

Hydrogen and galaxies (10 points)

Part A - Introduction

Bohr model

A.1 (0.2pt)

v =

A.2 (0.5pt)

Expression : $r_1 =$

Numerical value : $r_1 =$

 $v_1 =$

A.3 (0.5pt)
$E_n =$
$E_1 =$
Numerical value : $E_1 =$

Hydrogen fine and hyperfine structure

A.4 (0.5pt) B₁ =

A.5 (0.5pt)

 $\Delta E_{\rm F}$ =

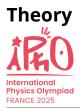
Expression of $\lambda_{\rm HF}$ =

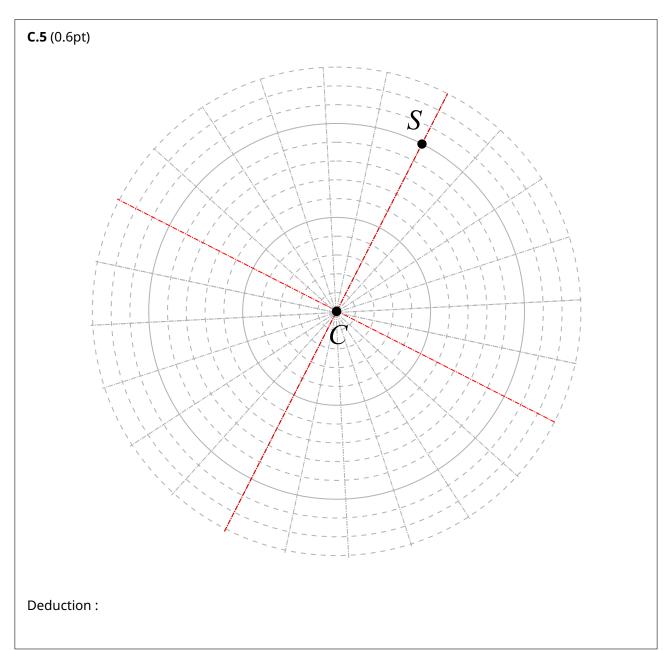
Value of $\lambda_{\rm HF}$ =

Part B - Rotation curves of galaxies

B.1 (0.2pt)

 $v_c =$




3.2 (0.5pt)	
$M_b =$	
3.3 (1.8pt)	
$c_1 =$	
$c_2 =$	
$p_{c,m}(r \ll r_m) \simeq$	
$v_{c,m}(r \gg r_m) \simeq$	
$M_m(r \gg r_m) \simeq$	
$M_{\rm in the figure} =$	

Part C - Mass distribution in our galaxy

C.1 (0.5pt)				
Vertical motion equation :				
$\omega_0 =$				
C.2 (0.6pt)				
$\varphi_0 =$				
$v_c(r) =$				
C.3 (0.7pt)				
$v_{rE/S} =$				
<i>R</i> =				
C.4 (0.6pt)				
$v_{r,1} =$	$v_{r,2} =$	$v_{r,3} =$		
$R_1 =$	$R_2 =$	$R_3 =$		

Part D - Tully-Fisher relation and Mond theory

D.2 (0.2pt)

 $a_m =$

D.3 (0.8pt)

if $a \ll a_0$ then $\gamma_{Mond} =$

 $a_0 =$

D.4 (0.9pt)

 $v_c(r) =$

 $v_c(r) =$