
SA
MP
LE

 

 

 

Web App Penetration Test 
Sample App 
Prepared for Acme, Inc 
 
John Doe 
jdoe@example.com 
 
January 1, 2025 

Adversis, LLC 
 
PO Box 2953 
Kalispell, MT 59901 
+1 (877) 353-1337 
hello@adversis.io 

 



SA
MP
LE

 
 

Contents 
Executive Summary​ 2 

Overview​ 2 
Key Findings​ 2 
Positive Controls​ 2 
Conclusion​ 3 

Attack Summary Diagram​ 4 
Findings Overview​ 5 
Findings Details​ 6 

1. Stored Cross-Site Scripting (XSS) Vulnerability in Contact Form​ 6 
2. Error Logging Modules and Handlers (ELMAH) Exposed to Admins​ 8 
3. Unauthorized Report Execution by Low Privilege Users​ 10 
4. Username Enumeration Vulnerability in Forgot Password Flow​ 11 
5. Missing Content-Security-Policy Security Header​ 13 
6. Information Disclosure in Detailed Error Messages​ 14 

Appendix - Web Application Security Assessment Methodology​ 16 
Appendix - Risk Framework​ 17 
 

 

1 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

Executive Summary 
 

App ACME App 

Type Web Application Penetration Test 

Scope acmetest.example.com 

Dates  January 1 to January 14, 2024 

Outcome Robust Controls 
 

Overview 
Adversis conducted a black-box assessment of Acme 
Inc’s ACME Application above and beyond OWASP 
ASVS Level 1 methodology.  

Testing evaluated the web application and REST API 
powering ACME’s App solution using SDK-based 
and direct REST approaches. 

Aspects of regulatory compliance pertaining to key 
data elements were also considered. 

Key Findings 
The ACME application uses a robust web framework 
and configuration, inherently providing strong 
defenses against common vulnerabilities. 
Specifically, the authentication and authorization 
framework is industry standard and well-designed 
with secure features and defaults. Unlike using raw 
SQL queries, the app also uses safe, 
language-integrated database queries in the code to 
prevent vulnerabilities that can lead to data loss. 

Critically, a reliance on insufficient built-in input 
filters and missing output encoding capabilities 
introduces stored cross-site scripting vulnerabilities, 
which can lead to account compromise and eventual 
data leakage. 

Additionally, the absence of role authorization 
checks during report execution enables some users 
to access information they should not be able to, 
although highly sensitive information remains 
restricted through appropriate database checks. 

Positive Controls 
The ACME application demonstrates strong security 
measures and robust configuration, enhancing its 
resilience against common cyber threats. These 
include: 

●​ A robust web framework and secure 
configuration 

●​ Secure account authentication library usage 
and strong data handling measures 

In particular, the team identified several items worth 
championing. 

●​ Strong authentication: The OWIN 
authentication middleware automatically 
implements essential security features, which 
help mitigate vulnerabilities in account 
takeovers. In addition, the application 
enforces an automatic session timeout with a 
judiciously set duration, minimizing the risk 
of unauthorized access during periods of 
inactivity. 

●​ Secure File Handling: Files cannot be 
uploaded or made accessible without proper 
authentication. Additionally, files are neither 
hosted nor executed on the application 
server; instead, Azure services and unique 
identifiers are used, providing an extra layer 
of security. 

●​ Validation and Encryption: Both server and 
client-side validations are rigorously applied, 
including measures against Cross-Site 
Request Forgery (CSRF) and encryption of 
ViewState data. These controls are essential 
for maintaining the integrity and 
confidentiality of user interactions. 

●​ SQL Injection Protection: Using Linq to 
Entities Framework for database interactions 
effectively prevents SQL injection, a 
prevalent threat that can lead to significant 
data loss. 

2 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

●​ Effective Authorization Checks: The 
application exhibits a well-implemented 
system for user roles and authorization 
verification, ensuring access rights are 
strictly enforced according to user 
privileges. 

Overall, the ACME web application's security 
posture is commendable. It reflects a thoughtful and 
proactive approach to protecting data and user 
interactions against a range of threats. 

Strategic Recommendations 

To build upon this strong foundation, several 
approaches should be considered. 

1.​ Ensure all user-provided information is 
encoded before displaying it to protect 
against Cross-Site Scripting (XSS) attacks. 
This practice ensures that any special 
characters are converted into HTML entities, 
preventing them from being interpreted as 
code. 

Implementing HTML encoding systematically 
across the application will fortify your 
defenses against one of the most common 
web security threats. Fortunately, the .NET 
HtmlEncode method can be used to 
accomplish this easily. 

2.​ Authorization controls for data and report 
execution should be bolstered. Given the 

sensitivity of the information in reports, 
implementing additional authorization 
requirements will help ensure that only 
qualified users can access or generate 
reports.  

Fortunately, data element access is still 
restricted by the current user role, 
preventing sensitive information such as 
names from being produced in 
unauthorized report data. 

Conclusion 
Adversis has highlighted the ACME application's 
strong security and effective protective measures 
through this penetration test against a variety of 
threats.  

By utilizing secure coding practices, robust session 
management, and advanced security mechanisms, 
the application maintains a high level of protection 
for both data and user interactions.  

To build upon this strong foundation, we 
recommend implementing HTML encoding for all 
outputs and enhancing authorization protocols for 
report access. 

These enhancements will secure the application 
against emerging threats and ensure it remains 
resilient in a dynamic security environment. 

 

 

 

 

 

3 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

Attack Summary Diagram 
Following is a basic visual description of issues identified in the ACME application. 

 
 

 

4 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

Findings Overview 
 

ID Description Risk 

1 Stored Cross-Site Scripting (XSS) Vulnerability in Contact Form Moderate 

 Filter bypass and a lack of output encoding allow attackers to introduce arbitrary code that 
affects a user’s browsing, typically leading to account takeover. 

2 Error Logging Modules and Handlers (ELMAH) Exposed to Admins Moderate 

 All admin users can view sensitive authentication cookies for other users, which could allow 
privilege escalation and unauthorized data access. 

3 Unauthorized Report Execution by Low-Privilege Users​  Moderate 

 Low-privileged users can run reports and obtain data from reports typically not accessible to 
them by specifying the report to run. 

4 Username Enumeration Vulnerability in Forgot Password Flow Low 

 Login messages vary their responses, allowing an attacker to determine usernames to 
facilitate account takeover and brute force attempts. 

5 Missing Content-Security-Policy Security Header Low 

 Missing security headers is a defense in depth configuration to decrease the impact of 
cross-site scripting and other client-side vulnerabilities. 

6 Information Disclosure in Detailed Error Messages Informational 

 An unhandled error on an unauthenticated login page returns sensitive information about the 
application, including software version info, server paths, and file names. 

 

Several issues were still noted but not documented due to limited security impact. These include:  

●​ Missing HttpOnly flag on a non-sensitive cookie 
●​ Cross-domain source file inclusion for a content distribution network 
●​ Missing Strict-Transport-Security Headers 

 

5 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

Findings Details 
 
1. Stored Cross-Site Scripting (XSS) Vulnerability in Contact Form 
 
Description 

Stored Cross-Site Scripting (XSS) occurs when an application does not encode special characters 
before displaying them to the user’s browser. If an attacker injects a malicious script into a web 
page, which is then viewed by another user, the attacker can influence the code run in the victim’s 
browser. In the reported case, the application’s Contact form is vulnerable to an XSS attack via 
encoded characters that bypass the built-in Request Validation feature. Specifically, encoding a 
dotless 'i' allows an attacker to evade filters and inject harmful scripts, such as an "iframe" element, 
which is then stored and executed on the client's browser. Critically, the harmful script is not 
encoded (or neutralized) before being displayed to the user’s browser. 

Risk 

Moderate 

Impact 

An attacker can execute arbitrary HTML and JavaScript code in a user’s browser to perform malicious 
activities like keystroke logging, user redirection, or data exfiltration, which can compromise user 
privacy and data integrity. 

Location 

Component: Contact submission form 

●​ https://acmetest.example.com/Contact.aspx?Key=16 
●​ https://acmetest.example.com/User.aspx?Key=127 

Recommendations 

●​ Use Context-Sensitive Encoding such as the HttpUtility.HtmlEncode to encode all user-supplied 
input before rendering it on any page, ensuring that any malicious scripts are neutralized. 
The XSS doesn’t render on the home page since HtmlEncode is used. Microsoft also states 
not to rely on ASP.NET’s ValidateRequest filter.  1

●​ Implement a Content Security Policy (CSP) to reduce the severity of any XSS vulnerabilities 
that may still occur, including restricting the loading of remote attacker-supplied resources. 
(See Missing Content-Security-Policy Header finding). 

 

 

 

1 https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff647397(v=pandp.10) 

6 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

Details 

Within the Contact page, create a new item. Enter the following text.  

><ıframe id=x onload="alert('xss')"// 
Note that a dotless 'i' character is used in place of the normal “i” character. Typically the 
ValidateRequest filter will prevent this input but the Unicode letter bypasses the filter. Once the 
Contact item is saved, it is converted to a standard “i”, spelling “iframe”. The code executes once 
the Contact item is viewed. 

 

A malicious payload about to be saved in the Contact item 

The encoded payload will execute if stored and rendered without proper sanitization. 

As seen below in the code, the Contact entry is simply appended to the HTML output without being 
safely encoded. 

 

Insecure code does not safely encode user-supplied input 

 

 
 

7 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

2. Error Logging Modules and Handlers (ELMAH) Exposed to Admins 
 
Description 

Error Logging Modules and Handlers (ELMAH) is an error logging utility that captures unhandled 
exceptions in ASP.NET applications and offers a built-in web interface for viewing these errors. The 
identified issue is that the ELMAH interface allows access from all administrator roles. This 
configuration could lead to privilege escalation and unauthorized actions because authentication 
cookies are accessible to anyone accessing the ELMAH page.  

Risk 

Medium 

Impact 

While the ELMAH page is restricted to the admin role, any user with the admin role can impersonate 
any other user by visiting the Elmah.axd page and obtaining another user’s application cookie. These 
include Application Admin and Super Admin roles. If a Super Admin causes an error to occur, other 
admin roles could compromise the account of a Super Admin in this manner. 

Location 

●​ https://acmetest.example.com/elmah.axd  

●​ web.config’s elmah section sets allowRemoteAccess to true 

Recommendations 

While the Elmah configuration appears to be correct in that only Admins can access the file, 
consider further restricting access to only Super Admins if possible. For example, remove the Elmah 
handler in web.config and implement the controller in the application, only allowing Super Admins 
to access it. 

Resources 

●​ http://beletsky.net/2011/03/integrating-elmah-to-aspnet-mvc-in.html  

Details 

After browsing to the /elmah.axd page with an admin role returns all application errors, as seen 
below. 

8 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

 

Application error logs as seen in elmah.axd 

After selecting one of the errors, debug information for the user’s request is returned, including the 
.AspNet.ApplicationCookie value, which allows anyone to impersonate that user’s session. 

 
Session cookie value exposed in the elmah.axd log  

9 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

3. Unauthorized Report Execution by Low Privilege Users​  
 
Description 

Low-privileged users can execute reports they do not have permission to access through the web 
application interface itself. While these users are restricted from viewing unauthorized data within 
these reports, the ability to execute and interact with these reports represents a breach of access 
control. 

Risk 

Moderate 

Impact 

Although sensitive information within the reports, such as names and birthdays, remains protected 
and inaccessible to roles that do not have explicit access, the ability for unauthorized users to 
execute reports could lead to information disclosure. 

Location 

●​ https://acmetest.example.com/Reports/Reports.aspx  

Recommendations 

Implement strict access control checks to ensure that users can only execute reports for which they 
have explicit permissions. 

Details 

Log in with a low-privileged user, navigate to Reports, and select the “Log Analysis Export” report. 
Intercept the request and modify the report form values as seen below by specifying the specific 
report to run. 

# As a low-privileged user 
POST /Reports/Reports.aspx HTTP/1.1 
Host: acmetest.example.com 
…[snip]… 
RunReport=3 
RunName=Log+Analysis+Export 
…[snip]… 
 
# Response 
HTTP/1.1 200 OK 
Content-Type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet 
Content-Disposition: attachment; filename=LogAnalysisExport.xlsx 
 
Key5� ÄçE@¬Ç/xl/worksheets/sheet1.xml 
… 

HTTP request and response from a user requesting an unauthorized report 

The web application returns a user data dump with user emails and phone numbers. 

10 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

4. Username Enumeration Vulnerability in Forgot Password Flow 
 

Description 

The application exhibits a username enumeration vulnerability within its forgot password 
functionality. This issue arises when different responses are provided based on whether the 
submitted username exists in the system. 

In the forgot password section of the application, when someone enters a username, the system 
checks if that username exists. If it does not exist, the application explicitly states so. However, if the 
username is valid, the application indicates an email has been sent. This difference in responses can 
let an attacker deduce which usernames are valid on the platform simply by observing the messages 
returned by the system. 

Risk 

Low 

Impact 

Username enumeration vulnerabilities allow malicious actors to gather valid usernames. This can 
lead to targeted attacks, such as phishing or brute force attacks, where these valid usernames are 
exploited. If an attacker successfully identifies valid usernames, they can target specific users with 
phishing attempts and perform brute-force attacks on these accounts to guess passwords. 
Importantly, the application does not disclose the user’s email address, which limits spear phishing 
attempts. 

Recommendations 

To mitigate this vulnerability, the application should provide consistent responses for Forgot 
Password attempts, regardless of whether the username exists. For example: 

●​ Uniform Error Messaging: Modify the forgot password response to be generic. For example: 
"If your username is recognized, a password reset email will be sent." 

Location 

●​ https://acmetest.example.com/Account/Forgot.aspx  

Details 

Access the Forgot Password Page. Enter a username that you know does not exist. Note the specific 
error message stating that the user doesn’t exist. 

11 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

 

Application informing the user that the user does not exist 

Enter a known valid username and observe that the response changes to indicate an email has been 
sent. 

 

Application informing the user that the provided username exists 

The difference in error messages allows attackers to build a list of usernames that can be used in 
slow password attacks over time. 

 

12 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

5. Missing Content-Security-Policy Security Header 
Description 

A Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain 
types of attacks, including Cross Site Scripting (XSS) and data injection attacks, which could allow 
attackers to inject malicious scripts into web pages viewed by users. No CSP policy was identified. 

Risk 

Low 

Impact 

Without a CSP, the application is susceptible to attacks where unauthorized scripts can be run in the 
context of a user's session, potentially leading to unauthorized access, data theft, or malicious 
redirection. The absence of a Content-Security-Policy can lead to data breaches and account 
takeovers as malicious scripts executed through XSS can access session tokens, user personal 
information, and other sensitive data. 

Recommendations 

Implement a Content Security Policy that specifies which sources can load resources like scripts, 
stylesheets, and images. For example, implement a configuration in web.config or Startup.cs with the 
following config: 
 

<system.webServer> 
    <httpProtocol> 
        <customHeaders> 
            <add name="Content-Security-Policy" 
                value="default-src 'self'; 
                img-src data: https: http:;                 
                script-src 'self' example.cloudfront.net 'unsafe-inline'; 
                style-src 'self' 'unsafe-inline'; 
                connect-src 'self'; 
                worker-src 'self' blob:; 
                frame-src 'self' blob:;/> 
        </customHeaders> 
    </httpProtocol> 
</system.webServer> 

●​ Regularly check and update the CSP as needed, and monitor for any attempted breaches 
that could signal a need for CSP adjustment. 

○​ https://report-uri.com/products/content_security_policy 
○​ https://report-uri.com/home/analyse  

Resources 
●​ https://content-security-policy.com/  
●​ https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#

csp-sample-policies  
●​ https://docs.devexpress.com/GeneralInformation/404541/security/content-security-policy  

 

13 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

6. Information Disclosure in Detailed Error Messages 
 
Description 

Detailed error messages can provide significant information about the application's internal 
workings. This typically includes database errors, server paths, or software versions. While this 
information is useful for development and debugging, exposing it to end users or the public can 
lead to security vulnerabilities by giving potential attackers clues on exploiting the system. In this 
case, an uncaught application exception in the TwoFactorAuthentication page discloses web 
application file paths and version information. 

Risk 

Informational 

Impact 

Exposure of system details through error messages can help an attacker formulate more targeted 
attacks, potentially leading to unauthorized access or data exposure. Displaying detailed error 
messages can lead to information leakage, revealing sensitive information about the backend 
systems, such as software versions and server paths, which can be used to find and build exploits in 
less time. 

Location 

●​ https://acmetest.example.com/Account/TwoFactorAuthenticationSignIn 

Recommendations 

Configure the application to remove detailed stack trace information and application version 
information. Consider replacing the “RemoteOnly” config with “DetailedLocalOnly” and rely on 
ELMAH. 

 A sample web.config section follows: 

<system.web> 
    <httpRuntime enableVersionHeader="false"/> 
</system.web> 
<system.webServer> 
    <security> 
        <requestFiltering removeServerHeader="true" /> 
        <httpErrors errorMode="DetailedLocalOnly">  
</system.webServer> 

Resources 

●​ https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html#encrypti
on 

●​ https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/h0hfz6fc(v=vs
.100)#example  

 

14 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

Details 

Browsing to the page /Account/TwoFactorAuthentication when a user is unauthenticated and not 
logged in, the web application displays an error message that includes a detailed error message 
disclosing the folder and path of the application, including the developer name and source file 
name. The file path: 

C:\vendor\client\TwoFactorAuthentication.aspx.cs:12 

can be in the below stack trace. 

 

Detailed stack trace exposed along with source code path 

 

15 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

Appendix - Web Application Security Assessment Methodology 
 

Adversis brings extensive experience in assessing web applications. Adversis consultants hold CVE’s 
across various web applications and common libraries and have experience building and breaking 
modern web application technologies such as React and GraphQL.  

Comprehensive Assessment: Adversis conducts a thorough assessment leveraging the OWASP 
Application Security Verification Standard (ASVS) while identifying additional security issues, 
particularly business logic flaws. Our examination ensures comprehensive coverage of potential 
vulnerabilities to a minimum of OWASP ASV Level 1 standards and higher as appropriate. 

Manual Testing: Adversis's approach to manual testing is exhaustive. We review and test 
action-performing (CRUD) requests within the application, ensuring a thorough evaluation of 
potential vulnerabilities, emphasizing, but not limited to, the OWASP Top 10. 

Tool Utilization: Our primary tool, Burp Suite Pro, is integral to our testing process. It is selected 
for its capabilities in advanced vulnerability identification and manual testing features, which enable 
our team to pinpoint and address security weaknesses efficiently. 

OWASP Top 10 

Adversis always reviews the following categories for the OWASP Top Ten vulnerabilities and believes 
that Level One controls of the OWASP Application Security Verification Standard (ASVS)  are critical 2

for any publicly facing application. 

1.​ Broken Access Control 
2.​ Cryptographic Failures 
3.​ Injection 
4.​ Insecure Design 
5.​ Security Misconfiguration 
6.​ Vulnerable and Outdated Components 
7.​ Identification and Authentication Failures 
8.​ Software and Data Integrity Failures 
9.​ Security Logging and Monitoring Failures 
10.​Server Side Request Forgery (SSRF) 

In addition, the team considers your application’s purpose, functionality, and data requirements, 
considering how data flows may be abused or functionality impacted. 

 

 

2 https://owasp.org/www-project-application-security-verification-standard/ 

16 
Adversis, LLC | adversis.io | Confidential 



SA
MP
LE

 
 

Appendix - Risk Framework 

Adversis leverages an industry-standard NIST (National Institute of Standards and Technology) threat 
matrix outlined in SP 800-30 . This matrix is a framework for analyzing risks and threats modified 3

with input from the Factor Analysis in Information Risk (FAIR)  ontology. The matrix provides a 4

structured and standardized approach to identifying, assessing, and prioritizing cybersecurity risks. 

Likelihood of 
Threat Event Risk Rating 

Very High High High Very High Very High Very High 

High Medium High High Very High Very High 

Significant Medium Medium High High Very High 

Moderate Low Medium Medium High High 

Low Low Low Medium Medium Medium 

Very Low Low Low Medium Medium Medium 

Loss Magnitude Neglible Minor Moderate Major Severe 

 
Event 
Frequency 

Probability 
Range Calibration Anchor  Loss 

Magnitude Loss Factors Business Context 

Very High >76% Likely exploitation within 
12 months  

Severe >$1 Million Financial impact, regulatory 
action, executive changes 

High 51-75% More likely than not to see 
exploitation at some point 

 

Major $100k - $1 
million 

Significant operational 
disruption, compliance 
violations 

Moderate 26-50% It could go either way 

 

Moderate $10k - $100k Noticeable service 
degradation, limited data 
exposure 

Low 5-25% Unlikely but possible 
 

Minor $1k - $10k Minimal disruption, no 
sensitive data 

Very Low <5% All the stars would have to 
align  

Neglible $0 - $1k Best practice 

Recommended Response Times 

Critical Remediation within 7 days 

High Remediation within 60 days 

Medium Remediation within 180 days 

Low Accept or remediate within 365 days 

 

4 https://www.fairinstitute.org/what-is-fair 
3 https://csrc.nist.gov/pubs/sp/800/30/r1/final 

17 
Adversis, LLC | adversis.io | Confidential 


	Executive Summary 
	 
	 
	Overview 
	Key Findings 
	Positive Controls 
	Conclusion 

	 
	Attack Summary Diagram 
	 
	 
	Findings Overview 
	Findings Details 
	 
	1. Stored Cross-Site Scripting (XSS) Vulnerability in Contact Form 
	 
	 
	 
	2. Error Logging Modules and Handlers (ELMAH) Exposed to Admins 
	 
	 
	3. Unauthorized Report Execution by Low Privilege Users​ 
	 
	4. Username Enumeration Vulnerability in Forgot Password Flow 
	 
	5. Missing Content-Security-Policy Security Header 
	 
	6. Information Disclosure in Detailed Error Messages 
	 

	Appendix - Web Application Security Assessment Methodology 
	 
	Appendix - Risk Framework 

