

Champagne! (10 points)

Part A. Nucleation, growth and rise of bubbles

A.1 (0.2pt)

 $P_{\rm b} =$

A.2 (0.5pt)

 $a_{\rm c} =$

Numerical value of $a_{\rm c}$ =

A.3 (1.2pt)

 $n_{\rm c} =$

Model (1) a(t) =

Model (2) a(t) =

Model chosen:

Numerical value of K =

Numerical value of D =

A.4 (0.8pt)

Forces on the bubble:

v(a) =

Numerical value of η =

A.5 (0.5pt)

 $a_{H_{\ell}} =$

Numerical value of $a_{H_{\ell}}$ =

A.6 (1.1pt)

Differential equation for $c_{\ell}(t)$:

 $\tau =$

Part B. Acoustic emission of a bursting bubble

B.1 (1.1pt)

 $v_{\rm f} =$

B.2 (1.1pt)

 $f_0 =$

B.3 (1.1pt)

Numerical value of a =

Numerical value of h =

Part C. Popping champagne

C.1 (0.4pt) For $T_0 = 6$ °C, numerical value of $P_i =$

For $T_0 = 20$ °C, numerical value of $P_i =$

C.2 (0.7pt)

If $T_0 = 6 \,^{\circ}\text{C}$, numerical value of $T_f =$

If $T_0 = 20$ °C, numerical value of $T_f =$

True statements (numbers):

C.3 (1.3pt)

Numerical value of $H_{\rm c}$ =