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MOTIVATION The C. elegans community continually produces whole-brain imaging datasets that could in
theory be reused for new scientific inquiry. Nevertheless, because the data are produced using disparate
equipment and techniques and stored in ad hoc formats, it is challenging to assimilate and reuse this growing
collection. We developed a standard format and data harmonization methods to assimilate over 100 animals
from five labs into a single data corpus. Using this corpus, we trained algorithms to produce a robust, lab-
agnostic neural identification atlas system that does not require re-training for new labs and discovered bio-
logical factors that influence neural positioning.
SUMMARY
We develop a data harmonization approach for C. elegans volumetric microscopy data, consisting of a stan-
dardized format, pre-processing techniques, and human-in-the-loopmachine-learning-based analysis tools.
Using this approach, we unify a diverse collection of 118 whole-brain neural activity imaging datasets from
five labs, storing these and accompanying tools in an online repository WormID (wormid.org). With this re-
pository, we train three existing automated cell-identification algorithms, CPD, StatAtlas, and CRF_ID, to
enable accuracy that generalizes across labs, recovering all human-labeled neurons in some cases. We
mine this repository to identify factors that influence the developmental positioning of neurons. This growing
resource of data, code, apps, and tutorials enables users to (1) study neuroanatomical organization and neu-
ral activity across diverse experimental paradigms, (2) develop and benchmark algorithms for automated
neuron detection, segmentation, cell identification, tracking, and activity extraction, and (3) share data
with the community and comply with data-sharing policies.
INTRODUCTION

Whole-brain imaging experiments with single-neuron resolu-

tion (herein shortened to simply ‘‘whole-brain imaging’’) have

undergone explosive growth since first demonstrated in the

millimeter-long nematode worm Caenorhabditis elegans and

the zebrafish Danio rerio in 2013.1,2 Since then, these methods

have been widely adopted and advanced in the worm,3–7 ze-

brafish,8–13 and larval14 and adult15,16 fly communities. More-
Cell Reports Methods 5, 100964, Janu
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over, there have been significant efforts and advances in

neuron-resolution imaging of multiple and/or large brain re-

gions in mammals, rapidly approaching whole-brain imaging,

especially in mice.17–21

In C. elegans, whole-brain imaging datasets have enabled

characterization of neural network dynamics,3,6 functional con-

nectivity,22–24,25 and the roles of individual neurons during

behavior.7 These studies leverage the property of eutely in this

organism: each cell has a unique and stereotyped identity,
ary 27, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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consistent across every animal, that allows for data from individ-

ual neurons to be pooled and compared across multiple trials

and animals. However, analyses of these experiments are bottle-

necked by the need to determine the unique identities of each

neuron in 3D volumetric recordings. Manual cell identification

from fluorescent microscope images is a notoriously difficult

skill, requiring substantial expertise and labor. This task is partic-

ularly difficult for neurons labeled with nuclear localized fluoro-

phores, which is typical for whole-brain recordings. We recently

developed NeuroPAL,6 the first method where the unique iden-

tity of every single neuron can be distinguished by an invariant

fluorescent color barcode in living animals at all developmental

stages of both sexes.26 NeuroPAL has greatly simplified the

task of cell identification and has thus seen rapid adoption,

with at least six labs6,7,22,24,25 publishing whole-brain imaging

datasets using these animals and many more labs incorporating

the system into their experimental protocols since its release

in 2021.

Despite this innovation, neural identification remains a chal-

lenging task that requires expertise and many hours of manual

work. In the past few years, researchers have proposed various

algorithmic auto-identification approaches to attack this prob-

lem.25,27–31 However, none of them have achieved widespread

adoption, due at least in part to their incompatibility with different

microscopy data formats and low performance on data acquired

from different labs. Automatic approaches to the complemen-

tary problem of tracking neurons across video frames have

achieved some generalized performance across various data-

sets,32,33 but so far, there have not been efforts to perform similar

training and benchmarking for automatic cell identification. To

build automatic approaches that are robust, accurate, and

generalizable, there is a critical need for a standardized format

and compatible tools trained and benchmarked on a consoli-

dated corpus of data that reflects the heterogeneity of micro-

scopy equipment, experimental conditions, and protocols

across labs.

To address this need, we take a data harmonization approach:

a process of combining datasets from different sources and ho-

mogenizing them to produce a substantially larger data corpus

that, in our case, minimizes non-biological inconsistencies

across individual datasets while increasing the overall biological

diversity of training and benchmarking data. Harmonization in-

cludes (1) aggregating the data, (2) converting it to a standard-

ized format, (3) normalizing it, (4) handling duplicate and missing

data, and (5) pre-processing data to register it to a common

space and coordinate system. Data harmonization is standard

in many data science fields but has seen slower adoption in

the life sciences.34 Similar efforts to standardize data formats

and build large corpuses of data have been essential in the

development and benchmarking of many modern machine-

learning algorithms.35–37

We introduce WormID (wormid.org). This resource consists of

(1) data harmonization tools including a standardized file format

for both raw and processed data alongside related metadata

that extends the existing Neurodata Without Borders (NWB)

format, (2) pre-processing to align the color and coordinate

space of new datasets, and (3) open-source software to analyze

whole-brain activity images. We also provide tutorials and docu-
2 Cell Reports Methods 5, 100964, January 27, 2025
mentation that enable researchers to easily incorporate these

tools into their data pipelines. Finally, we provide a large online

corpus of harmonized C. elegans whole-brain activity imaging

and structural data that can be used for large-scale experimental

analysis, neurobiological modeling, and algorithmic develop-

ment. This corpus is stored in a popular community archive

called the Distributed Archives for Neurophysiology Data Inte-

gration (DANDI), which serves as a free, persistent, open access

repository for experimental neuroscience data from a variety of

model organisms.38 The addition of new datasets to this corpus

are encouraged, facilitated by tutorials and software, and pro-

vide a simple means for submitters to comply with data-sharing

policies of federal and private funders.

By aggregating a diversity of datasets frommultiple labs into a

large data corpus, we achieve a substantial boost in the perfor-

mance of three existing neural auto-identification algorithms,

arguablymoving into the regime of practical utility for the broader

community of users. Furthermore, we mine this corpus to inves-

tigate the relationship between neural lineage, synaptic connec-

tivity, and somatic positioning ofC. elegans neurons to better un-

derstand the factors that drive the positioning of neurons in the

adult worm.

This corpus and set of tools should be of wide utility to

C. elegans researchers. We hope it will serve as a seed

for continued community aggregation of brain imaging data-

sets and further the development and improvement of com-

munity data-analysis tools applicable across many model

organisms.

RESULTS

A standardized format for whole-brain C. elegans

recordings enables data aggregation and algorithm
interoperability
Current state-of-the-art whole-brain recordings of C. elegans

typically consist of a combination of structural images that often

use the NeuroPAL multi-channel fluorescent system to deter-

mine neuron identities (Figures 1A and 1B) and time-series

images of neural activity acquired by using genetically encoded

activity sensors (e.g., GCaMP6s39) (Figure 1C). This imaging is

performed either on immobilized worms (often constrained

within a microfluidic chip to maximize image quality1,3,40) or on

freely moving worms.4,5 To aid interpretation, herein we visualize

whole-brain structural NeuroPAL images via (1) an unrolled ‘‘but-

terfly’’ plot of neuron positions that projects the 3D worm struc-

ture into a 2D plane (Figure 1A), (2) a 2D projection plot of the

NeuroPAL color space (Figure 1B), and (3) 2D dorsal-ventral

and lateral projection plots of the neurons (Figure 1B). These vi-

sualizations facilitate quick comparisons of neuron color and po-

sition from different samples and fine-tuning of their global

alignment.

All associated raw data and metadata is stored in the stan-

dardized NWB41 file format with an additional extension that

we developed, ndx-multichannel-volume (ndx = neurodata

extension), to provide support for multi-channel volumetric re-

cordings and C. elegans-specific metadata (Figure 2A). This

extension is available in the NWB Extensions Catalog and is

now the official NWB standard for data sharing of C. elegans

http://wormid.org


A

B

C Figure 1. Example NWB file contents

(A) Illustration of a NeuroPAL worm. The head is

highlighted by a red box. A butterfly plot visualizes

the full 2D representation of the worm brain

by projecting neurons onto the surface of the cy-

lindrical body and then unrolling the cylinder.

Neuron centers are colored using their composite

NeuroPAL expression.

(B) Visualizations of the raw NeuroPAL structural

image and 2D projections of its RG, RB, and GB

color subspaces and XZ and XY projections of its

neuron positions. Neuron centers are colored

using their composite NeuroPAL expression.

(C) Example activity traces for five neurons con-

tained in the NWB file and of the raw neural-ac-

tivity (GCaMP6s) images. See also Figure S2.
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whole-brain neural-activity imaging. NWB data are hierarchically

organized with basic metadata stored at the file’s root level, raw

data stored in the ‘‘acquisition module,’’ and various processed

experimental data stored in ‘‘processing modules’’ (Figure 2B).

Individual NWB files contain a single experimental run for a single

animal. These NWB files are then stored and accessed from the

DANDI archive, where they receive a unique persistent digital ob-

ject identifier (DOI) in accordance with the International Organi-

zation for Standardization (ISO). Datasets can then be down-

loaded or streamed from the DANDI archive using the DANDI

interface or API (Figure 2C).

We incorporated NWB ndx-multichannel-volume read and

write functionality into two software tools. These independent

software implementations both offer both user-friendly GUIs

that allow the visualization, analysis, and curation of C. elegans

NeuroPAL structural images and neural activity recordings

in immobilized worms (NeuroPAL software https://github.

com/Yemini-Lab/NeuroPAL_ID, Figure 3A; eats-worm software

https://github.com/focolab/eats-worm, Figure 3B). This func-

tionality can be straightforwardly incorporated into other data-

analysis pipelines and software.

In Table 1, we present a summary of the data we aggregated

and harmonized into a corpus: 108 worms from six datasets ac-

quired by five different labs, each with neuron positions and hu-

man-labeled neuron identities. This corpus can be mined for

biological insights, training and benchmarking of machine-

vision approaches, and neurobiological studies of structural

and neural-activity time-series data. Each of these datasets is

stored on DANDI and range from a few hundred megabytes

to several terabytes (see STAR Methods for dataset refer-

ences). DANDI supports streaming from the cloud and allows

users to selectively load data objects and data chunks, sub-

stantially reducing the local data storage and RAM require-

ments necessary to work with these data on a personal

computer.
Cell Reports M
An updated atlas of neuron
positions in the C. elegans

hermaphrodite head
Our multi-lab data corpus allows data sci-

entists to train and benchmark the perfor-

manceofalgorithms for automatedneuron
identification using datasets that reflect real-world diversity. In this

section, we focus on the statistical atlas approach presented in

Varol et al.27 This approach was the first to take advantage of the

color information provided by NeuroPAL and was presented

alongside the original NeuroPAL work.6 This neuron identification

assignment algorithm was framed as a bipartite graph matching

problem, with the goal of minimizing the total assignment cost us-

ing the well-known Hungarian algorithm.42 Cost is calculated by

comparing neuron positions and colors in the animal sample

with the mean and covariance of neuron positions and colors in

a reference statistical atlas (see STARMethods). The original atlas

presented in the paper was trained on 10 worms from the original

NeuroPAL work. We retrained this atlas using the full multi-lab

corpus that we present in this work, increasing the training set by

over 10-fold. To train the statistical atlas, we first performed an

affine transformation to roughly register each training dataset to

one of the 10 original NeuroPAL worms based on ground-truth la-

bels. This roughly aligns the principal axes of the worm as well as

the scaling to a common space. The algorithm then calculates the

means and covariances of neuron positions and colors in this

roughly aligned space for individual recordings. See STAR

Methods for further details on atlas training. The statistical atlas

generated by this approach serves the additional purpose of char-

acterizing themeanand covarianceof neuronpositions andcolors

across thewholecorpusofdata. To thebestofour knowledge, this

newly generated atlas is the most comprehensive atlas of neuron

positions and NeuroPAL coloring. We find that training on the

multi-lab corpus significantly decreases the alignment cost for

the ground truth labeled neurons across datasets, indicating

that the true distribution of neuron positions and variances is

more accurately represented in the more comprehensive atlas

compared to the original one (Figure S1).

In Figures 4 and S2, we present visualizations of the statistical

atlas of neuron positions and colors trained on 104 of the 118

worms in our consolidated NWB/DANDI dataset as well as on
ethods 5, 100964, January 27, 2025 3
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Figure 2. Schema for C. elegans extension to the NWB architecture

(A) Names and content for objects used in C. elegans optophysiology NWB files.

(B) File organization hierarchy of NWB files for C. elegans optophysiology. Modules are structured like folders within the root file in an HDF5-based hierarchy.

(C) Flowchart of steps for converting new data to NWB and uploading to the DANDI archive and for using NWB datasets that are already up on DANDI.
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the smaller dataset of 10 worms used in the original NeuroPAL

paper (employing the StatAtlas algorithm in Yemini et al.6 and

Varol et al.27). We found that substantial deviations from a linear

pose and occluding image artifacts significantly impacted algo-

rithmic alignment and thus accuracy, therefore, 14 worms were

omitted from the atlas due to large nonlinear deformities or pro-

nounced imaging artifacts. With 104 worms, this represents, to

the best of our knowledge, the most broadly trained statistical

atlas for C. elegans neuron positions and NeuroPAL coloring

available. By leveraging the diversity of the multi-lab corpus

this atlas captures variability between individual worms, strains,

and lab-specific experimental conditions. This atlas can be used

as a basis for training and testing automatic labeling algorithms

as well as biological investigations of neuron positions and

structural brain organization. This statistical atlas further com-

plements detailed electron microscopy (EM)-based anatomical

atlases by adding cellular structural detail and, notably, it pro-

vides nearly 100 more animals in its corpus than the approxi-
4 Cell Reports Methods 5, 100964, January 27, 2025
mately 10 EM ones available now.43–45 Although our corpus

lacks the synaptic connectivity found in the EM datasets, it pro-

vides the complementary functional activity that is not available

and cannot be obtained from EM imaging of fixed animals.

WormID.org supplies links to the software, visualization tools,

and datasets discussed previously in this paper. Furthermore,

wormid.org provides links to the data corpus and related tools

to work with whole-brain structural images and activity record-

ings, convert datasets to NWB, and supplies tutorials and in-

structions for using these tools. Our aim is that these data stan-

dard, data corpus, and atlas of cell positions will be a continually

evolving resource for the C. elegans neuroscience community

and eventually for the communities of other model organisms.

Analysis of biological factors influencing neuron
positions
We statistically analyzed the spatial positions of C. elegans

neuronal somas across individuals, strains, and lab conditions

http://WormID.org
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B

Figure 3. Two software GUI applications

with NWB I/O

(A and B) GUIs with NWB I/O support for visuali-

zation and annotation of NeuroPAL structural

images, neural detection, and automated identi-

fication and time-series of neural activity with

stimulus presentation in immobilized worms.

Colored numerical callouts highlight specific

modules and features in each software.

(A) NeuroPAL ID software from Yemini Lab.

(B) EATS-worm software from Kato Lab.
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based on their means and covariances in the statistical atlas. We

focused on relative pairwise displacements rather than absolute

positions because the absolute position of cells is dependent on

the pose and deformation of the animal’s body during imaging.

Interpreting absolute cell positions would require the complex

step of computationally aligning all animals; furthermore, align-

ing multiple animals into identical positions is an imperfect

task. In contrast, pairwise cell displacements are alignment inde-

pendent and relatively robust to animal deformation.

Before analyzing statistical properties on the neuron positions,

we assessed the percentage of neurons that were labeled by hu-
Cell Reports M
mans in each dataset. We found that

neurons in the ventral ganglion and retro-

vesicular ganglion were less commonly

labeled than neurons in other ganglia.

As is shown here and previously in Yemini

et al.,6 neurons in the ventral and retrove-

sicular ganglia exhibit high relative posi-

tional variability, which may explain why

fewer of them were confidently labeled

by researchers (Figure 5A). For this

reason, we explored several different

factors hypothesized to contribute to

the organization and variability of relative

cell positions: (1) gangliar boundaries

(e.g., basal lamina and abutting tissue),

which may restrict cell movement within

the coelem; (2) synaptic connectivity,

which may impose energetic costs

dependent on neuronal proximity; and

(3) developmental-time and cell-lineage

effects whereby recently divided cells

(i.e., sister cells) remain close together

and more distant relatives (e.g., mother

and grandmother cells) end up further

apart.

To test the first hypothesis, that gan-

gliar boundaries regulate positional orga-

nization and variability, we measured the

positional variability of neurons that

are spatially close and compared pairs

within the same ganglion to pairs strad-

dling each other in different ganglia (see

STAR Methods). We found that neurons

in the anterior pharyngeal bulb and neu-
rons in the dorsal, lateral, and retrovesicular ganglia all exhibit

significantly lower variability for pairs within the same ganglion

compared to pairs in different ganglia. Conversely, for neurons

in the anterior and ventral ganglia, we observed no significant dif-

ference in positional variability between pairs in the same gan-

glion and pairs in different ganglia (Figure 5B). We used an inde-

pendent-sample t test to compare pairs within the same

ganglion with those in different ganglia. To determine whether

disparities in the distributions of pairwise distance between

intra- and inter-ganglion groups could trivially account for this

difference in variability, we performed distance-matched
ethods 5, 100964, January 27, 2025 5



Table 1. Summary of aggregated dataset characteristics

Dataset # Dandiset ID

# of worms in the

dataset Lab code NeuroPAL, GCaMP, or both # of neurons marked (avg.) # of ID labels (avg.)

NP 000715 10 NP NeuroPAL 189�196 (193) 186�193 (190)

1 000541 21 EY Both 166�188 (177) 164�184 (175)

2 000714 9 HL NeuroPAL 113�125 (119) 58�69 (64)

3 000692 9 KK Both 149�163 (154) 149�163 (154)

4 000776 38 SF Both 29�96 (70) 29�96 (70)

5 000565 21 SK1 Both 78�139 (111) 30�82 (48)

6 000472 10 SK2 NeuroPAL 166�180 (173) 38�63 (49)

Summary 118 5 labs 29�196 (126) 29�193 (99)

The NP dataset comes from the original NeuroPAL paper.6 Datasets can be accessed programmatically using the DANDI API and Dandiset ID or by

searching the Dandiset ID on dandiarchive.org.
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comparisons of the variability of inter-ganglia pairs to intra-

ganglia pairs in 1 mm bins. We observed a consistently higher

variability of inter-ganglia pairs to intra-ganglia pairs regardless

of mean distance (Figure S3). We also found no correlation be-

tween mean distance and variability for both inter- and intra-

ganglia pairs (Figure S3C). Known anatomical features of the

worm are consistent with our findings and hypothesis of ganglial

influence on the spatial relationships of neurons: the pharynx is a
6 Cell Reports Methods 5, 100964, January 27, 2025
muscular epithelial tube46 that rigidly encases neurons, the re-

maining ganglia are separated by basal lamina that loosely re-

stricts their boundaries43 and, finally, the anterior and ventral

ganglia (and comparatively smaller retrovesicular ganglion) are

completely bounded whereas all other ganglia are open at least

at one end, and in White et al.,43 it had been noted that tight

cellular packing in these regions led to ‘‘slop,’’ ‘‘uncertainty,’’

and, in live animals, even ‘‘flipping’’ from side to side of the cells
Figure 4. Harmonized multi-lab atlas of

C. elegans neurons

Butterfly plot shows the mean locations of neu-

rons in the atlas, colored by ganglion. The scaling

of the anterior-posterior axis is slightly different

from the original 3D representation of the worm

due to coordinate conversion. See also Figures S1

and S2.

http://dandiarchive.org
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Figure 5. Analyses of neuron positions, dis-

tances, and positional variability

(A) Left: percentage of datasets containing each

labeled neuron, organized anterior-to-posterior

within each ganglion. Middle: heatmap of the

standard deviation of pairwise positional dis-

tances between each pair of neurons across da-

tasets. Right: averaged sums of heatmap rows.

Neurons with higher mean positional variability

have less stereotyped positions within the worm

body.

(B) Pairwise positional variability by ganglia for 10

closest neighbors of each neuron, separating

neuron pairs in the same ganglion from pairs in

different ganglia. Pairs where the atlas distance

was over 20 mm were removed from this analysis.

Anterior pharynx: 95% CI effect size = [�1.79,

�1.38] mm, p = 2.5 * 10�21, Nsame = 52, Ndiff = 37.

Dorsal: 95% CI effect size = [�1.15, �0.71] mm,

p = 7.1 * 10�6, Nsame = 13, Ndiff = 27. Lateral: effect

size 95% CI [�2.80, �2.38] mm, p = 5.3 * 10�31,

Nsame = 317, Ndiff = 161. Retrovesicular: 95% CI

effect size = [�1.94, �1.17] mm, p = 9.3 * 10�5,

Nsame = 89, Ndiff = 44. Anterior: p = 0.161, Nsame =

176, Ndiff = 50. Ventral: p = 0.252, Nsame = 135,

Ndiff = 94.

(C) Pairwise relationship between neuron synaptic

weights and their mean positional distance for

chemical and electrical synapses. Chemical syn-

apses: KendallTau t =�0.036, p = 0.021, Pearson

R = �0.098, p = 6.4 * 10�6, N = 2119. Electrical

synapses: KendallTau t = 0.009, p = 0.80, Pearson

R = 0.031, p = 0.51, N = 444.

(D) Relationship between cell birth times and the

mean and SEM of their nuclear positional distance

in adulthood for sister cells. Mean: KendallTau t =

�0.144, p = 0.052, Pearson R =�0.161, p = 0.129.

SEM: KendallTau t= 0.014, p = 0.845, PearsonR =

0.074, p = 0.487. Most sisters are within 15 mm of

each other in adulthood. More sisters that divide

embryonically remain close together (<8 mm) than

sisters that divide >16 h later at postembryonic

larval stages.

See also Figure S3.
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contained therein. This finding suggests that neural identification

algorithms could be improved by a hierarchical approach, such

as first predicting ganglion membership, then predicting neuron

identities within this ganglion.

Next, we explored the relationship between somatic distance

and synaptic connectivity. Overall, there was a very weak but

statistically significant correlation between nuclear distance

and synaptic weight for chemical synapses and no significance

or detectable correlation for electrical synapses. However, we

found that nearby neurons (mean distance <40 mm) exhibit a

wide range of chemical synaptic weights ranging anywhere

from 0 to 70 synapses (with a median synaptic count of 3),

whereas distant neurons (mean distance >40 mm) have a

maximum synaptic count of �25 synapses (with a median count

of 2) (Figure 5C). This choice of distance cutoff was chosen

based on the observation of a distinct elbow at 40 mm in a 2D

kernel density estimate plot of the scatter data (Figure S3D).
Our findings suggest that neurons that are strongly wired

together tend to be close to each other, although somatic prox-

imity alone is not sufficient to imply strong connectivity. Recent

findings in C. elegans have substantiated Peter’s rule: neurons

with larger colocalized axodendritic regions are more likely to

form connections.47 Our findings thus lend further support to

this principle and suggest that close somatic or nuclear proximity

also plays a role in determining neural connectivity.

Lastly, we explored the hypothesis that cell lineage is a deter-

minant of adult cell positioning. Embryonic C. elegans are

confined to a fixed volume within an eggshell approximately

50 mm in length and 30 mm in diameter.48 After hatching, they

grow over 4 times in length from birth (�250 mm) to adulthood

(over 1 mm), with an exponential expansion in their volume.49,50

Sister cells are those whose lineage differs only at the very last

division. We hypothesized that animal growth should lead to

both larger distances and higher variability between older sister
Cell Reports Methods 5, 100964, January 27, 2025 7
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Figure 6. Improvements in neural identifica-

tion accuracy

(A) Examples of raw and color-corrected (histo-

grammatched) images from each lab and dataset.

(B) Top ranked test accuracy for training set of

original 10 reference worms with no color correc-

tion (orange), 10 reference worms with color

correction (green), the multi-lab corpus with color

correction (yellow), and training on all but the test

dataset with color correction (blue) for coherent

point drift (CPD, left), the statistical atlas model

(StatAtlas, middle), and the conditional random

field model (CRF_ID, right). All models were tested

on the same 94 datasets in the corpus. For multi-

lab and leave-lab-out atlases, test datasets were

held out during training and then tested using a

k-fold cross validation strategy. Algorithmic per-

formance was evaluated using paired t tests

(where N = 94 for each test set) to compare the

performance of different atlases. Significance is

reported using a Bonferroni correction with the

convention of * for p < 0.05, ** for p < 0.01, and ***

for p < 0.001. Summary statistics and p values can

be found in Table S1. See also Figures S4–S7.
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cells that divided in the embryo versus younger sister cells born

much later at postembryonic larval stages of development. Sur-

prisingly, we found no statistically significant correlation be-

tween the time of cell division and nuclear distance or between

the time of cell division and distance variability as measured by

the scanning electron microscopy (SEM) (Figure 5D). In fact,

most sisters remained within 15 mm of each other (�3 nuclei

apart) at adulthood, regardless of when they were born. Strik-

ingly, a substantial cohort of embryonic sisters ended up closer

together at adulthood (<8 mm) than those dividing at larval stages

that occur more than 16 h later (Figure 5D). Our data rule out

exponential postembryonic growth spurts as a major determi-

nant of divergence and variability in neuron positions.

Neural identification performance increases for all
laboratories and all tested algorithms when trained on a
harmonized multi-lab corpus
Our previously published statistical atlas algorithm (‘‘StatAtlas’’)

for automated neural identification was trained on a homoge-

neous dataset of 10 NeuroPAL worms.6,27 Formerly, this

10-worm training set achieved average accuracies of 86% over-

all in head neurons that ranged from 50% for the ventral ganglion

to 100% for the anterior pharyngeal ganglion. These accuracies

facilitate neural identification, but in practice, they require sub-

stantial verification and manual correction, necessitating signifi-

cant time expenditure. Moreover, the algorithm fails to gener-
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alize to datasets produced by other labs

(Figure 6). We tested the performance

of our previously published algorithm,

StatAtlas, on each of the six aggregated

datasets. Initial performance on these da-

tasets ranged from �21% to �65% with

an average of 41% (Figure S4). This sub-

stantial decrease in accuracy on datasets
from different labs exposes the limitation of using single-lab

training sets to produce tools intended for use by different labs

with different instrumentation, experimental methods, and data

acquisition pipelines.

To assess the performance benefits of using a large, harmo-

nized corpus to train commonly used automated neural identifi-

cation methods, we tested two more popular algorithms:

coherent point drift (CPD)51 and CRF_ID.25 Coherent point drift

is an untrained and unsupervised algorithm that (1) globally

aligns a sample point cloud of neurons to a reference atlas,

then (2) locally matches points from the sample to their nearest

neighbors in the atlas, and finally (3) identifies sample neurons

(points) by their corresponding matches in the atlas. CRF_ID is

a newer graph-based approach that identifies neurons using a

combination of statistics describing their individual features

(e.g., absolute position and color) and pairwise spatial relation-

ships (e.g., displacement and angle relative to each other). There

are no currently published benchmarks for neural identification

using CPD. Formerly, CRF_ID demonstrated a high accuracy

of 83% when originally trained and tested solely on the HL data-

set. Like StatAtlas, when testing the generalizability of the CPD

and CRF_ID base models on the full WormID corpus, we

observed poor performance with an average overall accuracy

of 39% and 59%, respectively.

CPD, StatAtlas, and CRF_ID all take a conceptually similar

approach of matching a sample point cloud to a reference atlas,
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but they each differ in what they use as the reference. For CPD,

the reference is simply a single static reference point cloud;

in this case, that is a single labeled NeuroPAL image. For

StatAtlas, the reference is a statistical atlas of the mean and vari-

ance of neuron positions and colors across a corpus of data.

CRF_ID extends the StatAtlas approach by including pairwise

statistical spatial features such as the likelihood that one neuron

is anterior to another or the relative distances between neuron

pairs. These three approaches leverage increasinglymore statis-

tical information derived from our comprehensive corpus of data.

We thus expected that CRF_ID would perform better than

StatAtlas, which would in turn perform better than CPD, and

indeed this was the case (Figure 6B).

After inspecting recordings from multiple labs, we hypothe-

sized that lab-to-lab differences in color space may negatively

impact algorithmic performance. Potential sources of color

space variability include differences in microscope hardware,

software and image settings, and configuration of the optical

path. Anecdotally, in addition to these known sources of vari-

ability, researchers also typically adjust exposure, contrast,

and other channel display parameters to make the composite

rendered colors appear more like the images in the NeuroPAL

reference manual.52 In aggregate, this suggested that harmo-

nizing the color space might aid automated algorithms.

Therefore, we developed an approach to match the color his-

togram of a sample image to a reference histogram representing

ideal coloring (see STAR Methods). Histogram-matching the

original small training set improved the accuracy of all three

tested algorithms by an average of 8%, 9%, and 7% for CPD,

StatAtlas, and CRF_ID respectively. Qualitatively, it also made

composite color renderings better match the NeuroPAL refer-

ence manual, aiding users in annotating and correcting algo-

rithmic predictions (Figures 6A and 6B).

Given this success on the original small training set, we used

the histogram-matched images to train the StatAtlas and

CRF_ID algorithms on the full corpus of data. Test accuracy is re-

ported using 5-fold cross-validation where each worm is tested

against an atlas that excluded that worm from the training set.

For CPD, we updated the algorithm to select the best template

out of the full corpus (see STAR Methods for further details).

This led to significant improvement in accuracy across algo-

rithms (Figure 6B), with an average improvement of 17%, 22%,

and 18% for CPD, StatAtlas, and CRF_ID, that further raised

average predictive accuracy from 22% to 39%, 41% to 62%,

and 55% to 74% for them respectively. This is equivalent to a

�1.33, �1.63, and �1.73 reduction in error rate. Accuracy

reached as high as 95% for several individual datasets when

tested with both StatAtlas and CRF_ID. Furthermore, when

considering the top 5 neural identity assignments (rather than

just the top 1), the multi-lab models showed average accuracies

of 65%, 86%, and 89% for CPD, StatAtlas, and CRF_ID, respec-

tively, with some datasets reaching 100% accuracy for both

StatAtlas and CRF_ID (Figures 6B and S5). In addition, we saw

similar improvements in accuracy across most datasets for

StatAtlas and CRF_ID when training on all except one dataset

and then testing on the left-out dataset (Figures 6B and S6).

This indicates that most of the benefits from retraining come

from achieving a better representation of the full diversity across
datasets, rather than capturing the specific nuances of any one

dataset. This generalizability should enable labs to use these re-

trained algorithms out of the box rather than needing to do addi-

tional fine-tuning on their own data.

Differences in accuracy between datasets may have been

caused by a variety of factors including poor initial alignment, op-

tical quality, non-neuronal artifacts in the images, and nonlinear

deformations of the worm body. Additionally, datasets with

fewer annotated neurons had better automatic labeling accu-

racy, presumably because experimenters only labeled the

easiest neurons to identify and left the hardest ones unannotated

(Figure S7).

DISCUSSION

Aggregation and harmonization of data from a variety of different

sources is necessary to build a corpus for analytical methods

and machine-learning tools that generalize across the diversity

of real-world data. In this work, we present a data-harmonization

pipeline for analyzing whole-brain structural and activity imaging

in C. elegans. This pipeline includes data aggregation, conver-

sion to a standardized file format, software for analyzing these

standardized datasets, pre-processing approaches to align im-

ages and color spaces, and spatial registration of sample neuron

point clouds to a common atlas.

We used this corpus to study potential biological factors that

organize cell position in C. elegans. Specifically, we find that

(1) restrictions in bounding tissue and gangliar space likely

contribute to variability in neuron positions, (2) neurons with so-

matic distances less than �40 mm of each other show higher

synaptic connectivity, and (3) sister neurons that divide in the

embryo can be found closer together at adulthood than ones

dividing at larval stages more than 16 h later. The positive rela-

tionship between synaptic connectivity and neuron somatic

proximity thus augments the previously observed correlation of

synaptic connectivity to axodendritic adjacency, termed Peter’s

rule. Moreover, the close distances and low positional variability

we measured for embryonically born sister neurons rules out

exponential organismal growth as a major cause in driving neu-

rons apart from each other during the establishment of the adult

Bauplan.

We then used the corpus to train machine-learning algorithms

to automate the intensive task of labeling cells in these datasets,

producing an updated statistical atlas of neuron positions and

colors. The harmonized data corpus substantially boosts gener-

alized neural identification performance across datasets from

contributing labs for each tested algorithm, despite the variability

in data from these different groups. Full recovery of human label-

ing was achieved in the top 5 automatic label assignments for

12 out of 94 datasets using either the StatAtlas or CRF_ID algo-

rithms. This major improvement in accuracy compared to using

older atlases indicates that training on our much larger corpus of

data allows these systems to learn a more accurate representa-

tion of the true distribution of neuron position and color across

individuals. CRF_ID performs the best of the three algorithms

we tested, which is in line with our expectation because

CRF_ID leverages pairwise positional features rather than only

the mean and variance of individual neurons. In the future, our
Cell Reports Methods 5, 100964, January 27, 2025 9
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corpus can be used to incorporate neuronal shape- and size-

based descriptors as well as dynamical time-series features to

further improve neural identification algorithms. As new auto-

mated labeling algorithms continue to be developed using the

tools outlined in this paper, there is the additional possibility of

using ensemble methods to improve neuron labeling by

leveraging multiple algorithms.

The wormid.org tools and resources are readily applicable to

new whole-brain structural and activity imaging datasets, and

these new datasets can be easily added to the existing corpus.

These tools streamline public data sharing to facilitate both

open science and to satisfy data-sharing mandates. We hope

this resource will continue to grow in size and breadth to enable

the development and benchmarking of new machine-learning

tools and algorithms. Our analyses of cell features based on

the full corpus of data can immediately be used to inform better

feature selection and algorithms to continually improve auto-

mated approaches for neuron-subtype identification in volu-

metric images. Additionally, the large corpus and trained statis-

tical atlas can serve as a descriptive resource of the underlying

neurophysiology of C. elegans. Moreover, our resources can

be incorporated into computational neurobiology courses,

such as the Neuromatch Academy (neuromatch.io)53 to train

the next global generation of neuroscientists on real-world data-

sets. As the community continues to develop new tools, this

corpus will allow these new tools to be benchmarked for gener-

alizable performance, spurring innovation.

As of January 2023, the United States’ National Institute of

Health (NIH) has instituted a Data Management and Sharing

Policy, and other agencies such as the European Research

Council (ERC) have instituted similar policies. Compliance

with these policies can require substantial thought, effort,

and cost on the part of investigators. The wormid.org tools

and resources provide a free and simple mechanism to satisfy

these new policies. Furthermore, the DANDI repository per-

mits data embargoes, thus providing researchers with a

means to manage timing for the public release of their data.

Our standard and resource should significantly aid re-

searchers in policy compliance and facilitate open science

and data sharing.

As the community continues to scale up the generation of neu-

ral data and increasingly relies on machine learning analysis to

tame this ‘‘big data,’’ there is an ever-growing need to unify

disparate datasets to produce verifiably robust, accurate, and

generalizable analytical approaches. Harmonization efforts

such as ours can significantly reduce the activation energy

necessary for collaboration, data sharing, and the development

of unified community-wide tools across labs. While some of the

resources we created are specific to C. elegans, the framework

and much of our toolkit can be applied to other model organism

imaging communities.

Limitations of the study
At present, whole-brain activity imaging in C. elegans is per-

formed using nuclear-localized calcium sensors (such as NLS-

GCaMP6s) rather than cytosolic or membrane-bound sensors,

due principally to the ease of cell segmentation afforded by nu-

clear localization of fluorophores. Voltage sensors in C. elegans
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are immature, at the time of this work. The NWB format can be

easily extended to accommodate higher-resolution subcellular

activity data as they become available.

Although we identified developmental and anatomical factors

that correlate with neural position (gangliar boundaries, timing

of cell divisions, and connectivity), it remains experimentally

challenging to perturb these factors to probe their causal

influence.
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Deposited data

Original NeuroPAL Yemini et al.6 https://doi.org/10.48324/dandi.000715/0.241009.1514

EY dataset Yemini et al.6 https://doi.org/10.48324/dandi.000541/0.241009.1457

KK dataset This paper https://doi.org/10.48324/dandi.000692/0.240402.2118

HL dataset Chaudhary et al.25 https://doi.org/10.48324/dandi.000714/0.241009.1516

SF dataset Atanas et al.7 https://doi.org/10.48324/dandi.000776/0.241009.1509

SK1 dataset This paper https://doi.org/10.48324/dandi.000565/0.241009.1504

SK2 dataset This paper https://doi.org/10.48324/dandi.000472/0.241009.1502

Synaptic connectivity dataset Cook et al.47 https://doi.org/10.1016/j.cub.2023.04.071

Cell lineage dataset Sulston et al.54 https://doi.org/10.1016/0012-1606(83)90201-4

Software and algorithms

Code for conversion and analysis This paper https://doi.org/10.5281/zenodo.13910335

ndx-multichannel-volume (C. elegans

extension for NWB)

This paper https://github.com/focolab/ndx-multichannel-volume

NeuroPAL_ID software source code Yemini et al.6 https://github.com/Yemini-Lab/NeuroPAL_ID

NeuroPAL_ID software for Mac OS Yemini et al.6 https://doi.org/10.5281/zenodo.13906028

NeuroPAL_ID software for Windows OS Yemini et al.6 https://doi.org/10.5281/zenodo.13905893

Eats-worm This paper https://doi.org/10.5281/zenodo.13910463

CPD Yu et al.33 https://github.com/XinweiYu/fDNC_Neuron_ID

StatAtlas Varol et al.27 https://github.com/amin-nejat/stat-atlas

CRF_ID Chaudhary et al.25 https://github.com/lu-lab/CRF_Cell-ID

Other

WormID.org This paper https://WormID.org

DANDI archive Halchenko et al.38 https://dandiarchive.org/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Details on the specific strains and data acquisition systems for each dataset are presented below. All recorded worms are young

adult hermaphrodites.
Dataset Microscope

Length of

recording Sample rate Resolution (um/pixel) Strain Setup

NP_og Zeiss LSM880 spinning

disk confocal

�4 min �4Hz 0.208 3 0.208 3 1.02 OH16230 Microfluidic chip

SF Andor spinning disk

confocal w/Nikon

ECLIPSE Ti microscope

40x water immersion

�15 min 1.7 Hz 0.54 3 0.54 3 0.54 Various Freely moving

SK1 Leica DMi8 inverted

spinning disk

confocal, 40x WI, 1.1 NA

�25 min 1.04 Hz 0.1604 3 0.1604 3 1

(3 for calc images)

OR 0.3208 3 0.3208 3 0.75

(2.5 for calc images)

FC121, FC128,

OH16230

Microfluidic chip

(Continued on next page)
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Dataset Microscope

Length of

recording Sample rate Resolution (um/pixel) Strain Setup

SK2 Leica DMi8 inverted

spinning disk

confocal, 40x WI, 1.1 NA

�15 min 3.3 Hz 0.3208 3 0.3208 3 0.75

(1.5 for calc images)

OH16230 Microfluidic chip

KK Nikon Eclipse Ti-U i

nverted spinning

disk confocal, 40x 1.3 NA

�15–20 1.67 0.32 3 0.32 3 1.5 for

both images

KDK92 Semi-restricted in

microfluidic device

HL Perkin Elmer spinning disk

confocal 1.3 NA, 40x oil

OR Brucker Opterra

II swept field confocal

0.75 NA, 40x air

NA NA 0.33 3 0.33 3 1 OH15495 Microfluidic device

EY Spinning disk confocal �4 min �4 Hz 0.27 3 0.27 3 1.5 OH16230
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Standardized file format - Neurodata Without Borders
NWB is an HDF5-based format built specifically for neurophysiology data and has emerged as the de facto standard for storing

neurophysiology datasets with associated metadata for reuse and sharing. NWB provides object types for data and metadata

including acquisition parameters, segmentation of 3D image regions, fluorescent time series (e.g., for neural activity), experimental

design information, multichannel electrophysiology time series data, 3D images, stimulus events during an experiment, and behav-

ioral data.41

The base NWB schema supports two-dimensional structural and time-series multi-channel images but did not originally support

the type of five-dimensional (multi-channel, volumetric, time-series) data that is used in C. elegans whole-brain activity imaging or

other metadata associated with these types of experiments. To solve this problem, we developed ‘ndx-multichannel-volume’ as a

novel extension to the existing Neurodata Without Borders (NWB) standardized file format. More information and resources about

NWB can be found at nwb.org.

Our extension adds new objects built from existing ones in the schema to add and improve support for multi-channel, volumetric,

time-series images and the metadata associated with those images as well as volumetric segmentation data and metadata fields

specific to C. elegans (e.g., cultivation temperature and growth stage). This extension and the datasets presented in this work repre-

sent, to the best of our knowledge, the first applications of the NWB data format toC. elegans and have now been incorporated as the

standard for this model organism. This extension is flexible, open-source, and can be continuously updated to incorporate new types

of data for future experiments.

Storage on DANDI archive
Data and associated metadata were uploaded to the DANDI archive [RRID:SCR_017571] using the Python command line tool

(https://doi.org/10.5281/zenodo.3692138). The data were first converted into the NWB format (https://doi.org/10.1101/2021.03.

13.435173) and organized into a structure akin to the Brain Imaging Data Structure (BIDS) (https://doi.org/10.1038/sdata.2016.44).

All datasets can be streamed or downloaded from the DANDI archive, available on WormID.org as well as these individual

URLs:55–61

Original NeuroPAL: https://doi.org/10.48324/dandi.000715/0.241009.1514.

EY: https://doi.org/10.48324/dandi.000541/0.241009.1457.

HL: https://doi.org/10.48324/dandi.000714/0.241009.1516.

KK: https://doi.org/10.48324/dandi.000692/0.240402.2118.

SF: https://doi.org/10.48324/dandi.000776/0.241009.1509.

SK1: https://doi.org/10.48324/dandi.000565/0.241009.1504.

SK2: https://doi.org/10.48324/dandi.000472/0.241009.1502.

We present two software packages with user-friendly GUIs to interface with NWB datasets and run standard analysis pipelines for

neural detections/segmentation, identification, tracking, and extracting time-series of neural-activity traces annotated with any

experimental stimuli presented. First, we present the NeuroPAL_ID software (Figure 3A) for visualization, annotation, neuronal seg-

mentation and identification, neural tracking, activity trace extraction and stimulus presentation data of volumetric NeuroPAL images

andwhole-brain activity. This software is pre-compiled for use onMacOS andWindows. The software is open-source, available from

https://github.com/Yemini-Lab/NeuroPAL_ID/releases, and is written in MATLAB and Python. It has now been updated to include

functionality described in this paper to enable histogram matching, color-corrected image visualization, and automated neural
Cell Reports Methods 5, 100964, January 27, 2025 e2
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identification using the new StatAtlas. This software is written and managed by the Yemini Lab; further information can be found at

https://www.yeminilab.com/neuropal.

Second, we present the eats-worm software (Figure 3B) for visualization, segmentation, and activity extraction of neural-activity

time series from immobilized worms. eats-worm similarly allows for manual verification and curation of the automatic segmentation

and tracking algorithms. The tracking algorithm was optimized for tracking neurons across frames in immobilized worms, but there

are currently efforts to extend this functionality to work for freely-moving worms as well. eats-worm is written in Python and is built as

a plugin to napari, a popular 3D visualization tool. This software is written and managed by the Kato Lab; further information can be

found at https://github.com/focolab/eats-worm.

Both software programs have embedded functionality to read and write NWB files. NWB I/O functionality enables a user to

quickly run similar analyses on all the datasets presented in this work without the need to develop specific pipelines to read in

data from each dataset. Furthermore, this functionality can be easily embedded into MATLAB or Python-based analysis

software.

All other code used for data conversions and analysis can be found at https://github.com/focolab/NWBelegans and is publicly

available.

Data acquisition
NeuroPAL structural volumes and neural activity time series volumes were acquired using the protocols outlined in Yemini et al.

2021.6 After collection of these images, neurons were marked and annotated according to the guidelines in the NeuroPAL manual.52

Specific immobilization methods, microscope setup, and experimental protocols differ slightly between datasets. All datasets were

taken using spinning disk confocal microscopeswith xy (lateral) resolution varying from 0.1604–0.54 mm/pixel and z (axial) resolutions

varying from 0.54–1.5 mm/pixel. xy resolution was the same for NeuroPAL structural images and neural activity images (using

GCaMP6s) for all datasets, but z resolution varied from 0.54 to 3 mm/pixel. z resolution is generally lower for neural activity images

due to limitations in optical sectioning with confocal microscopes. Lower z resolution also reduces the number of frames needed to

record a full volume for a single time-point, to allow imaging at a higher temporal resolution. Most images were taken with the worm

immobilized in a microfluidic chip with the exception of the KK dataset (where worms were semi-restricted in a microfluidic device)

and the SF dataset (wherewormswere freelymoving). TheNWBfiles and the DANDI datasets that hold them containmetadata for the

specific setup and conditions in each dataset. For published datasets, additional information can be found in the associated

publications.6,7

After acquisition of NeuroPAL structural volumes and whole-brain activity time-series, images were annotated using various auto-

mated detection/segmentation algorithms ranging from classical computer vision approaches (e.g., template matching62) to deep

neural network approaches. These were then manually verified. Ground truth annotations were done using a combination of existing

automated identification algorithms followed bymanual corrections. Each neuron identity label was either explicitly annotated by ex-

perts or manually verified after algorithmic identification. Note that varying levels of completeness in labeling are due to the difficulty

of this manual annotation task. For several datasets with lower image quality, even experts could only confidently label 30–50% of

segmented neurons in the volume. For neural activity time-series, neuron centers were first tracked across images using various al-

gorithms and then manually verified by experts.63,64 Fluorescence activity is then extracted from these tracked ROIs to obtain time

series of neural-activity traces. Neurons in the NeuroPAL structural volume were then matched to the ROIs in the neural activity time-

series to get labeled activity traces.

Datasets from various labs were converted to the NWB standardized file format using the ndx-multichannel-volume extension pre-

sented in this work. These files were then uploaded to the DANDI archive where they are now publicly accessible for data streaming,

download, or online visualization.

Butterfly plot
To produce the butterfly plot, we first manually found three orthogonal basis vectors to align neuron point clouds to a new cartesian

coordinate space. To do so, we used human-guided affine transformation to roughly align these basis vectors to the anterior-pos-

terior, dorsal-ventral, and left-right axes. The XYZ coordinates of each neuron were projected into this new cartesian coordinate

space and then converted to cylindrical coordinates by the following equations.

xcylinder = � xnew

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ynew2+znew2

p

q = arctan 2ðynew; znewÞ
We plotted the new x and q coordinates on a 2D plane to obtain the butterfly plots shown in (Figures 1A and 4). This projection is

akin to flattening the positions of the neurons along the circumference of a cylinder of the worm body and then unrolling that cylinder

into a flattened plane.
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Histogram matching
Wemodified the established approach of histogrammatching to apply it to 3-D volumetric, multi-channel data.62 We created a refer-

ence histogram using the 10 worms from the original NeuroPAL work. This data is stored as uint16 (65,536 possible values for each

pixel). For each channel, we created a histogram counting the number of pixels within the bin edges, assigning each color value its

own bin, and then averaged the values in each of these bins across the 10 images. Practically, these histograms were very similar

across these 10 datasets, so the averaged histogram was similar to each of the individual histograms.

To color match a new animal sample, we calculated a histogram for each channel. The number of bins for each channel histogram

was equal to the maximum intensity value present in that channel in the image: bincountchannel = maxðxchannelÞ. This meant that there

was a different number of histogram bins for each channel in each image because images were collected at different bit depths and

with varying levels of saturation.

We then calculated the cumulative density function (CDF) at each color value of both the sample and the reference. We created a

lookup tableM to associate each gray count value x in the sample to the color value in the reference with the closest CDF value. Next,

we created a new matched image with each pixel transformed into the new color space using this lookup table as shown below.

MchannelðxÞ = ð��cdfsampleðxÞ � cdfreferenceðx0Þ
��Þ

MatchedImagechannelði; j; kÞ = MchannelðAði; j; kÞÞ
Color extraction
To extract the color values for the neurons in each image, we first calculated the mean and standard deviation of the pixel counts in

each channel, and then converted each pixel value into its Z score based these channel values. We then sampled a 33 33 1 grid of

pixel values around each segmented neuron center in each channel. We use the median values of this 3 3 3 3 1 grid as the RGB

values for that neuron center. Color values were extracted post-histogram matching when training or testing using histogram-

matched images. For non-histogram-matched images, there are no additional color pre-processing steps beyond Z-scoring.

Positional variability analysis
We calculated pairwise positional variability by measuring the Euclidean distance between every pair of canonical head neurons

across each structural volume when both neurons in that pair had a ground truth label. We then took the average and standard de-

viation of these distances for each neuron pair to find mean nuclear distance and pairwise positional variability, respectively. For

these analyses we ignored pairs that are not present in at least 5 datasets. We used pairwise positional variability instead of absolute

positional variability because absolute position is extremely sensitive to point-cloud realignment, which would make it hard to disag-

gregate natural positional variability from alignment errors; furthermore, we are interested in how individual cells vary relative to each

other, not in how they vary individually. To get the mean positional variability for a given neuron, we averaged the mean pairwise dis-

tance for all neuron pairs that contained that neuron.

We calculated Intra vs. inter ganglion measures as follows: for every neuron in the atlas, we found its n closest atlas neighbors and

only performed measurements for these pairwise neighbors. We then separated these pairings based on whether the two neurons in

the pair are within the same ganglion or in two different ganglions. Note that pairs in different ganglions will appear twice: e.g., if one

neuron in the pair is in the anterior ganglion and the other is in the lateral ganglion, the pair will be counted in the analysis for both the

anterior ganglion and the lateral ganglion (Figure 5B). Pairs within the same ganglion are only counted once. We compared this

approach for n = 1–20 (Figure S4). For all numbers of neighbors there is higher positional variability for neighbors in different ganglia

when compared to those in the same ganglion. The measurements stabilizes around n = 7 and holds steady through n = 20. There-

fore, we selected 10 to use for n in our analysis.

Synaptic connection weights between neuron pairs are derived from the whole-brain connectome of the adult hermaphrodite in

Cook et al.44

For lineal distance: the cell lineage tree and associated birth times were taken from Sulston et al.64 The last shared parent cell be-

tween two neurons is the most recent shared parent node in the lineal tree. We used the birth time of the last shared parent cell

between two neurons as the lineal distance and explored the relationship between this lineal distance and mean pairwise nuclear

distance (Figure 5D). In this analysis, we focus only on sister cells: terminal cells that only divided from each other at the very last

stage of their lineal tree.

Alignment of datasets
Before analysis, datasets were first roughly aligned to a common space by learning an affine transformation as described in Varol

et al.27 The algorithm chooses a reference dataset from the 10 original NeuroPAL worms to align every other dataset to. For each

dataset, the algorithm then learns an affine transformation that minimizes the distance of each ground truth labeled neuron to the

same neuron in the reference dataset. This roughly aligned the principal axes of the worm as well as the overall scaling across
Cell Reports Methods 5, 100964, January 27, 2025 e4
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datasets. The accuracy of each automated identification algorithm is highly sensitive to pre-alignment and thus this step is critical for

direct comparison of models and quantification of atlas performance. Pre-alignment is accomplished by labeling a small number of

easily identifiable neurons.

Coherent point drift (CPD)
Coherent point drift has been a common algorithm for registering two similar point clouds to each other since its introduction in Myr-

onenko and Song.51 CPD allows for both rigid and non-rigid point set registration. CPD models one point set as a set of GMM cen-

troids that are fit to the second point set by maximizing the likelihood. GMM centroids are set to move coherently to preserve the

structure of the point clouds. In the rigid case, the algorithm learns an affine transformation of the GMM centroid locations while

in the non-rigid case, the algorithm learns a displacement function on the original centroid positions with an enforced regularization

term to enforce smoothness. The objective function is optimized using an iterative EM optimization approach and yields both the

aligned point set as well as an NxM correspondence probability matrix that represents the likelihood that each point n in set 1 cor-

responds to each point m in point set 2.

In this paper, we use the specific implementation of CPD used in Yu et al.33 First, rigid CPD is used to roughly align a test wormpoint

cloud to a template point cloud. Then, non-rigid CPD is used to model non-linear deformations between the semi-aligned test and

template. Neuron assignments are then determined by creating a matrix of pairwise Euclidean distances between every neuron’s

position and color in the test and every neuron in the template in the aligned space. We then use the Hungarian algorithm on this

distance matrix to find the optimal label assignments. To get 2nd ranked assignments, we assigned an infinite cost to each label

assignment from the first pass and reran the Hungarian algorithm. We repeat this for the 3rd-5th order assignments.

Accuracy was calculated by counting the number of neuronswhose algorithmic assignment was the same as the ground truth label

and then dividing by the total number of neurons that have a ground truth label. Note that neurons without a ground truth label were

not included in the accuracy metric but are still part of the cost matrix and received neuron assignments. Since there is no ground

truth for these neurons we did not determine the accuracy of their label assignments.

The difference between the use of the ‘original (10) worms’ versus ‘multi-lab corpus’ for CPD is what set is included in possible

options for the template. For the ‘original’ group, we compare every test set to each of the original 10 NeuroPAL worms and report

the accuracy for the template that has the highest average probability of correspondence after the rigid alignment step. Similarly, for

the ‘multi-lab corpus’, each test worm is compared to each possible template worm in the whole multi-lab corpus and accuracy is

reported similarly. The accuracy of CPD is highly sensitive to a good rough initial alignment and to similarity of the template and the

test point cloud. The template with the highest average probability of correspondence is not necessarily the template that yields the

highest accuracy, but it is the template that the algorithm has the highest confidence that it has found the ‘correct’ correspondence.

Statistical atlas training and inference
Statistical atlases used for testing performance were trained using the algorithm described in Varol et al.27 This algorithm uses a

training set of neuron point clouds with both XYZ and RGB values and takes a block-coordinate descent approach where it iteratively

learns affine transformation parameters to align the neuron point clouds, then updates the means and covariances of the positions

and colors of each neuron until reaching convergence. This process generates mean and covariance parameters for each neuron as

well as an aligned coordinate space for all the worms in the training set. The trained atlas consists of a list of neuron names alongside

their associated means and covariances in the aligned position and color space.

We trained three atlases: the original atlas trained on just the original 10 NeuroPAL worms from Yemini et al. 2021,6 the color cor-

rected atlas trained on these same 10 worms after histogram matching, and the multi-lab + color-corrected atlas which is trained on

the full corpus of histogram-matched data.

For the original atlas, we tested every dataset in the full corpus without histogrammatching. For the color-corrected atlas, we simi-

larly tested every dataset on the full corpus of data with histogram matching. For the atlas trained on the full corpus, we use k-fold

cross-validation. The corpus was split into five equally sized groups. For each group, an atlas was trained on all datasets in the other

four groups and performance was reported for the out-of-training set group. The 10 worms used to train the original and color-cor-

rected atlas were included in the training for each of these five groups. These 10 worms were not used to report testing accuracy for

any of the atlases (Figure 6). The fully trained atlas presented in Figure 4 was trained using the 10 original worms and the full corpus of

data presented in this work, without splitting it into groups. This full atlas was embedded into the ‘‘Auto ID’’ functionality of the

NeuroPAL ID software shown in Figure 3A.

Neuron point clouds used for testing were pre-aligned by learning an affine transformation from each sample dataset to the aligned

coordinates of the atlas based on a subset of the ground truth labeled neurons in the sample. Briefly, assuming N neurons in the test

sample andM neurons in the atlas, we calculated anNxM cost matrix using theMahalanobis distance between each neuron center in

the sample and each neuron distribution in the atlas. xi represents the XYZRGB values of neuron i, while mj and Sj represent the

XYZRGB mean and covariance respectively for neuron j in the atlas:

Cos ti;j =
�
xi � mj

�T

S� 1
j

�
xi � mj

�
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We then treated this cost matrix as a linear sum assignment problem. Label assignments (for neural identification) were calculated

using the Hungarian algorithm.42 2nd-5th order ranked assignments and accuracy are calculated in the same way as described

for CPD.

CRF_ID training and inference
CRF_ID atlases and inference are conducted using the algorithm described in Chaudhary et al.25 This approach follows a probabi-

listic-graphical-model framework based on conditional random fields. The graph is defined by node features corresponding to unary

measures for each neuron center such as position and color and edge features corresponding to pairwise measures for each pair of

neurons such as distance, relative angle, or probability that one neuron is anterior to the other. After features are selected, a data-

driven atlas is trained on a corpus of data to determine the average values for each of the measured features; then for a test worm,

node and edge potentials are calculated based on comparison of each feature in the test worm to the atlas and infer the best global

assignment of labels bymaximizing an energy function using an approximate inferencemethod. For the analysis in this work, we used

the color information solely to define the node potentials, and the pairwise angle relationships only to define the edge potentials. Opti-

mizing the weights of the node and edge features may result in a higher prediction accuracy.

We trained three atlases: the original atlas trained on just the original 10 NeuroPAL worms from Yemini et al.,6 the color corrected

atlas trained on these same 10 worms after histogram matching, and the multi-lab + color-corrected atlas which is trained on the full

corpus of histogram-matched data. This training approach follows the same k-fold cross validation approach used for the StatAtlas

method.

We use the roughly pre-aligned point clouds used in the StatAtlas algorithm as input to the CRF_ID algorithm to eliminate possible

differences in the initial alignment step, which can dramatically change accuracy.

In practice, there are nearly always fewer detected neuron centers in a given image than total cells in the atlas. CRF_ID handles this

by modeling a hidden variable h˛ f0;1gN where N is the number of neurons in the atlas. This variable specifies the probability that a

given cell is missing in the image. Based on the number of cells in the test image, P cells are uniformly selected across different re-

gions of the head and removed from the atlas. This process is repeated �1000 times to sample multiple possible combinations of h.

The top 1–5 predicted assignments are generated by compiling a list of the most frequent labels for each cell in the test image across

all runs. Accuracy is reported in the same way as CPD and CRF_ID.

Optimizing the aforementioned energy function using an approximate inference method produces marginal distributions of label

assignments for each cell. The top 1–5 predicted label assignments for each cell were generated by sorting themarginal probability of

labels in a descending order. The label that resulted in the highest marginal probability was assigned as top 1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Descriptions of statistical tests can be found in the text or figure captions where the analysis was conducted. All analyses were done

in Python 3.12. Specific packages and versions used in analyses can be found in the setup.py file in the NWBelegans Github repos-

itory https://github.com/focolab/NWBelegans.

ADDITIONAL RESOURCES

We present WormID.org as an additional resource to guide users through the full process of collecting data, converting to the NWB

format, uploading to DANDI, and replicating the analyses in this work. The website contains tutorials, links to code and data, and

step-by-step instructions for data conversion.
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