
Theory-Backup

Q4-1
English (Official)

Strongly correlated Fermi gases (10.0 points)
Despite twenty orders of magnitude of difference in density, it can be shown that laser cooled atoms
and nuclear matter in neutron star share the same equation of state characterized by a single numerical
parameter called Bertsch's parameter. In this problemwe show how precisemeasurements on ultracold
vapours allowed for an accurate determination of this parameter using tabletop experiments.

Fig. 1. Images of a Bose-Einstein condensate of 7Li atoms (top), immersed in a gas of fermionic
6Li atoms (bottom) both confined in the same magnetic trap. The condensate (narrow central
peak) comprises 1×104 atoms, and the broadpedestal corresponds to the uncondensed atoms.
The larger axial extension of the fermion cloud (2.5 × 104 atoms) reflects the Fermi pressure
resulting from Pauli Principle preventing two fermions from occupying the same state.

A. Thermodynamics of a non-interacting quantum gas
Consider a quantumparticle ofmass𝑚 confined in a cubic box of size 𝐿. We consider first that themotion
of the particle is restricted along the 𝑥 axis and we assume that the wave function of the particle can be
described in complex notations by a plane wave

𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥𝑥 +𝐵𝑒−𝑖𝑘𝑥𝑥. (1)

Here 𝑘𝑥 is positive and we note 𝜆 the associated wavelength.

A.1 Express the kinetic energy 𝐾𝑥 of the particle as a function of ℎ, 𝜆 and𝑚. 0.5pt

Since the particle cannot leave the box, we assume that 𝜓(0) = 𝜓(𝐿) = 0.

A.2 Show that 𝑘𝑥 =𝑘1𝑛𝑥, where 𝑛𝑥 is a strictly positive integer. 0.6pt

We assume that the previous result is valid in all three 𝑥, 𝑦 and 𝑧 directions.
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A.3 Represent the quantum states in the (𝑘𝑥,𝑘𝑦,𝑘𝑧) phase space. Express with 𝐿 the
volume (𝛥𝑘)3 occupied by each state.

0.7pt

We consider fermionic atoms that, like electrons, obey Pauli's Exclusion Principle, meaning that we can
only put two atoms per quantum state. We assume that the states are filled one by one with increasing
energy.

Consider a number 𝑁 ≫1 of atoms. We call ℰ𝐹 (the Fermi energy) the energy of the last occupied state.

We also define the so-called Fermi momentum 𝑘𝐹 by ℰ𝐹 =
ħ2𝑘2𝐹
2𝑚 .

A.4 Represent the states with energy lower than ℰ𝐹 in
−→𝑘 -space. Deduce the expres-

sion of ℰ𝐹 with 𝑁 .
1.4pt

We add a small number of atoms d𝑁 ≪𝑁 to the system.

A.5 Express the increase in energy dℰ in the system as a function of ℰ𝐹(𝑁). Show
that the energy ℰ is given by

ℰ(𝑁) = 𝜅𝑁ℰ𝐹(𝑁) (2)

for some number 𝜅.

0.8pt

We note 𝑃 the pressure of the gas.

A.6 Express the energy variation dℰ for a change in volume d𝑉 . Deduce the expres-
sion of the pressure as a function of density 𝑛 =𝑁/𝐿3.

0.8pt

We now consider the case of interacting atoms. The interactions are described by an attractive inter-
atomic potential 𝑉 (−→𝑟) of typical range 𝑟𝑒 ≃ 𝑎0. In the so-called ultra-cold regime, the atomic wavelength
is much larger than 𝑟𝑒. As a consequence, the matter waves cannot resolve the details of the potential
and one can show that the effect of the interactions can be encapsulated in the coupling constant

𝑔 =
ℝ3
𝑉 ⒧−→𝑟⒭ d3−→𝑟. (3)

Furthermore, we conventionally take 𝑔 = 4𝜋ħ2𝑎
𝑚 , which defines 𝑎.

Using a dimensional argument, one can show that the energy of the interacting cloud can be written as

ℰ = 𝜅𝑁ℰ𝐹(𝑁) 𝑓 ⒧ 1
𝑛𝑎𝛼 ⒭ , (4)

where 𝜅 and ℰ𝐹 were introduced in questions A.4 and A.5, and 𝑓 depends only on 1
𝑛𝑎𝛼 .

A.7 Give the value of 𝛼. 0.4pt

The so-called unitary limit corresponds to a regime where 𝑎 =∞. We assume that the function 𝑓 has a
finite value in this limit and we define 𝜉 = 𝑓(0) the so-called Bertsch parameter.
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A.8 Show that, at the unitary limit, the properties of the interacting cloud are iden-
tical to those of a noninteracting system up to a rescaling of Planck's constant
ħ→𝜉𝛾ħ . Give the value of 𝛾.

0.6pt

B. Thermodynamics of a trapped quantum gas

We now consider that the atoms are confined by a single-particle optical potential𝑈(−→𝑟). We assume that
the cloud can be locally considered as homogeneous and that the results of Part A are still applicable
locally. We consider first the case of a non-interacting Fermi gas.

Consider first the case of a one-dimensional potential 𝑈(𝑥), with 𝑈(0) = 0. We assume that the cloud is
homogeeous in the (𝑦,𝑧) direction and we note 𝛴 the area of the cloud in the (𝑦,𝑧) plane. Let's consider
the volume of the cloud comprised between 𝑥 and 𝑥+d𝑥.

B.1 Write the total forces exerted on the atoms and show that the density 𝑛(−→𝑟) is
given by

𝑛(−→𝑟) = 𝐴(ℰ𝐹(0)−𝑈(−→𝑟))3/2, (5)

where ℰ𝐹(0) is the Fermi energy at the trap center. Give the expression of 𝐴.

1.5pt

We assume that this expression holds for a general potential 𝑈(−→𝑟) depending on the three coordinates
(𝑥,𝑦,𝑧). If the the cloud is sufficiently small we can furthermore approximate 𝑈 by a harmonic potential
close to its minimum. We thus take

𝑈(−→𝑟) = 𝑚
2 

𝑖=𝑥,𝑦,𝑧
𝜔2
𝑖 𝑥2𝑖 . (6)

B.2 Find the equation defining the surface of the cloud. Give the expression of the
radius 𝑅𝑖 of the cloud in the direction 𝑖 = 𝑥,𝑦,𝑧 as a function of ℰ𝐹(0),𝑚 and 𝜔𝑖.

0.7pt

Using the previous question, one can prove that after a proper spatial rescaling, the system can be
mapped onto a gas of fermions trapped in an isotropic harmonic potential of frequency �̄� = (𝜔𝑥𝜔𝑦𝜔𝑧)1/3.

B.3 Calculate the total atom number as a spatial integral by decomposing the cloud
into infinitesimal shells of radius 𝑟 and thickness 𝑑𝑟, and show that

ℰ𝐹(0) = ħ�̄�(3𝑁)𝜇 , (7)

where you will give the value of the exponent 𝜇. Hint: we give


1

0
𝑟2(1−𝑟2)3/2d𝑟 = 𝜋

32 . (8)

1.1pt

It is possible to change the value of 𝑎 using an external magnetic field
−→𝐵. In the case of fermionic 6Li, the

unitary limit is reached for 𝐵 = ‖
−→𝐵‖ = 8.32×10−2T and the cloud behaves as a non-interacting gas at high

field.
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Fig. 2. Density profile of a cloud of 7×104 fermionic lithiumatoms for various externalmagnetic
fields (figure from Bourdel et al. Phys. Rev. Lett. 93, 050401 (2004)).

B.4 Express the ratio
𝑅(𝑎 =∞)
𝑅(𝑎 = 0) with 𝜉 and deduce from the data of Fig. 2 an estimate

of 𝜉.
0.9pt


