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Accurate prediction of RNA transcript 
levels from circulating tumor DNA 
(ctDNA) offers a promising approach 
for dynamic non-invasive cancer 
biomarker characterization and 
longitudinal monitoring. 
By leveraging epigenomic signals 
proximal to individual genes, we 
developed transcript level machine 
learning prediction models for breast 
and prostate cancer using simulated 
plasma and validated them in 
patient plasma.

B A C K GR OUND

In breast cancer, our models 
predicted expression for a panel of 
2622 key breast cancer oncogenes 
and transcriptional drivers in 
simulated plasma at 10% ctDNA or 
lower, enabling clinically relevant 
prediction of cancer gene 
transcription. At 10% ctDNA, we can 
evaluate all models in ~40% of stage 
IV patients, but many models remain 
performant at lower ctDNA levels, 
expanding the evaluable patient 
population.

These models are tuned to separate 
healthy plasma signal from cancer 
cells’ contribution to the plasma. The 
panel is enriched for genes important 
for transcriptional regulatory identity 
and breast cancer subtypes, as well 
as targets for antibody drug 
conjugates (ADCs) and radio 
immune conjugates (RICs), including 
HER2, PSMA, Nectin-4, B7-H4, MET, 
and EGFR.

Our models demonstrated direct 
applicability in patient plasma with 
orthogonal validation. For example, 
they accurately predicted prostate 
cancer PSA and PSMA PET 
SUVmean, as well as breast cancer 
HER2, ER, and PR status. 
Additionally in a cohort of patients 
with matched tissue RNA-seq there 
was a strong correlation between 
RNA-seq and plasma-based 
predictions.

Further improvements were achieved 
with bespoke feature engineering and 
multi-gene aggregation. These 
strategies improved AUC for 
predicting HER2, ER, and PR IHC 
positivity in breast cancer, as well as 
the performance of our predictor for 
PSMA PET SUVmean. Similarly, for 
a multi-gene DLL3 predictor in lung 
cancer, we reduced the ctDNA 
threshold  from 4% to 1.9% ctDNA by 
incorporating predicted expression of 
three highly correlated genes. 
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Cell free DNA derived from 

tumors exist in circulation as 

chromatin fragments that 

faithfully maintain tumor-

associated epigenetic 

modifications on the histones and 

DNA. Antibodies against active 

enhancers, active promoters and 

DNA methylation are used to 

enrich for associated DNA 

fragments from 1mL plasma 

and sequenced to capture the 

underlying transcriptional state of 

the tumor cells (Baca et al.). 

Figure 1. Epigenomic Platform

Comprehensive Epigenomic Platform Offers Dynamic Resolution into Target & Pathway Biology from 1ml of Plasma
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Figure 2. Training & Testing of Predictive Gene Locus Expression Models in Simulated Cancer Plasma
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a. AUC >0.7 and positive correlation at 10% simulated ctDNA

Figure 3. Gene Expression Predictions in Clinical Patient Plasma Validate in Tumor RNA-seq
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Precede Transcript Predictions – Plasma

Gene Order Maintained

(Left) Heatmap showing model-predicted gene expression in 
plasma samples from breast (BRCA), prostate (PRAD), and 
small cell lung cancer (SCLC) patients. Genes displayed in the 
heatmap had higher predicted expression in plasma samples 
from one indication compared to the others, and include well 
known cancer type markers such as GATA3, KLK3, and 
ASCL1.

Figure 4. Development of Clinically Relevant Tests with Gene Expression Models
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A) Predicting HER2, ER, and PR IHC Status in Breast Cancer from Plasma >1% ctDNA

B) Predicting DLL3 Expression in Lung Cancer from Plasma

C) Predicting PSMA-PET SUV Mean in Prostate Cancer from Plasma

Original locus expression models (purple) can predict IHC status. Refined models (black) outperform 
original models, improving AUC through feature engineering (HER2) and incorporation of additional 
loci (ER, PR).

(Left) DLL3 expression predictions in plasma correlate with lung cancer histology (non-small cell vs 
small cell lung cancer, NSCLC vs SCLC). Predicted expression is higher in samples with reported 
SCLC histology (purple dots). Plasma samples were also classified using an SCLC vs NSCLC 
prediction model. Discordant cases where the classifier predicts SCLC for a reported NSCLC sample 
also show elevated DLL3, while SCLC cases predicted as NSCLC show low DLL3 expression.

(Left) Comparison of number of genes for which we can 
generate predictive gene expression models (AUC >0.7 
and positive correlation at 10% simulated ctDNA) when 
using our comprehensive epigenomic platform measuring 
promoter, enhancer, and DNA methylation (DNAme) 
signal, compared to using DNA methylation only. 

(Right) Comparison of model AUC for key drug targets at 
10% simulated ctDNA. AUC for models trained using 
data from our comprehensive platform is plotted on the x-
axis, while AUC for models trained using DNA 
methylation data only is on the y-axis. Most targets are 
below the diagonal line, indicating that our complete 
platform increases performance.

(Right) Refined model retains 
predictive power at lower 
ctDNA%, showing stronger 
correlation in in silico dilutions. 

(Left & Center) PSMA model predictions correlate with 
imaging-based quantification of PSMA (PET SUV mean). 
Refined PSMA model (black) improves correlation with PET 
SUV mean (R=0.74 vs 0.6 for original model in purple).

(Right) High ctDNA patient 
plasma samples were diluted 
(in silico) to range of low 
ctDNA% to test concordance 
of predictions for same sample 
at varying ctDNA levels. DLL3 
model refined by incorporating 
additional loci (black) 
maintains stronger correlation 
with source sample compared 
to the original model (purple), 
improving model precision.

A, B) Correlation Between Model-predicted 
Gene Expression in Breast Cancer Patient 

Plasma and RNA-seq from Tumor Biopsies of 
the Same Patients 

A) Training Models to Predict Tumor Gene Expression

B) Cross-validated Performance of Predictive Gene Expression Models Trained Across a Panel of Breast Cancer Samples

C) Gene Expression Predictions in Patient Plasma Recapitulate Indication-specific Transcriptional Programs at Scale 

C) Performance of Models for Clinically Relevant Drug Targets in Breast Cancer

D) Comprehensive Epigenomics Enables More Powerful Predictive Models Compared to Using DNA Methylation Alone E) ctDNA Content in Patients with Metastatic Breast Cancer

B) Examples of 12 genes with strong correlation between predicted and 
measured expression. Scatter plots show tumor biopsy RNA-seq 
expression (x-axis) vs predicted expression from plasma (y-axis). Genes 
include ADC targets (e.g., HER2, NECTIN4, B7-H4 in dotted box) and 
breast cancer-relevant markers. Blue regression lines indicate model fit, 
and shaded regions represent confidence intervals.

(Left) Performance of models for all genes, evaluated in simulated 
10% ctDNA plasma samples. Each point represents a gene model, 
with Spearman correlation between RNA-seq and predicted 
expression (x-axis) plotted against model AUC (y-axis). 2,622 
genes (black points) met the threshold of AUC >0.7 and positive 
Spearman correlation, indicating reliable prediction of tumor RNA 
levels from cfDNA-based epigenomic signals at 10% ctDNA.

(Right) The number of genes meeting different AUC thresholds 
across varying ctDNA fractions (100%, 30%, 10%, 5%, 3%, 1%). 
Predictive accuracy declines at lower ctDNA fractions, but many 
genes remain robustly predicted at clinically relevant levels.

(Left) Schematic representation of the approach used 
to generate data to train gene locus expression 
models. Simulated cancer plasma is created by mixing 
tumor-derived chromatin with healthy plasma.

Percent of patients with stage 
IV metastatic breast cancer 
(N=725) with at least a 
specified fraction of plasma 
ctDNA, as measured by 
Precede’s proprietary 
epigenomic-based tumor 
fraction estimation method. 

This is the estimated size of 
the evaluable patient 
population for a test that is 
predictive at a given minimum 
ctDNA fraction.

(Right) Correlation between actual and predicted 
values of expression in simulated 10% ctDNA 
plasma samples for 4 drug targets: B7-H4 (VTCN1), 
NECTIN4, MET, and HER3 (ERBB3). The x-axis 
represents actual expression measured by RNA-
seq in a tumor sample, while the y-axis shows the 
model’s predicted RNA expression from cfDNA 
epigenomic features in simulated 10% ctDNA plasma 
samples generated from that tumor. Error bars 
represent the standard deviation of the model 
predictions across simulated biological replicates. 

(Left) Cross-validated performance of predictive models for key drug targets 
in simulated 10% ctDNA plasma samples, including targets of antibody-drug 
conjugates (ADCs), hormone therapy, and other oncology drugs. Each point 
represents a gene, with Spearman correlation between tumor RNA-seq and 
predicted expression (x-axis) plotted against model AUC (y-axis). Genes with 
strong predictive performance include HER2, B7-H4, ER, NECTIN4, MET, 
and EGFR, highlighting the model’s ability to capture differential expression 
of genes that are clinically actionable.

(Right) For each gene, an expression model is trained to predict tumor 
RNA transcript levels as a function of gene locus activity in plasma, 
integrating enhancer signals, promoter accessibility, and DNA methylation 
(DNAme). 

A) We used our models to predict gene expression 
from patient plasma samples (N=12, ctDNA >3%) for 
which we have matched tumor biopsies. Boxplots 
show the distribution of Pearson correlation between 
predicted and measured RNA-seq expression across 
genes (Observed), compared to the distribution of 
correlations in a randomized control (Shuffled, N=100). 
Model predictions are significantly more correlated 
with RNA expression than expected by chance.

(Right) Heatmap showing publicly available RNA-seq expression 
data of tumor samples from the same indications, for the same 
genes shown on the left (TCGA Research Network, George et 
al.). Despite no direct matching between plasma and these 
tumor samples, 94% of the genes identified in plasma as 
indication-specific were significantly elevated in the expected 
cancer type in tissue biopsies. Further, gene network structures 
were highly similar between plasma predictions and tumor RNA-
seq (Mantel test, p<2.2e-16).

Comprehensive epigenomic profiling enables accurate prediction of tumor-specific 
RNA transcription in cfDNA, even at low ctDNA levels. This approach enhances 
ADC target profiling and enables tumor transcriptional profiling in patients from 
blood. Expanding beyond proof-of-concept models promises improved predictive 
accuracy at lower tumor fractions and broader applications in diagnostics and 
therapeutic targeting.
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