Autonomous Maze Navigation with SLAM and
A-Star Path-Planning

Justin M. Lu, Changhe Chen, Nilay Roy Choudhury

Abstract—Autonomous navigation is a cornerstone of
modern robotics, enabling robots to operate independently
in dynamic environments. This study focuses on the
fundamental aspects of autonomous navigation, including
localization, mapping, path planning, and motion control,
through the deployment of a wheeled robot tasked with ex-
ploring and escaping a structured environment. A real-time
visual interface is utilized to illustrate the robot’s evolving
perception of its surroundings. Theoretical foundations
are combined with practical implementation challenges
to build robust low- and high-level controllers, process
sensor feedback for precise localization, and integrate
simultaneous localization and mapping (SLAM) techniques.
The proposed framework demonstrates reliable planning
and exploration in real-world conditions, showcasing the
effectiveness of the developed algorithms in achieving
autonomy.

I. INTRODUCTION

UTONOMOUS navigation is a critical capability
for robotic systems across various applications,
from industrial automation to exploration in inaccessible
environments. This project focuses on designing and
implementing a mobile robot capable of autonomous
exploration, mapping, and navigation within structured
environments such as mazes. By integrating key com-
ponents—motion control, simultaneous localization and
mapping (SLAM), and path planning—the robot adapts
to its surroundings to perform complex tasks indepen-
dently.
The robot uses LIDAR for environmental sensing,
generating detailed 2D maps to localize itself and navi-
gate through its surroundings. SLAM techniques enable

real-time map construction and pose estimation, while
algorithms like A* are employed for path planning
to determine efficient routes to targets. A closed-loop
control system, combining odometry and feedback from
sensors, ensures precision in motion and responsiveness
to environmental changes. This report provides a detailed
account of the system’s development, addressing the
theoretical foundations, practical implementation chal-
lenges, and performance evaluation in navigating and
escaping structured environments.

II. METHODOLOGY

A. Odometry

The MBot platform, available in a variety of configu-
rations, consists of a differential-drive robot in its default
state. As such, the state of the MBot can be represented
as a position (using Cartesian coordinates (z,y)) as well
as an angle 6 depicting rotation. As such, we utilize the
encoders and IMU that the MBot is equipped with in
order to estimate the change in position, orientation, and
velocity of the robot over time. This process is called
odometry, and is utilized in order to ensure robustness
in future tasks involving localization, navigation, and
pathfinding.

1) Calibration: Calibration is a crucial step to ac-
count for hardware-specific variations in the MBot, such
as differences in motor response and encoder behavior. It
measures parameters like slopes and intercepts for both
positive and negative motor directions, which correct
for asymmetries in motor performance. These calibrated
parameters ensure accurate velocity estimation and con-
sistent odometry. The results of the calibration, including
an evaluation of the variability in these parameters, are
further analyzed in the Results section to assess their
impact on the robot’s overall performance.

2) Wheel Speed Calculation: To compute the rota-
tional velocities of the robot’s wheels in radians per
second, the raw encoder tick data is converted using the
following equation:

velocity[i] = encoder_polarity/[i] - 106 . 217 Aticks]i]
yi= GEAR_RATIO - ENCODER_RES Atime

Here, encoder_polarity[i] accounts for the direction
of rotation, GEAR_RATIO and ENCODER_RES ac-
count 4for the gear reduction and encoder resolution, and
AX;‘EB] represents the rate of encoder ticks over time.
Using this formula, the left (vz) and right (vr) wheel
velocities are determined.

These wheel velocities are then used to calculate the
robot’s differential body velocity in terms of forward
velocity (v,), lateral velocity (v,), and angular velocity

(w):

UL —UR —UL —VUR
2 2B
where R is the wheel radius and B is the robot’s base
radius. This computation provides the robot’s transla-
tional and rotational velocities, enabling differential drive
control.

3) Gyrodometry: Gyrodometry enhances the robot’s
pose estimation by combining traditional wheel encoder-
based odometry with gyroscope data for angular velocity
correction [1]. The angular velocity (w,) is calculated
using both odometry (wz_odometry) and the gyroscope
(wz_gyro), and the difference (Aw,) between these val-
ues is compared to a threshold. If the difference exceeds
the threshold, the gyroscope reading is used to update
w,; otherwise, the odometry value is retained. Addition-
ally, gyrodometry integrates changes in the gyroscope’s
angular position (Afgy,) to refine the robot’s heading
(6), correcting for drift in odometry-based estimates.
This hybrid approach significantly reduces errors caused
by wheel slip and improves motion tracking accuracy.

v, = R- vy, =0, w,=R-

B. Motion Control

1) Controller Description and Parameter Table: The
final controller was designed using a PID control loop to
accurately track the setpoint velocities for both wheels
and angular velocity (w,). The parameters were tuned
to balance stability and responsiveness, accounting for
motor-specific differences and ensuring smooth oper-
ation during motion control. The proportional (kK,),
integral (K;), and derivative (K 4) gains were configured
individually for the left and right wheels, as well as for
angular velocity control. The parameter values obtained
during tuning are further discussed in the Results section.

2) Tuning Process and Metrics: The tuning process
began with adjusting the proportional gain (K,) for the
left and right wheels to ensure initial stability and re-
sponsiveness to the setpoint velocities. Oscillations were
introduced deliberately to gauge the system’s response,
after which the derivative gain (K ;) was set to reduce
these oscillations. Since the integral gain (K;) was left
at 0.0, steady-state error correction relied solely on the
proportional and derivative terms.

For angular velocity control, a higher K, value of
0.75 was selected to achieve precise rotational control,
while K4 was set to 0.0 due to the absence of significant
oscillatory behavior in angular velocity tracking. Metrics
such as error minimization and system stability within
a permissible range were used to evaluate the tuning
process.

3) Additional Features and Observations: Although
the design intended to incorporate low-pass filters to
reduce noise in encoder readings and PID outputs, these
were not implemented in the final setup [2]. As a
result, the controller exhibited performance degradation
at higher speeds, such as increased noise and tracking
errors. These issues are discussed in detail in the Results
section.

The absence of filters particularly affected the deriva-
tive term, amplifying noise at higher velocities and
reducing the system’s robustness. This limitation high-
lights the importance of including noise filtering in
future iterations to improve performance and extend the
operational range of the controller.

4) Motion Control Between Waypoints: The motion
control algorithm is designed to guide the MBot through
a series of predefined waypoints by sending velocity
and path commands via the Lightweight Communica-
tions and Marshaling (LCM) framework. The algorithm
initializes by resetting the robot’s odometry to (0,0, 0),
ensuring a consistent starting reference frame. Velocity
limits are set to cap the linear velocity (v, = 0.2 m/s) and
angular velocity (w, = m/4rad/s), preventing excessive
motion speeds.

A global path is constructed from a list of waypoints,
each defined by (x, y, #) coordinates in the global frame.
These waypoints include straight-line movements and
orientation changes to create precise trajectories. The
path is converted into a sequence of pose2D_t mes-
sages, which represent each waypoint. The completed
path is published as a path2D_t message to the con-
troller via the CONTROLLER_PATH channel, ensuring
the robot can sequentially follow the trajectory. This
approach leverages modular commands to effectively
manage both position and orientation adjustments at each
waypoint.

C. Simultaneous Localization and Mapping (SLAM)

Our SLAM system, consisting of an action model,
sensor model, particle filter, and an occupancy grid, is
implemented as a particle-filter based framework for
real-time SLAM [3]. Motion updates from the action
model and sensor data updates via the sensor model are
combined in a probabilistic manner to build not only an
occupancy grid map of the robot’s environment, but also
to estimate the robot’s pose as it moves throughout said
environment [4].

1) Action Model: The action model is essentially
responsible for predicting the robot’s pose based on
odometry data, primarily through statistical (probabilis-
tic) methods. The robot’s motion is decomposed into
a rotation-translation-rotation (RTR) model (since it is
differential drive), and Gaussian noise is introduced to
account for the inherent uncertainties and inaccuracies
in the robot. Furthermore, direction handling and thresh-
olding is introduced to prevent unnecessary movements.
This Gaussian noise is parameterized for each of the
three actions, as well as tuning constants k; and k5 as
follows:

TABLE I: Action Model Uncertainty Parameters

Action Relevant Gain (k1,k2) | Stdev. of Noise
Rotation 1 k1 k1 * |af
Translation ko ko * |ds]
Rotation 2 k1 k1 = |df — af

where «, ds, and |df — a represent the magnitude of
the first rotation, translation, and secondary aligning ro-
tation respectively. As such, we note that tuning constant
k; is solely responsible for tuning the variance associated
with turning, while tuning constant ko is utilized only
for tuning the variance (or uncertainty) associated with
straight-line movement.

2) Sensor Model: The sensor model evaluates how
well each particle aligns with the robot’s environment,
and processes laser scan data from the MBot’s LiDAR
to compute the likelihood of a particle’s ’correctness’.
Each ray is then scored based on the proximity of the
ray endpoint to occupied cells in the map (via Breadth-
First-Search).

3) Particle Filter: The particle filter essentially dis-
tributes a series of particles representing the robot’s
belief of its pose. Low-variance resampling is used to
ensure higher-weight particles are retained, as a particles
weight’ is its log-likelihood of being the true robot pose.
These particles are sampled from the aforementioned
action model to predict the next likely state.

4) Combined Implementation: Our combined imple-
mentation combines the action model, sensor model, and
particle filter into a SLAM pipeline that operates in real-
time. At each time step, the action model predicts the
motion of the robot by sampling from the RTR model
(with Gaussian noise), generating a new set of predicted
poses. These poses are then evaluated by the sensor
model which assigns likelihood weights.

The particle filter then normalizes these weights and
applies low-variance resampling to focus computational
resources on the most likely poses. This process con-
tinuously updates the robot’s estimated pose and the
environment map, enabling robust adaptation to dynamic
changes while improving accuracy over time [5].

. Odometry MBot
Action Model Data Odometry
Proposal
LiDAR i
——»| Sensor Model <—Ma:) Scan LiDAR Data
Prior
LiDAR
Estimated Pose Map Scan

Map Updates -
(wl/ Particle

Filter)

Estimated Pose

Botgui Map

Fig. 1: SLAM System Block Diagram

Figure 1 illustrates our SLAM system pipeline using
a block diagram. The system integrates LiDAR data and
odometry from the MBot with probabilistic methods to
account for uncertainties in sensor measurements. Lever-
aging these probabilistic approaches in our implemen-
tation ensures robust performance - minimizing overre-
liance on potentially noisy sensor data while maintaining
accurate localization and mapping. This balance between
sensor fusion and probabilistic modeling is central to the
effectiveness of our SLAM implementation.

D. Path Planning

The A* search algorithm is implemented to find a
path from a start position to a goal position in a grid-
based environment. It combines heuristic and cost-based
strategies to determine the optimal path while avoiding
obstacles. Below is a detailed explanation of the work-
flow, including relevant formulas.

1) Initialization: The algorithm begins by converting
the start and goal positions from global coordinates to
grid cell coordinates using:

| global,
cell, = Leu widthJ ’ M
global,,
cell, = Len height | @

A priority queue (open) is initialized to track nodes for
exploration, with the start node pushed into it. Additional
queues (closed, visited) track explored nodes to
avoid revisiting.

2) Node Expansion and Cost Calculation: The A*
search algorithm involves several key steps to find an
optimal path from the start to the goal node. Below is a
detailed breakdown:

First, the algorithm checks if the current node matches
the goal node. If they match, the path is found, and the
algorithm terminates successfully.

Next, the algorithm explores 8 neighbor nodes (in
cardinal and diagonal directions). Each neighbor is vali-
dated based on two criteria: grid boundaries and obstacle
distance. The node must lie within the grid, and its
distance from obstacles must satisfy:

dobstacte = distances(z, y),

where nodes with dgpsacle < minDistanceToObstacle are
discarded.

The cost calculations follow, where the g-cost (the
cumulative cost from the start node to the current node)
is determined using:

g(n) = g(nparent) + moveCost,
with:

1.414 (Diagonal move)

moveCost = -
1 (Straight move).

Nodes too close to obstacles, specifically those with
dobstacle < minDistanceToObstacle x 0.8, are assigned:

g(n) = oc.

Additionally, a penalty for proximity to obstacles is
computed as:

g(n)+ = distanceCost, where
distanceCost = (maxDistanceWithCost—dopstacle

The heuristic cost, h-cost, is calculated as:

)CostExponent

3) Path Extraction and path pruning: Once the goal
node is reached, the algorithm proceeds to reconstruct
the path leading from the start node to the goal node.
Beginning at the goal node, the function iteratively
follows each node’s parent pointer until the start node is
encountered, effectively tracing the path in reverse order.

After the traversal is complete, the collected sequence
of nodes represents the path from the goal to the start.
To provide a final path that progresses naturally from the
start to the goal, the sequence is reversed. This ensures
the resulting path is in the correct order for subsequent
use. By leveraging this parent-pointer mechanism, the
algorithm efficiently reconstructs the optimal path found
during the search process.

The extracted path is converted to global coordinates
and orientations using:

0 = atan2(Ay, Ax). (3)

The result is a sequence of 2D poses, including x, y,
and 6.

E. Exploration

We implement an autonomous exploration module for
the MBot using a state machine approach. The robot
explores an environment, identifies frontiers (boundaries
between known and unknown regions), and plans paths
to navigate through the environment efficiently. The pri-
mary objective is to complete exploration or return home
in cases where all frontiers are explored or unreachable.

1) Initialization and Communication: The module
initializes by subscribing to essential communication
channels, including:

e SLAM_MAP_CHANNEL: Receives updates to the

occupancy grid map.

e SLAM_POSE_CHANNEL: Receives updates to the
mbot’s pose.

e MESSAGE_CONFIRMATION_CHANNEL:
Confirms receipt of messages, such as paths
sent to the motion controller.

‘Upon receiving the first map and pose, the mbot’s initial
pose is stored as the home position. The planner is
configured with the map and mbot’s radius to facilitate

h(n) = ManhattanDis(n, goal)+(1.414—2)-min(Az, Ay), motion planning.

where:
ManhattanDistance = |Ax| + |Ayl|.

Finally, nodes are added to the open and visited
queues with their cumulative cost:

f(n) = g(n) + h(n).

If a better path to an already visited node is discovered,
the node’s cost and parent pointer are updated accord-

ingly.

2) Exploration Logic: The exploration process exe-
cutes in a loop until the mbot either completes explo-
ration or encounters failure. Data readiness is continually
checked to ensure both the map and pose are available
before proceeding. Once data is ready, the exploration
state machine is invoked.

3) State Machine Execution: The exploration state
machine transitions between five distinct states:

« Initializing: Sets up the system and transitions

immediately to the exploration phase once the first
bit of data is received.

« Exploring the Map: Identifies frontiers in the map
and selects the best frontier to explore. The mbot
plans a path to the selected frontier and follows it
until exploration is completed, fails, or transitions
to another state.

o Returning Home: After completing exploration,
the mbot navigates back to its initial home position
using a planned path.

« Exploration Completed: The mbot remains in this
state once the environment is fully explored and it
has returned home.

o Exploration Failed: Transitioned to when no valid
paths to remaining frontiers or the home position
can be planned.

4) Path Planning and Execution: During exploration,
the mbot identifies frontiers using the occupancy grid
map and selects an appropriate target frontier. Path plan-
ning is performed to navigate the robot towards the target
while avoiding obstacles and unsafe regions. The path is
validated, and updates are sent to the motion controller
for execution. If the path changes or confirmation is not
received, the path is resent.

5) Returning Home: When exploration is completed,
the mbot navigates back to its home position. The robot
calculates the distance to home:

dhome = \/(l'home - xcurrent)2 + (yhome - ycurrent)Qa 4

and follows a planned path until it is within a defined
threshold. If no valid path exists, the exploration process
fails.

6) Status Updates: Throughout exploration, the mod-
ule continuously publishes status updates via the
EXPLORATION_STATUS_CHANNEL. These updates
reflect the current state, such as initializing, exploring,
returning home, or completed exploration, along with the
progress status.

7) Completion and Failure Handling: The explo-
ration terminates in one of two states:

o Completed Exploration: All frontiers are ex-
plored, and the mbot has returned home success-
fully.

« Failed Exploration: No valid paths to the frontiers
or home position can be found.

In either case, the module sends appropriate final status
messages and remains in its terminal state.

III. RESULTS

A. Odometry

TABLE II: Table of Calibration Parameters

Parameter Mean Standard Deviation
Positive Slope Right 0.05237 0.00065
Positive Intercept Right 0.05178 0.00643
Negative Slope Right 0.05910 0.00164
Negative Intercept Right -0.04229 0.00349
Positive Slope Left 0.05937 0.00052
Positive Intercept Left 0.04823 0.00451
Negative Slope Left 0.05435 0.00052
Negative Intercept Left -0.05865 0.00396

1) Calibration: The calibration process yielded key
parameters for both positive and negative motor direc-
tions, as summarized in Table II. These parameters,
including slopes and intercepts, correct for asymmetries
in motor performance and ensure accurate velocity esti-
mation. The low standard deviations observed across all
parameters indicate consistency in the calibration process
and minimal variability in motor response.

Positive and negative slopes represent the relation-
ship between input commands and motor velocities,
while intercepts account for inherent offsets in motor
behavior. For example, the slightly higher negative slope
values compared to positive slopes suggest a marginal
difference in motor response during reverse motion.
These calibrated parameters directly enhance odometry
accuracy, enabling the MBot to track its trajectory more
reliably. The observed results demonstrate that the cal-
ibration effectively minimizes discrepancies, laying the
foundation for precise control during navigation tasks.

Robot Linear Velocity (1m Square Loop)

1751 A
—— Linear Velocity (m/s)
1.50 4
125+

1.00 4

0.75

Velocity (m/s)

0.50

0.25 4

0.00 +

T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Time Step

Fig. 2: Robot Linear Velocity for a Im Square Path

2) Wheel Speed Calculation: Figure 2 shows the
robot’s linear velocity while executing a 1-meter square
loop. The plot highlights fluctuations in velocity, with
noticeable spikes occurring during turns. These spikes

indicate that the PID controller for angular velocity
(w,) was not optimally tuned, causing overshoot and
instability during directional changes.

Additionally, the absence of filtering in the velocity
computation exacerbated the noise, as seen in the incon-
sistent variations throughout the path. Encoder readings
and motor response irregularities contributed to the noisy
measurements, particularly at higher speeds. Implement-
ing low-pass filters in future iterations could smooth
out the velocity profile and improve overall control
performance.

The results underscore the need for refined PID tuning
for angular velocity control and filtering mechanisms to
achieve smoother and more reliable motion.

B. Motion Control

TABLE III: PID Parameters for the Final Controller

Controller Ky K; Ky
Left Wheel 0.26 | 0.0 | 0.025
Right Wheel 0.26 | 0.0 | 0.025
Angular Velocity (w,) | 0.75 | 0.0 0.0

1) Controller Parameters and Analysis: The param-
eters obtained from tuning the PID controller are pre-
sented in Table III. The left and right wheel controllers
showed similar gains, reflecting balanced motor behav-
ior, while the angular velocity controller had a higher
proportional gain to handle rotational dynamics. These
parameters were critical for reducing tracking error and
improving stability during operation.

These parameters were evaluated based on the robot’s
ability to track velocities accurately and maintain stabil-
ity under various motion conditions. The results demon-
strate that the tuned PID controller effectively minimized
steady-state error and oscillations, ensuring reliable per-
formance during navigation tasks.

Robot Odometry Path - Fast vs Slow

—— Slow Path
—— Fast Path

o
o
L

I~
S
L

o
8]
L

=4
=}
L

—0.2 4

Y Position (m)

—0.4 1

—0.6 4

—0.8

T
0.0 0.5 1.0 15 2.0 2.5 3.0
X Position (m)

Fig. 3: Odometry Path Comparison at Low and High
Speed

2) Motion Control Path Comparison: Figure 3 shows
a comparison of the robot’s odometry path at low and
high speeds, highlighting the performance of the motion
control algorithm. The ”Slow Path” corresponds to a
lower velocity setting (v, = 0.2m/s), while the “Fast
Path” was executed at higher velocities.

At low speeds, the MBot follows the intended tra-
jectory more accurately, as seen in the smooth and
consistent path in blue. The lower velocity minimizes
wheel slip, encoder noise, and deviations caused by
motor response delays, resulting in better tracking of
waypoints.

In contrast, the "Fast Path,” shown in orange, demon-
strates greater deviations from the desired trajectory. At
higher speeds, the robot experiences increased inertia,
reduced control accuracy, and pronounced overshoot dur-
ing turns. These effects cause noticeable path distortion,
particularly around sharp corners and direction changes,
where the robot’s angular control (w,) struggles to keep
up with the setpoints.

Overall, the results confirm that slower velocities
improve waypoint tracking accuracy, while higher ve-
locities introduce errors due to mechanical and con-
trol limitations. This analysis emphasizes the need for
velocity-dependent tuning or advanced control strategies
to enhance performance under varying speed conditions.

C. Simultaneous Localization and Mapping (SLAM)

Fig. 4: Map from log file ’drive_maze’

Figure 4 depicts the map from our log file
"drive_maze.log’, and will be utilized primarily to eval-
uate the performance of our action model, sensor model,
particle filter, and combined implementation. This map
was selected due to its relative complexity in comparison
to the more basic log file maps available.

In our empirical testing of the RTR action model,
we found that the values depicted in Table IV most
accurately reflected the true uncertainty in MBot move-
ment. These values resulted in the most realistic particle

TABLE IV: Action Model Tuning Constants

Gain (k1,k2) | Value
k1 0.05
ko 0.025

distributions emanating from the true robot pose, without
understating the true noise and movement error present
in real-world testing.

To illustrate how processor performance impacts the
upper bound on the number of generated pose esti-
mations (i.e the number of particles), we constructed
an experiment measuring update time as more particles
were introduced. Our results were as follows:

TABLE V: Avg. Particle Filter Update Times

Number of Particles | Update Time (us)
100 32140
500 87934
1000 165716

Table V shows the update rate in us associated with
the particle filter for 100, 500, and 1000 particles re-
spectively. As a broad estimate, the maximum number
of particles our implementation of the particle filter
could feasibly handle (sustainably, during nominal MBot
operation) would be approximately 500 particles. These
quantities of particles represent the realistic upper bound
on particle generation while taking into account the
response time of the onboard Raspberry Pi 5.

Fig. 5: Particle Plot Distribution

Figure 5 illustrates our particle filter in action, plotting
300 particles at regular intervals along the square path
taken by the MBot during a test run. We conclude
that our chosen constants k; and ko accurately depict
the uncertainty of the MBot during its path, and accu-
rately represent real-world error conditions for the MBot
differential-drive platform.

Fig. 6: Estimated vs. Ground-Truth Comparison

Figure 6 compares the SLAM pose generated by our
implementation with the ground-truth pose. The paths
align fairly well, obtaining an Root Mean Squared Error
(RMSE) of approximately 0.114, indicating that our sys-
tem performs admirably given its hardware constraints.
Our results are further reinforced by the fact that the
MBot, in real-world performance, consistently ends up
at a distance less than 4cm from its target pose for
any path with more than four vertices. Our empirical
results further reinforce why the probabilistic methods
employed in Probabilistic Robotics proved so influential
and successful.

D. Planning and Exploration

Fig. 7: Planned vs. Actual Path in Custom Environment

Figure 7 depicts the planned path (dotted green)
overlayed with with the actual driven path (olive green)
in a custom environment.

Runtimes for the A-Star algorithm are depicted in
Table VI. We can observe significant variation across
different test configurations. For sparse environments

TABLE VI: Successful Cases Timing (us)

Cases (us) Min | Mean Max Median | Stdev
convex_grid 3371 3953 10700 3471 1271
empty_grid 8127 | 14747 | 60657 13456 8785
filled_grid NA NA NA NA NA

maze_grid 3508 | 4193 10470 3626 1304
narrow_cons_grid | 8146 | 9640 19411 9447 1861
wide_cons_grid 8074 | 9401 20861 9060 1958

like the Empty Grid, execution times showed high vari-
ability due to increased memory usage and expanding
open nodes. The narrow grid displayed a wide spread
and an extremely large maximum time, highlighting the
difficulty in our algorithm for navigating constrained
spaces. The wide grid exhibited consistent performance
overall, while the convex and maze grid were more
stable and had acceptable runtimes. We can conclude that
overall, A-Star performance is highly dependent on grid
complexity, with sparse grids increasing computation
times due to memory overhead while blocked or simple
grids enable faster results.

IV. DISCUSSION

The results from the calibration, odometry, and motion
control experiments demonstrate the effectiveness of
our implemented methods. The calibration parameters,
shown in Table II, exhibit low variability, ensuring con-
sistent motor performance. The differences in slopes and
intercepts between positive and negative motor directions
indicate slight asymmetries in motor behavior that are
effectively compensated for through calibration. The cal-
ibration step significantly enhances odometry accuracy,
forming the basis for reliable navigation.

Analysis of robot velocity in Figure 2 shows spikes
during turns, which can be attributed to PID tuning for
angular velocity (w,). These ’spikes’ introduce insta-
bility and overshoot, particularly in sharp turns, where
the robot struggles to maintain a smooth trajectory.
Additionally, the lack of filtering amplifies noise in
the encoder readings, resulting in a fluctuating velocity
profile even on straight segments. Implementing low-
pass filtering and refining PID parameters, particularly
for angular control, would reduce these inconsistencies
and improve overall stability.

Figure 3 shows the impact of speed on path tracking
accuracy. At lower speeds, the MBot adheres closely to
the intended trajectory, benefiting from reduced wheel
slip and better motor response. However, higher ve-
locities exacerbate deviations due to increased inertia
and control limitations, leading to path distortion. These
observations suggest the need for speed-dependent con-
trol strategies or dynamic parameter tuning to optimize
performance across a range of speeds.

Finally, the SLAM tests and particle filter experi-
ments demonstrated robust results in mapping and robot

pose estimation, as shown in Figures 4 and 5. The
chosen tuning constants k; and ko accurately reflect
real-world uncertainty, producing realistic particle dis-
tributions. However, the update time analysis (Table
V) highlights computational constraints that limit the
maximum number of particles to approximately 500
for real-time operation. Future optimizations, such as
parallel processing or improved sampling methods, could
further enhance SLAM performance without sacrificing
responsiveness.

In conclusion, while the current implementation pro-
vides reliable navigation and mapping capabilities, fur-
ther refinements in PID tuning, noise filtering, and
computational efficiency are necessary to improve per-
formance under more challenging conditions.

REFERENCES

[1] J. Borenstein and L. Feng, “Gyrodometry: A new method for

combining data from gyros and odometry in mobile robots,” in

Proceedings of IEEE International Conference on Robotics and

Automation, vol. 1. 1EEE, 1996, pp. 423-428.

R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, Introduction to

Autonomous Mobile Robots. MIT Press, 2011.

J. Bresenham, “Algorithm for computer control of a digital plotter,”

IBM Systems Journal, vol. 4, no. 1, pp. 25-30, 1965.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The

MIT Press, 2006. [Online]. Available: http://www.probabilistic-

robotics.org/

S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte

carlo localization for mobile robots,” Artificial Intelligence, vol.

128, no. 1-2, pp. 99-141, 2001.

J. Borenstein and L. Feng, “Umbmark: A benchmark test for

measuring odometry errors in mobile robots,” in Mobile Robots

X, vol. 2591. SPIE, 1995, pp. 113-124.

[71 M. Spong, S. Hutchinson, and M. Vidyasagar, Robot
Modeling and Control. Wiley, 2005. [Online]. Available:
https://books.google.com/books?id=wGapQAAACAAJ

[2

—

[3

—_

[4

—_

[5

—_

[6

[t}

