place!) All you can do is gather
more data and see whether the additional data is consistent with your decision.

If you think of H, as a tendency to maintain the status quo and not interpret any-
thing as being out of the ordinary (no matter how it looks), a Type II error means
you’ve missed out on something big. In fact, some iconic mistakes are Type
IT errors.

Here’s what I mean. On New Year’s Day in 1962, a rock group consisting of three
guitarists and a drummer auditioned in the London studio of a major recording
company. Legend has it that the recording executives didn’t like what they heard,
didn’t like what they saw, and believed that guitar groups were on their way out.
Although the musicians played their hearts out, the group failed the audition.

Who was that group? The Beatles!

And that’s a Type 1I error.
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