adversis

Web App Penetration Test
Sample App

Prepared for Acme, Inc Adversis, LLC

John Doe PO Box 2953
jdoe@example.com Kalispell, MT 59901
+1 (877) 353-1337

hello@adversis.io

January 1, 2025

Contents

Executive Summary
Overview
Key Findings
Positive Controls
Conclusion
Attack Summary Diagram
Findings Overview
Findings Details
1. Stored Cross-Site Scripting (XSS) Vulnerability in Contact Form
2. Error Logging Modules and Handlers (ELMAH) Exposed to Admins
3. Unauthorized Report Execution by Low Privilege Users
4. Username Enumeration Vulnerability in Forgot Password Flow
5. Missing Content-Security-Policy Security Header
6. Information Disclosure in Detailed Error Messages
Appendix - Web Application Security Assessment Methodology
Appendix - Risk Framework

Adversis, LLC | adversis.io | Confidential

0 OO A W NDNDNDNNDN

_ = = ., =
N O~ w2 O

App ACME App

Type Web Application Penetration Test
Scope acmetest.example.com

Dates January 1 to January 14, 2024
Outcome Robust Controls

Adversis conducted a black-box assessment of Acme
Inc's ACME Application above and beyond OWASP
ASVS Level 1 methodology.

Testing evaluated the web application and REST API
powering ACME's App solution using SDK-based
and direct REST approaches.

Aspects of regulatory compliance pertaining to key
data elements were also considered.

The ACME application uses a robust web framework
and configuration, inherently providing strong
defenses against common vulnerabilities.
Specifically, the authentication and authorization
framework is industry standard and well-designed
with secure features and defaults. Unlike using raw
SQL queries, the app also uses safe,
language-integrated database queries in the code to
prevent vulnerabilities that can lead to data loss.

Critically, a reliance on insufficient built-in input
filters and missing output encoding capabilities
introduces stored cross-site scripting vulnerabilities,
which can lead to account compromise and eventual
data leakage.

Additionally, the absence of role authorization
checks during report execution enables some users
to access information they should not be able to,
although highly sensitive information remains
restricted through appropriate database checks.

The ACME application demonstrates strong security
measures and robust configuration, enhancing its
resilience against common cyber threats. These
include:

e A robust web framework and secure
configuration

e Secure account authentication library usage
and strong data handling measures

In particular, the team identified several items worth
championing.

e Strong authentication: The OWIN
authentication middleware automatically
implements essential security features, which
help mitigate vulnerabilities in account
takeovers. In addition, the application
enforces an automatic session timeout with a
judiciously set duration, minimizing the risk
of unauthorized access during periods of
inactivity.

e Secure File Handling: Files cannot be
uploaded or made accessible without proper
authentication. Additionally, files are neither
hosted nor executed on the application
server; instead, Azure services and unique
identifiers are used, providing an extra layer
of security.

e \Validation and Encryption: Both server and
clientside validations are rigorously applied,
including measures against Cross-Site
Request Forgery (CSRF) and encryption of
ViewState data. These controls are essential
for maintaining the integrity and
confidentiality of user interactions.

e SQL Injection Protfection: Using Ling to
Entities Framework for database interactions
effectively prevents SQL injection, a
prevalent threat that can lead to significant
data loss.

Adversis, LLC | adversis.io | Confidential

e Effective Authorization Checks: The
application exhibits a well-implemented
system for user roles and authorization
verification, ensuring access rights are
strictly enforced according to user
privileges.

Overall, the ACME web application’s security
posture is commendable. It reflects a thoughtful and
proactive approach to protecting data and user
interactions against a range of threats.

To build upon this strong foundation, several
approaches should be considered.

1. Ensure all user-provided information is
encoded before displaying it to protect
against Cross-Site Scripting (XSS) attacks.
This practice ensures that any special
characters are converted into HTML entities,
preventing them from being interpreted as
code.

Implementing HTML encoding systematically
across the application will fortify your
defenses against one of the most common
web security threats. Fortunately, the .NET
HtmlEncode method can be used to
accomplish this easily.

2. Authorization controls for data and report
execution should be bolstered. Given the

sensitivity of the information in reports,
implementing additional authorization

requirements will help ensure that only
qualified users can access or generate
reports.

Fortunately, data element access is still
restricted by the current user role,
preventing sensitive information such as
names from being produced in
unauthorized report data.

Adversis has highlighted the ACME application’s
strong security and effective protective measures
through this penetration test against a variety of
threats.

By utilizing secure coding practices, robust session
management, and advanced security mechanisms,
the application maintains a high level of protection
for both data and user interactions.

To build upon this strong foundation, we
recommend implementing HTML encoding for all
outputs and enhancing authorization protocols for
report access.

These enhancements will secure the application
against emerging threats and ensure it remains
resilient in a dynamic security environment.

Adversis, LLC | adversis.io | Confidential

Attack Summary Diagram

Following is a basic visual description of issues identified in the ACME application.

Ty
L Malicious
input
Auth'd
non-admin
user
Direct
report
. request
N S
Y
Auth'd
admin
user
\ J
Y
—— Browse ——=>
Unauth'd
public
access
| Username
enumeration
I S .

— News item

Reports
-

"\

TwoFactorAuth
page

Password
reset

page

}
I

- Account takeover
)
- U= Data theft
AN
X Privilege
escalation
Unauthed
access Data theft
Privilege
=4 escalation
r_...C_r_J_@.hiEs/

exposed _

.

)

Account takeover

Info &
server ——>

paths

Brute
force

Adversis, LLC | adversis.io | Confidential

Information
Disclosure

Account takeover

Findings Overview

ID Description Risk

1

Stored Cross-Site Scripting (XSS) Vulnerability in Contact Form Moderate

Filter bypass and a lack of output encoding allow attackers to introduce arbitrary code that
affects a user’s browsing, typically leading to account takeover.

2 Error Logging Modules and Handlers (ELMAH) Exposed to Admins Moderate
All admin users can view sensitive authentication cookies for other users, which could allow
privilege escalation and unauthorized data access.

3 Unauthorized Report Execution by Low-Privilege Users Moderate
Low-privileged users can run reports and obtain data from reports typically not accessible to
them by specifying the report to run.

4 Username Enumeration Vulnerability in Forgot Password Flow Low
Login messages vary their responses, allowing an attacker to determine usernames to
facilitate account takeover and brute force attempts.

5 Missing Content-Security-Policy Security Header Low
Missing security headers is a defense in depth configuration to decrease the impact of
cross-site scripting and other client-side vulnerabilities.

6 Information Disclosure in Detailed Error Messages Informational

An unhandled error on an unauthenticated login page returns sensitive information about the
application, including software version info, server paths, and file names.

Several issues were still noted but not documented due to limited security impact. These include:

Missing HttpOnly flag on a non-sensitive cookie
Cross-domain source file inclusion for a content distribution network
Missing Strict-Transport-Security Headers

Adbversis, LLC | adversis.io | Confidential

Findings Details

1. Stored Cross-Site Scripting (XSS) Vulnerability in Contact Form

Description

Stored Cross-Site Scripting (XSS) occurs when an application does not encode special characters
before displaying them to the user’s browser. If an attacker injects a malicious script into a web
page, which is then viewed by another user, the attacker can influence the code run in the victim’s
browser. In the reported case, the application’s Contact form is vulnerable to an XSS attack via
encoded characters that bypass the built-in Request Validation feature. Specifically, encoding a
dotless 'i’ allows an attacker to evade filters and inject harmful scripts, such as an "iframe” element,
which is then stored and executed on the client’s browser. Critically, the harmful script is not
encoded (or neutralized) before being displayed to the user’s browser.

Risk
Moderate
Impact

An attacker can execute arbitrary HTML and JavaScript code in a user’s browser to perform malicious
activities like keystroke logging, user redirection, or data exfiltration, which can compromise user
privacy and data integrity.

Location
Component: Contact submission form

e hitps://acmetest.example.com/Contact.aspx?Key=16
e https://acmetest.example.com/User.aspx?Key=127

Recommendations

e Use Context-Sensitive Encoding such as the HttpUtility.HtmlEncode to encode all user-supplied
input before rendering it on any page, ensuring that any malicious scripts are neutralized.
The XSS doesn't render on the home page since HtmlEncode is used. Microsoft also states
not to rely on ASP.NET's ValidateRequest filter.'

e Implement a Content Security Policy (CSP) to reduce the severity of any XSS vulnerabilities
that may still occur, including restricting the loading of remote attacker-supplied resources.
(See Missing Content-Security-Policy Header finding).

! https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff647397(v=pandp.10)

Adbversis, LLC | adversis.io | Confidential

Within the Contact page, create a new item. Enfer the following text.

><iframe id=x onload="alert('xss’)"//
llil’

Note that a dotless 'i' character is used in place of the normal “i” character. Typically the
ValidateRequest filter will prevent this input but the Unicode letter bypasses the filter. Once the

i

Contact item is saved, it is converted to a standard “i"”, spelling “iframe”. The code executes once
the Contact item is viewed.

Contents

><iframe id=x onload="alert('xss")"/l

A malicious payload about to be saved in the Contact item
The encoded payload will execute if stored and rendered without proper sanitization.

As seen below in the code, the Contact entry is simply appended to the HTML output without being
safely encoded.

Insecure code does not safely encode user-supplied input

Adversis, LLC | adversis.io | Confidential

Q

2. Error Logging Modules and Handlers (ELMAH) Exposed to Admins

Description

Error Logging Modules and Handlers (ELMAH) is an error logging utility that captures unhandled
exceptions in ASP.NET applications and offers a built-in web interface for viewing these errors. The
identified issue is that the ELMAH interface allows access from all administrator roles. This
configuration could lead to privilege escalation and unauthorized actions because authentication
cookies are accessible to anyone accessing the ELMAH page.

Risk
Medium
Impact

While the ELMAH page is restricted to the admin role, any user with the admin role can impersonate
any other user by visiting the Elmah.axd page and obtaining another user’s application cookie. These
include Application Admin and Super Admin roles. If a Super Admin causes an error to occur, other
admin roles could compromise the account of a Super Admin in this manner.

Location

e https://acmetest.example.com/elmah.axd

e web.config’s elmah section sets allowRemoteAccess to true
Recommendations

While the Elmah configuration appears to be correct in that only Admins can access the file,
consider further restricting access to only Super Admins if possible. For example, remove the EImah
handler in web.config and implement the controller in the application, only allowing Super Admins
to access it.

Resources
e hitp://beletsky.net/2011/03/integrating-elmah-to-aspnet-mvc-in.html
Details

After browsing to the /elmah.axd page with an admin role returns all application errors, as seen
below.

Adbversis, LLC | adversis.io | Confidential

400 | Http A potentially dangerous Request.Path value was detected from the client (). Details...
500 InvalidOperation Userld not found. Details...
500 InvalidOperation Userld not found. Details...
400 Http A potentially dangerous Request.Path value was detected from the client (). Details...
500 InvalidOperation Userld not found. Details...

Application error logs as seen in elmah.axd

After selecting one of the errors, debug information for the user’s request is returned, including the
.AspNet.ApplicationCookie value, which allows anyone to impersonate that user’s session.

HTTP_COOKIE

C

|
.AspNet.ApplicationCookie=8eXa
bGFGjE]o3dRtTUrk4c4GRbxQIcAL
BnUBZTOGNSGCS54KelzB4kmKS!

Session cookie value exposed in the elmah.axd log

Adbversis, LLC | adversis.io | Confidential

3. Unauthorized Report Execution by Low Privilege Users

Description

Low-privileged users can execute reports they do not have permission to access through the web
application interface itself. While these users are restricted from viewing unauthorized data within
these reports, the ability to execute and interact with these reports represents a breach of access
control.

Risk
Moderate
Impact

Although sensitive information within the reports, such as names and birthdays, remains protected
and inaccessible to roles that do not have explicit access, the ability for unauthorized users to
execute reports could lead to information disclosure.

Location
e hitps://acmetest.example.com/Reports/Reports.aspx
Recommendations

Implement strict access control checks to ensure that users can only execute reports for which they
have explicit permissions.

Details

Log in with a low-privileged user, navigate to Reports, and select the “Log Analysis Export” report.
Intercept the request and modify the report form values as seen below by specifying the specific
report to run.

As a low-privileged user

POST /Reports/Reports.aspx HTTP/1.1
Host: acmetest.example.com
...[snip]...

RunReport=3
RunName=Log+Analysis+Export

...[snip]...

Response

HTTP/1.1 200 OK

Content-Type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
Content-Disposition: aftachment; filename=LogAnalysisExport.xlsx

Key5Y A¢E@-C /xl/worksheets/sheet1.xml

HTTP request and response from a user requesting an unauthorized report

The web application returns a user data dump with user emails and phone numbers.

10
Adbversis, LLC | adversis.io | Confidential

4. Username Enumeration Vulnerability in Forgot Password Flow

Description

The application exhibits a username enumeration vulnerability within its forgot password
functionality. This issue arises when different responses are provided based on whether the
submitted username exists in the system.

In the forgot password section of the application, when someone enters a username, the system
checks if that username exists. If it does not exist, the application explicitly states so. However, if the
username is valid, the application indicates an email has been sent. This difference in responses can
let an attacker deduce which usernames are valid on the platform simply by observing the messages
returned by the system.

Risk
Low
Impact

Username enumeration vulnerabilities allow malicious actors to gather valid usernames. This can
lead to targeted attacks, such as phishing or brute force attacks, where these valid usernames are
exploited. If an attacker successfully identifies valid usernames, they can target specific users with
phishing attempts and perform brute-force attacks on these accounts to guess passwords.
Importantly, the application does not disclose the user’s email address, which limits spear phishing
attempts.

Recommendations

To mitigate this vulnerability, the application should provide consistent responses for Forgot
Password attempts, regardless of whether the username exists. For example:

e Uniform Error Messaging: Modify the forgot password response to be generic. For example:
"If your username is recognized, a password reset email will be sent.”

Location
® https://acmetest.example.com/Account/Forgot.aspx
Details

Access the Forgot Password Page. Enter a username that you know does not exist. Note the specific
error message stating that the user doesn’t exist.

11
Adbversis, LLC | adversis.io | Confidential

Forgot password

Please enter your username and then click the 'Email Link" button
below to start the password reset process.

Username .
© Email Failure x

idontexist The user either does not exist or
is not confirmed.

T 11:37:45 AM
& Email Link

Application informing the user that the user does not exist

Enter a known valid username and observe that the response changes to indicate an email has been

sent.
Forgot password

Please enter your username and then click the 'Email Link' button
below to start the password reset process.

Email sent!
Please check your email and follow the instructions to reset your

password.
Application informing the user that the provided username exists

The difference in error messages allows attackers to build a list of usernames that can be used in

slow password attacks over time.

Adversis, LLC | adversis.io | Confidential

12

5. Missing Content-Security-Policy Security Header
Description

A Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain
types of attacks, including Cross Site Scripting (XSS) and data injection attacks, which could allow
aftackers to inject malicious scripts into web pages viewed by users. No CSP policy was identified.

Risk
Low
Impact

Without a CSP, the application is susceptible to attacks where unauthorized scripts can be run in the
context of a user’s session, potentially leading to unauthorized access, data theft, or malicious
redirection. The absence of a Content-Security-Policy can lead to data breaches and account
takeovers as malicious scripts executed through XSS can access session tokens, user personal
information, and other sensitive data.

Recommendations

Implement a Content Security Policy that specifies which sources can load resources like scripts,
stylesheets, and images. For example, implement a configuration in web.config or Startup.cs with the
following config:

<system.webServer>
<httpProtocol>
<customHeaders>
<add name="Content-Security-Policy”
value="default-src 'self’;
img-src data: https: hitp:;
script-src 'self’ example.cloudfront.net 'unsafe-inline’;
style-src 'self’ 'unsafe-inline’;
connectsrc 'self’;
worker-src ‘self’ blob:;
frame-src 'self’ blob:;/>
</customHeaders>
</httpProtocol>
</system.webServer>

e Regularly check and update the CSP as needed, and monitor for any attempted breaches
that could signal a need for CSP adjustment.
o https://report-uri.com/products/content_security_policy
o https://report-uri.com/home/analyse
Resources
e https://content-security-policy.com/
e hitps://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#
csp-sample-policies
e https://docs.devexpress.com/Generalinformation/404541 /security/content-security-policy

13
Adbversis, LLC | adversis.io | Confidential

6. Information Disclosure in Detailed Error Messages

Description

Detailed error messages can provide significant information about the application’s internal
workings. This typically includes database errors, server paths, or software versions. While this
information is useful for development and debugging, exposing it to end users or the public can
lead to security vulnerabilities by giving potential attackers clues on exploiting the system. In this
case, an uncaught application exception in the TwoFactorAuthentication page discloses web
application file paths and version information.

Risk
Informational
Impact

Exposure of system details through error messages can help an attacker formulate more targeted
aftacks, potentially leading to unauthorized access or data exposure. Displaying detailed error
messages can lead to information leakage, revealing sensitive information about the backend
systems, such as software versions and server paths, which can be used to find and build exploits in
less time.

Location
e https://acmetest.example.com/Account/TwoFactorAuthenticationSignin
Recommendations

Configure the application to remove detailed stack trace information and application version
information. Consider replacing the “RemoteOnly” config with “DetailedLocalOnly” and rely on
ELMAH.

A sample web.config section follows:

<system.web>
<httpRuntime enableVersionHeader="false"/>
</system.web>
<system.webServer>
<security>
<requestFiltering removeServerHeader="true" />
<httpErrors errorMode="DetailedLocalOnly">
</system.webServer>

Resources

e https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html#encrypti
on

e https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/hOhfzéfc(v=vs
.100)#example

14
Adbversis, LLC | adversis.io | Confidential

(=

Details

Browsing to the page /Account/TwoFactorAuthentication when a user is unauthenticated and not
logged in, the web application displays an error message that includes a detailed error message
disclosing the folder and path of the application, including the developer name and source file
name. The file path:

C:\vendor\client\TwoFactorAuthentication.aspx.cs:12

can be in the below stack trace.

[InvalidOperationException: UserId not found.]
Microsoft, AspMet. Tdent ity <hetValidTwoFactorProvidersAsyncsd__ 129 . MoveNext [} +1002
Systes.Runtime. CompilerServices . TaskAwaiter. ThrowForlonSuccess [Task task) +138
Systes.Runtime. CompilerServices. TaskAwaiter. HandlelonSuccessandbebuggerifotification(Task
Microsoft.AspMet.Identity.AsyncHelper.RunSync[Func'1 func) +266
Microsoft.Asphet. Identity.UserManagerExtensions. GetValidTweFactorProviders (UserManager”2

Detailed stack trace exposed along with source code path

Adversis, LLC | adversis.io | Confidential

15

Adversis brings extensive experience in assessing web applications. Adversis consultants hold CVE’s
across various web applications and common libraries and have experience building and breaking
modern web application technologies such as React and GraphQL.

Comprehensive Assessment: Adversis conducts a thorough assessment leveraging the OWASP
Application Security Verification Standard (ASVS) while identifying additional security issues,
particularly business logic flaws. Our examination ensures comprehensive coverage of potential
vulnerabilities to a minimum of OWASP ASV Level 1 standards and higher as appropriate.

Manual Testing: Adversis's approach to manual testing is exhaustive. We review and test
action-performing (CRUD) requests within the application, ensuring a thorough evaluation of
potential vulnerabilities, emphasizing, but not limited to, the OWASP Top 10.

Tool Utilization: Our primary tool, Burp Suite Pro, is integral to our testing process. It is selected
for its capabilities in advanced vulnerability identification and manual testing features, which enable
our team to pinpoint and address security weaknesses efficiently.

OWASP Top 10

Adversis always reviews the following categories for the OWASP Top Ten vulnerabilities and believes
that Level One controls of the OWASP Application Security Verification Standard (ASVS)? are critical
for any publicly facing application.

Broken Access Control

Cryptographic Failures

Injection

Insecure Design

Security Misconfiguration

Vulnerable and Outdated Components
Identification and Authentication Failures
Software and Data Integrity Failures
Security Logging and Monitoring Failures
10 Server Side Request Forgery (SSRF)

VENOG AW

In addition, the team considers your application’s purpose, functionality, and data requirements,
considering how data flows may be abused or functionality impacted.

? https://owasp.org/www-project-application-security-verification-standard/

16
Adversis, LLC | adversis.io | Confidential

Adversis leverages an industry-standard NIST (National Institute of Standards and Technology) threat
matrix outlined in SP 800-30°. This matrix is a framework for analyzing risks and threats modified
with input from the Factor Analysis in Information Risk (FAIR)* ontology. The matrix provides a
structured and standardized approach to identifying, assessing, and prioritizing cybersecurity risks.

Likelihood of

Threat Event Risk Rating

Very High High High Very High Very High Very High

High Medium High High Very High Very High

Significant Medium Medium High High Very High

Moderate Low Medium Medium High High

Low Low Low Medium Medium Medium

Very Low Low Low Medium Medium Medium
Loss Magnitude Neglible Minor Moderate Major Severe

E::::lency :::I;aebilify Calibration Anchor I;::;nifu de Loss Factors Business Context

Very High >76% Likely exploitation within Severe >$1 Million Financial impact, regulatory

12 months action, executive changes

High 51-75% More likely than not to see Major $100k - $1 Significant operational

exploitation at some point million disruption, compliance

violations
Moderate $10k - $100k Noticeable service

degradation, limited data
exposure

Stk - $10k Minimal disruption, no
sensitive data

Moderate 26-50% It could go either way

Low 5-25% Unlikely but possible Minor

All the stars would have to Neglible $0 - $1k
align

Very Low <5% Best practice

Recommended Response Times

Critical Remediation within 7 days

High Remediation within 60 days
Medium Remediation within 180 days

Low Accept or remediate within 365 days

* https://csrc.nist.gov/pubs/sp/800/30/r1/final
* https://www.fairinstitute.org/what-is-fair

17
Adversis, LLC | adversis.io | Confidential

	Executive Summary
	
	
	Overview
	Key Findings
	Positive Controls
	Conclusion

	
	Attack Summary Diagram
	
	
	Findings Overview
	Findings Details
	
	1. Stored Cross-Site Scripting (XSS) Vulnerability in Contact Form
	
	
	
	2. Error Logging Modules and Handlers (ELMAH) Exposed to Admins
	
	
	3. Unauthorized Report Execution by Low Privilege Users​
	
	4. Username Enumeration Vulnerability in Forgot Password Flow
	
	5. Missing Content-Security-Policy Security Header
	
	6. Information Disclosure in Detailed Error Messages
	

	Appendix - Web Application Security Assessment Methodology
	
	Appendix - Risk Framework

