F

The game has
changed.

Al coding assistants are the new normal.

Building apps today means working with Al coding assistants like Claude, GitHub
Copilot, and Cursor. This "vibecoding" approach can get your MVP or POC running in
days instead of weeks, but it comes with security trade-offs.

Let's be real: when you're racing to build a prototype or MVP, perfect security isn't
your first priority. But major security fails can kill your project just as dead as
missing the market window.

We've seen countless founders caught in this trap - they build fast, launch their
product, get traction, and then suddenly find themselves dealing with security
issues they could have prevented with just a little forethought. The good news? You
don't have to choose between speed and security. With the right approach, Al can
help you build both quickly and securely.

Not only have we seen this approach, we've lived it. Adversis has built several rapid
prototypes and rushed them to market, only we are already security practitioners, so
we focused on building secure apps from the start.

This guide shows you how to build secure-enough applications with Al coding
assistants without slowing down your development speed. Think of it as your
practical playbook for the new era of Al-assisted development.

@ adversis

Principles for Al-
Assisted
Development

CHOOSE TECHNOLOGY THAT ELIMINATES ENTIRE CATEGORIES
OF VULNERABILITIES

Serverless over servers - Use services like Vercel, Netlify or AWS Lambda instead of
managing your own servers. Serverless functions are ephemeral, automatically
patched, and scale to zero when not in use. This means no outdated software, no
unpatched vulnerabilities, and no persistent environment to attack.

NoSQL over SQL (for prototyping) - Document databases like MongoDB or Firestore
are often more forgiving for MVPs. They typically have simpler query patterns that
are less susceptible to injection attacks. You can query by document structure
rather than writing complex SQL that might introduce vulnerabilities.

Managed services over self-hosted - Use AuthQ for authentication, Cloudinary for
file storage, Stripe for payments, etc. These companies have entire security teams
dedicated to what would otherwise be a side project for you. Their security
expertise vastly outweighs what you can implement quickly.

Edge functions over long-running services - Edge functions run close to users and
are destroyed after each execution. This creates a naturally secure boundary
because there's no persistent state to attack. Cloudflare Workers, Vercel Edge
Functions, and Netlify Edge Functions all provide this benefit.

Static sites over dynamic rendering - Static site generation (SSG) produces plain
HTML/CSS/JS files that don't require server-side execution to render. This
dramatically reduces the attack surface since there's no dynamic code execution on
each request. Use Next.js, Astro, or similar frameworks with static generation when
possible.

Mature frameworks over custom code - Frameworks like Next.js, Remix, or SvelteKit
have been security-hardened by thousands of developers. They handle things like
sanitizing inputs, preventing XSS, and managing CSRF tokens automatically. Use
their built-in features instead of rolling your own.

@ adversis

DATA MINIMIZATION - DONT COLLECT WHAT YOU DON'T NEED

Store only essential data - For each piece of user data, ask "Do we actually need
this?" If you don't collect it, you can't leak it. For an MVP, start with the absolute
minimum and add fields only when proven necessary.

Minimize sensitive information - Avoid collecting sensitive data like full addresses
when approximate location would work, or full birth dates when age ranges would
suffice. Consider if you really need a user's real name or if a username would work.

Use tokenization for sensitive fields - When you must handle sensitive data (like
payment information), use tokenization services. Stripe, for example, gives you
tokens to store instead of actual credit card numbers. You get the functionality
without the security risk.

Set aggressive data retention policies - Automatically delete data that's no longer
needed. Even for an MVP, implement simple time-based cleanup jobs. Many
breaches expose data that should have been deleted years ago.

Use one-way hashing where possible - For data you need to verify but never need to
retrieve in its original form (like passwords), store one-way hashed versions with
strong algorithms like bcrypt or argon2.

MODULAR, SIMPLE DESIGN

Small, focused components - Each component should do one thing well. This makes
security reviews easier and contains potential vulnerabilities. For example, separate
your authentication logic from your business logic.

Clear interfaces between modules - Well-defined interfaces limit how components
can interact, reducing unexpected behavior. Document what each function expects
and returns, and validate at the boundaries.

Single responsibility functions - Functions should do one thing only. This makes
them easier to test, reason about, and secure. A function named
validateAndSaveUser is probably doing too much.

Explicit dependencies - Make dependencies clear and intentional. Avoid global state
and implicit dependencies that make code hard to understand and secure.

Minimal state management - State is a common source of security bugs. Keep it
simple and contained. Use immutable patterns where possible and centralize state
management in a well-tested library.

@ adversis

LEVERAGE MANAGED SECURITY

Auth providers - Services like AuthQ, Clerk, Supabase Auth, or NextAuth handle the
complex parts of authentication for you. They manage password hashing, session
security, multi-factor authentication, and security monitoring with minimal setup.

Managed databases with built-in security - Services like Supabase, Firebase,
PlanetScale, or MongoDB Atlas include security features like connection encryption,
automatic backups, access controls, and audit logging out of the box.

CDNs with WAF protection - Content Delivery Networks like Cloudflare or AWS
CloudFront include Web Application Firewalls that block common attacks
automatically. They identify and stop malicious traffic before it ever reaches your
application.

API gateways with rate limiting - Services like Kong, AWS API Gateway, or simple
middleware libraries automatically limit request rates to prevent abuse. They ensure
no single user can overwhelm your system with too many requests.

Managed secret storage - Use services like AWS Secrets Manager, GitHub Secrets,
or Vercel Environment Variables to store sensitive configuration securely. These
services encrypt your secrets at rest and limit access to authorized services.

“Assume hostile users will attempt to
abuse these features. Include
appropriate protections.”

Have a project in
mind? Le?¥’s talk

GETINTOUCH —»

https://www.adversis.io/contact
https://www.adversis.io/contact
https://www.adversis.io/contact
https://www.adversis.io/contact
https://www.adversis.io/contact

@ adversis

Secure Alternatives to
High-Risk Features

When building MVPs, traditional username/password authentication brings
complexity and security risks. Consider these safer alternatives that provide similar
functionality with much less security overhead:

Magic links instead of passwords - Send one-time login links to users' email
addresses instead of storing passwords. Services like Magic.link, Supabase Auth, or
NextAuth make this simple to implement. Users click a link in their email to sign in,
eliminating password storage entirely.

OAuth providers over custom auth - Let users sign in with Google, GitHub, or other
OAuth providers. These companies handle the hard parts of authentication, and you
just verify the tokens they provide. This offloads security complexity to experts.

Session-based auth over JWT for MVPs - For simpler applications, session-based
authentication is often easier to implement securely. JWT management introduces
complexities around token revocation and expiration that session-based auth
handles more naturally.

Passwordless authentication - Consider SMS codes, WebAuthn, or biometric
authentication when possible. These methods avoid password storage altogether
and provide better user experience.

AUTHENTICATION

Q adversis

Handling payments is one of the riskiest parts of any application. These alternatives
can dramatically reduce your security burden while still providing great customer
experiences:

Stripe Checkout over custom payment forms - Use Stripe's hosted checkout page
instead of building your own payment form. Stripe handles PCI compliance, fraud
detection, and secure card storage. Your application never touches the credit card
data.

Payment links for simple use cases - For basic payments, generate payment links
with services like Stripe Payment Links or PayPal. These require zero coding for
basic scenarios and are fully secured by the provider.

Subscription management services - Use services like Stripe Billing, Chargebee, or
Paddle to manage subscriptions. They handle all the complex billing logic, proration,
invoicing, and payment security.

Secure Alternatives to High-Risk Features

PAYMENT PROCESSING

Data storage and access patterns can introduce subtle security vulnerabilities. These
alternative approaches can eliminate entire classes of risks:

UUIDs instead of sequential IDs - Use UUIDs or other non-sequential identifiers for
database records. This prevents enumeration attacks where attackers can guess
valid IDs by incrementing numbers.

Composite keys over simple keys - Use composite keys that combine multiple fields
for more security. This makes it harder for attackers to guess valid identifiers.

Truncated or tokenized data - Store only the portions of sensitive data you actually
need. For example, store only the last four digits of credit cards or phone numbers

whnen possible. DATA

Secure Alternatives to High-Risk Features

@ adversis

File uploads and storage create significant security challenges. These alternatives
simplify security while maintaining functionality:

Cloud storage over local storage - Use AWS S3, Cloudinary, or similar services
instead of storing files locally. These services handle security, scaling, and backups
automatically.

Pre-signed URLs over direct access - Generate time-limited, pre-signed URLs for file

uploads and downloads instead of directly connecting users to your storage. This
provides fine-grained access control and prevents unauthorized access.

Content delivery networks - Use CDNs like Cloudflare or Fastly to serve static assets.
They provide DDoS protection, caching, and geographic distribution with minimal

FILE HANDLING

Sending emails, SMS messages, and notifications securely requires specialized
infrastructure. These alternatives let you offload that complexity:

Managed email services - Use services like SendGrid, Mailgun, or AWS SES instead
of running your own mail server. These services handle deliverability, security, and
compliance automatically.

SMS providers - Use Twilio, MessageBird, or similar services for SMS rather than
direct carrier integrations. They provide security features and abstractions that
simplify secure implementation.

Push notification services - Use Firebase Cloud Messaging, Apple Push Notification
Service, or OneSignal through their managed SDKs rather than building custom

notification systems.

COMMS

X UV

Q adversis

Al Assisted Secure
Development

Prompt Engineering FTW

STEP 1: SETUP PROMPT

On day one of your project, have your Al
assistant set up security fundamentals.

I'm building an MVP for [describe your app]. I need to move fast
but keep reasonable security, assuming malicious users will try to
abuse it. Please:

1. Recommend a serverless architecture that minimizes security
risks

2. Suggest a minimalist tech stack with managed services where
possible

3. Set up a basic project structure with security defaults

4. Create minimal but effective security controls for

authentication and data access

5. Focus on simplicity and maintainability

6. Use only the latest stable versions of all libraries and
frameworks

7. Never store or expose secrets in client-side code

8. Protect against business logic, rate limits, and payment abuse

Tech requirements:
- Need to store [type of data]
- Authentication for [type of users]..

STEP 2: CREATE A CONTEXT FILE

Create a simple security context file that

your Al can reference.

Al Assisted Secure Development

Q adversis

Project Context
This is an MVP/POC with balanced security requirements.

Security Priorities

Use managed services for auth and data storage

Validate all user inputs

Use parameterized queries for database access

Implement basic rate limiting

Maintain HTTPS throughout

Follow a "secure by default" approach where it doesn't slow
development
- Never expose secrets in client-side code or API responses
- Always use the latest stable versions of dependencies
- No test/debug endpoints that expose sensitive information

Tech Stack
Next.js 13+ app router
Vercel serverless functions
Supabase for auth and database
Simple zod validation
Environment variables for secrets
No unmaintained or deprecated libraries

Dependency Requirements
- React 18.2.0 or newer
- Next.js 13.4.0 or newer
zod 3.21.0 or newer
TypeScript 5.0.0 or newer
- Only use actively maintained libraries with recent updates

Development Approach
Favor simplicity over complexity
Use existing libraries over custom implementations
Focus on modular, reusable components
Balance security and development speed
Never return sensitive data to clients

claude.md < >

“You highlighted
legitimate concerns... A+
would read again.”

More vulnerabilities identified in _ _ _
vibe coded apps vs traditional app - Penetration Testing Client

development.

Q adversis

STEP 3: CREATE CORE TEMPLATES

Have your Al generate templates for common operations

Please create these minimal but secure templates for our MVP:

1. basic API endpoint template with:
Simple input validation
Authentication check
Basic error handling
Clean separation of concerns
No exposure of secrets or sensitive data

database operation template that:

Uses parameterized queries

Has proper error handling

Follows least privilege

Only returns necessary fields (never sensitive data)

Al Assisted Secure Development

form submission handler that:
Validates inputs

Prevents common attacks

Provides good UX for errors

Never exposes secrets client-side

STEP 4: SEND IT

At this point, most of the security foundation has been put in place. Now, strategic
prompting will keep your Al coding assistant on track to follow your guidance.

We need a simple file upload
feature for our MVP:

1. Use a managed service (S3/
Cloudinary) rather than storing
files ourselves

2. Implement basic file
validation (size, type)

3. Use signed URLs for uploads

4. Keep the implementation simple
but secure

5. Focus on the happy path but
handle basic error cases

As this is a prototype, we need
something working quickly that
doesn't have major security

holes. < >

Create a basic API for our user
profiles feature:

1. Use our serverless API
template

2. Implement simple validation
with zod

3. Use Supabase for data storage
with parameterized queries

4. Add basic error handling

5. Implement authentication
checks

This is for an MVP, so keep it

simple while addressing
fundamental security needs.

<>

Q adversis

CASE STUDY

threatscan.ai

THREATSCAN.AI IS A THREAT INTELLIGENCE PLATFORM BUILT
AS AN MVP WITH SECURITY BAKED IN FROM THE START.

Adversis initially developed an Al-powered threat intelligence service as a proof of
concept to demonstrate value during sales conversations. We quickly recognized its
broader potential and decided to make it publicly available.

Comprehensive Attack
Su rface Start Your Security Scan

Company Name

Itiple integrated t

Enterprise Solutions

Architecture Overview

Token-based access - No traditional authentication system
MongoDB with TTL indexes - Auto-expiring data for scan results
Serverless API - No persistent servers to attack

External APl Based Functionality - Minimal server side logic

Infrastructure Overview

Web Application Firewall/Bot Protection
CLOUDFLARE

Render - No persistent server infrastructure

User AuthN + AuthZ Qauth@
by Okta

|

Mongo Atlas - Hosted database in SaaS provider

Stripe - No custom payment processing

Web Service (API) + Static Site (Frontend) { Render ’

GltLab - CICD and source code live in GitLab Hosted Database ® MongoDB

11

Q adversis

CASE STUDY

threatscan.ai

THREATSCAN.AI IS A THREAT INTELLIGENCE PLATFORM BUILT
AS AN MVP WITH SECURITY BAKED IN FROM THE START.

During our beta launch, we discovered a issue in our token-based access system that
could have cost us $847 in about 2 minutes. Our initial prompt was too basic.

"Create an API endpoint that accepts a token and list of
domains to scan”

app.post('/api/scan', async (req, res) => {
const { domains } = req.body;
domains.forEach(domain => scanDomain(domain));

Y

See the issue? A single user could submit 10,000+ domains, causing massive API costs
and service degradation.

"Create an API endpoint for domain scanning with secure
constraints, assuming someone will try to abuse it.
- Implement reasonable per-token rate limiting

- Maximum 100 scans per token per 24 hours
- Each external API call costs $0.10, protect against abuse"

Due to size we won't print it here, but now we have daily limits, token checks, and
assurance that abuse will be minimized.

Prompt should include an attacker's perspective. Whether you're building a contact form,
APl endpoint, or data processor, consider the threat model and abuse cases. Add the
following to your prompt:

"Assume hostile users will attempt to abuse this
feature. Include appropriate protections.”’

Defense prompting will help reduce software and business logic vulnerabilities in your
applications. You don't need to know every possible attack either - just remind the agent
that these attacks exist!

Now use these tools to securely MVP and bring in an expert as complexity increases.

12

You face impossible choices

+ Move fast and risk security breaches
* Lock everything down and lose business agility
+ Check compliance boxes and still get breached

While Fortune 500s have elite security teams, the rest of the 99% are left hoping.

We're building a world where breaches are no longer the norm and your data stays
private.

Adversis was founded by red team veterans who've breached the world's most
sophisticated systems, Adversis translates fear, uncertainty, and doubt into
confidence, speed, and growth.

+

e -, v <

