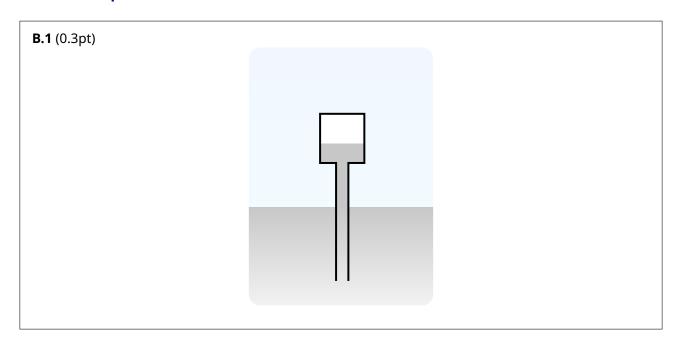
Theory

Cox's Timepiece (10 points)

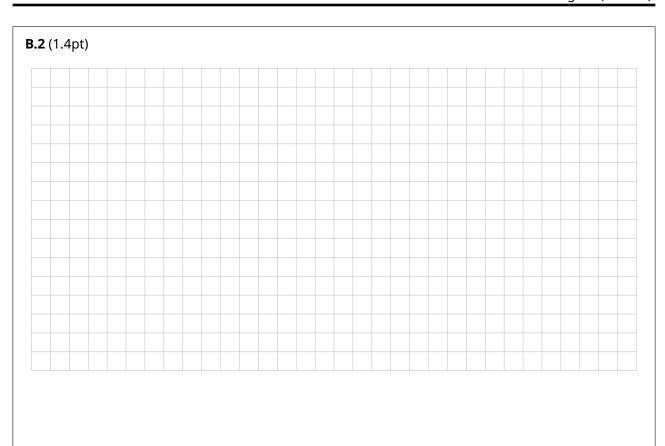
Part A - Pulling on a submerged tube


A.1 (0.2pt)		
$P_{ m w}$ =		
\overrightarrow{F} =		

A.2 (0.8pt)

Experiment	Behaviour (A or B ?)	h* (cm)	F _{max} (N)
1			
2			
3			

A.3 (0.3pt)		
arepsilon =	Numerical value:	$\varepsilon =$


Part B - Two-part barometric tube

Theory

A2-2 English (Official)

B.3 (0.3pt)

Numerical value: $\Delta m_{\rm add} =$ $\Delta m_{\mathrm{add}} =$

Part C - Cox's timepiece

C.1 (1pt)

 $\xi^{\star} =$

C.2 (1pt)

 $\overrightarrow{T} =$

Theory

A2-3
English (Official)

C.3 (2pt)

	Condition for observation	Graph of $x(t)/X$
Regime 1		$x(t)/X \qquad P_1(t)/A$ $1 \qquad \qquad$
Regime 2		$x(t)/X \qquad P_1(t)/A$ $1 \qquad \qquad$

C.4 (1pt)

$$F_{\rm s}^{\star} =$$

$$X^{\star} =$$

$$W^{\star} =$$

Numerical value: $W^* =$

C.5 (1.7pt)

$$W_{\mathrm{pr}}^{\star} =$$

$$\frac{W^*}{W^*} =$$