connecting
customers

ANVA

Creating ANVA API based Customer Apps
Partner Documentation

Versie 1.14
Wijzigingsdatum 10-06-2024

Table of Contents

TaDIE Of CONTENTS. ...ttt e e e e e e e e e e e e s r e e e e e e e anes 2
Y [0 T PP P PP P PP PP PPPPPPPPPPN 4
INtEGratioN PrEIEGUISITES.ccciiieeeiiiie e e e e e e e e e e et e s e e e e e e e e st e e s e e e e e e eaatata s e eeaeeeeasrrnanans 4
Registering a New OpenlD client in ANVA HUD ... 4
Authentication and AUNOTIZALION.............uuiiiiiie e 4
The AULNOMIZAtION REQUESTuieiiiiiiiiiiiieiieeiie et ee ettt e e see bbb bes e e bbeeebebnsesenennnnee 4
THE AULNOIIZALION PrOCESS. ... eteiiiiiiiiiieeiieieetieeeeeeeeeeeeeeee et ee e e et e bbb s sese s sbsbsssneennennees 6
The AUthONZatioN RESPONSEuvuiiiii it e et e e e e e e e et e e e e e e e e eerraaana s 6
RETTESN TOKEN .ottt 7
The Refresh TOKEN REQUEST........uuiii it e e e e e e e e e ar s 7
Successful Refresh TOKEN RESPONSEcoovviiiiiiiiiiiiiiiee e 8
Client CredentialS FIOWoiiiiii e e e e e e e e e e e r e e e e e e aana 9
THe ACCESS TOKEN REQUEST.eueiiiiiiiieiiiiieteteeeeteeeeeieeeee ettt nbnennees 9
The Client AUtNeNtICAtION PrOCESS.........ccuuiiiiiiiiee et 10
THE TOKEN RESPONSE ...ttt 10
Successful TOKEN RESPONSEcooiiiiiiiiiiiiie e 10
TOKEN ENTON RESPONSE ...uiieiiieeeiiei et e ettt e e e e e e et e e e e e e e e e e et b e e e e e aeeeeest b e e eeaeeaeseeaannnns 11
Error Messages For Client CredentialS FIOWcooviiiiiiiiiiiiiiiiiiiiieeee 11
UsiNg the tOKEN fOr API GQCCESS ...uuuuiiiii it e e e e et e e e e e e e e eareaaaas 12
o o] Y [T T= T [T J TSRS 12
HUD ACHVITIES ...ttt ettt ettt ettt et e e e e e e e e e e e e e eeees 13
Client Creation and TOKENSooiiiiiiiii e 13
Discovery (Well-Known) ENAPOINT.........ooooeiiiiii e e e e e e 14
OpenlID Provider Configuration REQUEST.............ccuiiiiiiiiiiiii e 14
Successful OpenlD Provider Configuration RESPONSE..........ccvviiiiiiiiiiiiiiiiiiiiieeeeeeee 14

OpenID Provider Configuration Error RESPONSEcooveiiiiiiiiiieeeie e 17

JWKS URI ENAPOINT. ...ttt s e e e e ettt e s e e e e e e e e e ettt e e e e eaaeeeaattanasaeeaaeeeennes 17

BNV S T R U= [1] PSPPI 17
SUCCESSTUI JWKS RESPONSE ...t 17
JWKS EITON RESPONSE . .iiiiiiieiiiti ettt e e e et e e e e et e e e e et e e e eatn e e e e et s e eeataaeaeees 18
(@S] o[(oI =1 0o | oo o | AP P PP PPPPPPPPPPPP 18
(W LST = g [] (o T =0 (U= AR 18
Successful USerinfo RESPONSE.........coiiiiiiiiiiiieieeeeee e 18
UL g (o T = g (o] g TET] o1 1= SR 20

JWT TOKEN SIGNING .ttt 21

Aims

This document provides insights to third party partners and integrators to integrate the ANVA
APIs to their customer centric custom applications. For authentication and Authorization of
users and proper access of the designated endpoints- the partners and integrators are expected
to follow the prescribed ANVA OpenlD flows- and this document also provides the required
information for the partners to integrate the ANVA OpenlD flows into their apps.

Integration prerequisites

Before starting the process of integration with the ANVA APIs, it is necessary to have the
following processes completed:

Registering a New OpenlD client in ANVA Hub

All access to ANVA APIs is restricted only to registered valid client applications. It's necessary
for the customer to create a ticket for ANVA Customer Support with an OpenlID request. A
Customer Support employee then can register (create) a new client in the hub platform for the
customer.

Once the OpenlD client is registered, the hub platform would display a Client ID and Client
Secret for the newly created OpenlD client. These two values will be required in the
implementation along with the provided redirect URLs. For security, you will receive this
information directly from the customer and not from an ANVA employee. It is recommended to
immediately reset the Client Secret upon receiving it for security reasons, ensuring that it is only
known by the customer.

Authentication and Authorization

The Authentication and Authorization follows the OpenID standards and on successful
completion of the authentication process, a valid ID Token is returned to the provided redirect
URL in the request. For Partner app clients- the recommendation is to use the Authorization
Code Flow.

The Authorization Request
The Authorization request can be made at the designated authorization endpoint.

Endpoint : /identity/authorize
Method : GET
Query Parameters : The following parameters are to be passed in the Query String
1. client_id- The Client ID of the registered client
2. redirect_uri- A valid redirect URL associated the client
3. response_type- use code for authorization code Flow
4. scope- use openid Customer for client apps

state- any custom value that needs to be fetched back in the response

nonce- any custom value that needs to be present as a claim in JWT.

max_age- an optional value to specify the longevity of the generated token in seconds
response_mode - an optional value to specify the method that should be used to send
the resulting Authorization Endpoint Response. Use response_mode as 'query' for
encoding Authorization Response parameters in the query string or Use response_mode
as 'fragment’ for encoding Authorization Response parameters in the fragment string.

9. prompt- It is an optional parameter.

Defined values in Prompt Parameter are:

e none- The Authorization Server MUST NOT display any
authentication or consent user interface pages. An error is
returned if an End-User is not already authenticated or the Client
does not have pre-configured consent for the requested Claims or
does not fulfil other conditions for processing the request.

e login- The Authorization Server SHOULD redirect the end-user to
the login page. If it cannot reauthenticate the End-User, it MUST
return an error, typically login_required.

e consent- The Authorization Server SHOULD redirect the end-
user to the consent page. If it cannot obtain consent, it MUST
return an error, typically consent_required.

© No o

login and consent can be used together as a prompt parameter. none
can not be used with other values, otherwise an error is returned.

NOTE : If openid is not passed as a scope, the system will not return an ID Token at the end of
a successful Authorization process, but will only return OAuth 2.0 compliant access tokens.

Example Requests
For Authorization Code Flow an example request would be:
/identity/authorize?response type=code
&scope=openid Customer
&client id=<Your Client ID>
&state=test state
&redirect uri=<Your Redirect URL>
&nonce=<Your Nonce String>
&max age=<Your Desired Longivity Of Token>
&response mode=<Your Desired Response Mode>
&prompt=<Your Desired Prompt Value>

The Authorization Process

Every successful request to the Authorization endpoint redirects the calling client’s browser to
present the login page - where the customer user has to login with the provided account
credentials (refer to creation on customer accounts section in the prerequisites). After the user
credentials are validated - a change password screen is presented (as all customer accounts
are assigned a temporary system generated password) , where the user has to enter the
assigned password and the desired new password and save the new password. Once that is
done and validated by the system, the user is again sent to the login page to login with the
changed password. Once the login is successful, the user is presented with a consent screen
informing the user about the user information that will be passed on from the ANVA Hub
Platform to the client app and asks the user to provide a consent or decline. Once the user
gives consent, the response is redirected to the redirect URL provided in the Authorization
request. The response contains an Authorization code.

The Authorization Response

Authorization Code Flow (response_type= code)

The Authorization code flow response returns an Authorization Code along with the scope value

passed in the request. A sample response is as follows if no response_mode is specified in the

Authorize Request (i.e default as” query”):-

<Redirect URL>?code=<Your Authorization Code>
&state=<Your Original State value>

The response is as follows if response_mode as “fragment” is specified in the Authorize

Request

<Redirect URL>?code=<Your Authorization Code>
&state=<Your Original State value>

It is important that the users use the access_token for accessing resources and not the
id_token. Only use the id_token value to get information about the authenticated user.

Getting the token from the Authorization Code (Authorization Code Flow)

The Authorization response for Authorization code flow returns an Authorization code. This
authorization code has to be used to fetch the ID token. This can be done by making a request
to the token endpoint as follows:

Endpoint : /identity/token
Method : POST
Headers : The following request headers are to be added:
1. Authorization: Basic Authorization by creating a Base64 encoded string of the Client ID
and Client Secret in the format <Your_Client_ID>:<Your_Client_Secret>. The

Authorization header value should be in the following format to be valid

‘Authorization’: ‘Basic <Your Base64 Code>’
2. Content Type : should be application/x-www-form-urlencoded. The header should be
'Content-Type’: 'application/x-www-form-urlencoded'

Request Body : The following parameters are to be passed in the Request Body:
1. grant_type - should be set to authorization_code
2. redirect_uri - A valid redirect URL associated the client
3. code - The Authorization code in the Authorization response
4. client_id - The Client Id for the Client. [If not in the Authorization Header.]
5. client_secret - The Client Secret for the client. [If not in the Authorization Header.]

In response to a valid token request with the proper authorization code, the token endpoint
returns an ID Token to the provided redirect URL similar to the response and refresh token
that is used to generate a new access token.

NOTE : The Authorization code is only valid for 10 mins only from consent.

Refresh Token
The Refresh Token grant type is used by clients to exchange a refresh token for an access
token when the access token has expired.

The Refresh Token Request
To refresh an Access Token, the OpenlID Client must authenticate to the Token Endpoint using
the authentication method.

Endpoint: /identity/token

Method: POST

Headers:

The following request headers are to be added:

1. Authorization: Basic Authorization by creating a Base64 encoded string of the OpenlD
Client ID and OpenlD Client Secret in the format
<Your_Client_ID>:<Your_Client_Secret> The Authorization header value should be
in the following format to be valid *Authorization’: ‘Basic
<Your Base64 Code>’

2. Content Type : should be application/x-www-form-urlencoded. The header should be
'Content-Type’: 'application/x-www-form-urlencoded'

Request Body: The following parameters are to be passed in the Request Body :
1. grant_type - should be set to refresh_token
2. refresh_token - Same as the value of refresh token during last generated access token.

3. client_id - The OpenlD Client ID for the Client. [If not in the Authorization Header.]
4. client_secret - The OpenID Client Secret for the client. [If not in the Authorization
Header.]

Successful Refresh Token Response

For every valid request to the Token endpoint, the identity component issues an access token
(id_token) and refresh_token along with token_type and expires_in parameters in the response
body.

The response is as follows :
Headers: The following response header fields are to be added:

1. Content-Type : Response body content should be in ‘application/json’ format, with a
character encoding of UTF-8.

‘Content-Type’: ‘application/json;charset=UTF-8'
2. Cache-Control : HTTP ‘Cache-Control’ response header field, with a value of ‘no-
store’.
‘Cache-Control’: ‘no-store’

3. Pragma: HTTP ‘Pragma’ response header field, with a value of ‘no-cache’.
‘Pragma’: ‘no-cache’

Response Body: The following parameters are passed in the Response Body :

1. id_token - ID Token value associated with the authenticated session.

2. access_token - The access token issued by the authorization server.

3. token_type - The type of the token as Bearer.

4. refresh_token - The refresh token issued by the authorization server every time an
access_token is requested.. This refresh token can be used to generate a new access
token when the previous access_token has expired.

5. expires_in - expiry time of the ID token

Users are required to use the access_token for accessing resources from the server.

NOTE : Users will get a new refresh token each time a new access token is requested. Once the
refresh token is used it is invalidated.

Client Credentials Flow

The Client Credentials Flow follows OAuth 2.0 standards and on successful completion of the
client authentication process, a valid Access Token is returned to the client. In ANVA Identity
Component, Client Credentials Flow is used by Internal Clients.

The Access Token Request
The Access Token request can be made at the designated token endpoint.

Endpoint: /identity/token
Method: POST
Headers: The following request headers are to be added:

1.

Authorization: Basic Authorization by creating a Base64 encoded string of the OpenlD
Client ID and OpenlD Client Secret in the format
<Your_Client_ID>:<Your_Client_Secret>. The Authorization header value should be
in the following format to be valid *Authorization’ : ‘Basic

<Your Baseb64 Code>’

Content Type: Should be application/x-www-form-urlencoded. The header should be
'Content-Type’: 'application/x-www-form-urlencoded'

Request Body: The following parameters are to be passed in the Request Body :

1.

grant_type - Should be client_credentials

‘grant type’: ‘client credentials’

client_id - The OpenlID Client Id for the Client. [If not in the Authorization Header.]
client_secret - The OpenID Client Secret for the client. [If not in the Authorization
Header.]

scope or scopes - The scopes of the access request along with organisation code as
orgCode:<orgCode> or organisation GUID as orgld:<orgGUID>; optionally, on behalf
of username field to be added for adding the username in the access token as
onBehalfOfUsername:<username>. The use of scopes parameter will be replaced by
the scope in the near future.

‘scope’: ‘Basic orgCode:<orgCode>/ orgId:<orgGUID> {either
orgCode or orgld to be used} onBehalfOfUsername:<username>’

In response to a valid token request with the proper grant type and scope, the token endpoint
returns an Access Token to the client.

The Client Authentication Process

The OpenlID Client retrieved from the encoded header is validated against the database. Once
that is successful, the following validations are done with the fetched client.

Once a valid OpenID Client is fetched the OpenID Client Secret is matched.
If both the above steps are successful then it is checked if the scopes specified are
present with the client.

e And finally it is checked if the client has access to the requested organisation.

The Token Response

Once the client authentication is successful. The process of generating the token begins. The
required claims are put in the token. The type of the token is “System”. The scope claim
contains the intersection of the scopes provided and the scopes available with the client.
Then finally the token is sent to the user via the response body.

Successful Token Response

For every valid request to the Token endpoint, the identity component issues an access token
(id_token) along with token_type and expires_in parameters in the response body. The
response is as follows :

Headers : The following response header fields are to be added:
1. Content-Type: Response body content should be in ‘application/json’ format, with a
character encoding of UTF-8.
‘Content-Type’: ‘application/json;charset=UTF-8'
2. Cache-Control: HTTP ‘Cache-Control’ response header field, with a value of ‘no-
store’.
‘Cache-Control’: ‘no-store’

3. Pragma : HTTP ‘Pragma’ response header field, with a value of ‘no-cache’.
‘Pragma’: ‘no-cache’

Response Body: The following parameters are passed in the Response Body:
1. access_token - The access token issued by the authorization server
2. token_type - The type of the token as Bearer.
3. expires_in - Lifetime in seconds of the access token.

Token Error Response
If the token request fails client authentication or is invalid, the authorization server returns an
error response.

Headers: The following response header fields are added:
1. Content-Type : Response body content should be in ‘application/json’ format, with a
character encoding of UTF-8.
‘Content-Type’: ‘application/json;charset=UTF-8'
2. Cache-Control : HTTP ‘Cache-Control’ response header field, with a value of ‘no-
store’.
‘Cache-Control’: ‘no-store’
3. Pragma : HTTP ‘Pragma’ response header field, with a value of ‘no-cache’.
‘Pragma’: ‘no-cache’

Response Body : The following parameters are passed in the Response Body :
1. error- A single error code. For details, check the Error Messages table below.

Error Messages For Client Credentials Flow

Endpoint Error Details

/identity/token invalid_grant The OpenlD Client does not
support client credentials flow.

/identity/token invalid_scopes The OpenlD client does not have
access to one or more of the
scopes specified in the request.

/identity/token invalid_organization The provided organisation code
does not exist for this OpenID
client.

/identity/token invalid_client The given OpenlD Client ID does

not exist.

http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize

Using the token for APl access
Once the OpenlD client receives an ID Token in JWT format, it can be used to access the
Customer API endpoints, by passing it in the Request Headers in the following way:

‘Authorization’ :

‘Bearer <Your JWT Token>’

Requests without the Authorization header will be considered as 12nauthorized access requests
and will get an 12nauthorized access error response.

Error Messages

All API requests are validated to check if all the required input parameters have been provided.
In case of an error, the API returns the following error messages

Endpoint Error Code Details
/identity/authorize invalid_scope The OpenlD Client does not have
one or scopes specified in the
request.
/identity/authorize invalid_client The given OpenlID Client ID does
not exist.
/identity/authorize request_uri_not_support | When the specified request uri is
ed not associated with the OpenlID
client.
/identity/token invalid_grant The OpenlD client does not
support auth code flow.
/identity/token invalid_code If the code has been used or is
invalid.
<redirect uri>?error= client_scopes_does_not | The scopes of the user and the
_match_with_the_user_ | scopes requested during
scopes authorization have none in
common.

http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize

Hub Activities

As discussed earlier in the Integration Prerequisites section- the ANVA Hub Platform has to be
used for Creation of the Clients and Customer Accounts. This section gives a detailed overview
of the process of these activities.

Client Creation and tokens
As mentioned earlier in this document, only an ANVA Customer Support employee can create
an OpenlID Client after they receive an OpenlID request through a customer’s ticket.

Once an OpenlD Client is created, newly created client information shows here.

a: .-

¥ ANVA Backoffice test

@ Instelingen @8 Actieve sessies @ IP-adres management (7 Inlogpogingen

Openi Client 1D
66196315 2008 4999 8202 168047099c20

HUBDATE

Redirect URLs *

Q) Opsisan

When you scroll down, you can see two fields: Access Token Expiry Time (Optional field) and
Refresh Token Expiry Time (Optional field). These two fields can customize the lifetime access
of tokens. The values should be entered in seconds.

a;v A 9

Standaard wordt het ANVA Hub logo getoond.
el

APPS

= Mijn werkplek
& Relaties

B Contracten
H Flow

& Postbus

HUBDATE

ess token expiratie tijd (in seconden Refresh token expiratie tijd (in seconden
W Hubdate

& Nieuws

+. Releasenotes

BEHEER

H Mijn Organisatie B opslaan Terug
Help

For Example- Access Token Expiry Time is 1200 (in seconds) then the maximum expiry time of
access token will be 1200 (20 mins).

The range of Access Token Expiry Time - 900 (15 mins) to 36,000 (10 hrs)

The range of RefreshToken Expiry Time - 900 (15 mins) to 3,153,600 (365 days)

If no value is passed in these two fields then by default Access Token Expiry Time will be
36,000 (10 hrs) and Refresh Token Expiry Time will be 36,600 (10 hrs 10 mins).

Discovery (Well-Kknown) Endpoint

OpenID Connect defines a discovery mechanism, called OpenID Connect Discovery, where an
OpenliD server publishes its metadata at a "well-known" URL. This URL returns a JSON listing
of the OpenID/OAuth endpoints, supported scopes and claims, keys used to sign the tokens,
and other details. The clients can use this information to construct a request to the OpenID
server, i.e., the Identity component.

OpenlD Provider Configuration Request
An OpenlID Provider Configuration endpoint MUST be queried using an HTTP GET request.

Endpoint : /identity/.well-known/openid-configuration

Method : GET

Successful OpenlID Provider Configuration Response

A successful response MUST use the 200 OK HTTP status code and return a JSON object
using the application/json content type that contains a set of Claims as its members that are a
subset of the Metadata.

Response Body : The following parameters are passed in the Response Body-
1. issuer - The URL that the OpenID Provider, i.e., the Identity component asserts as its
Issuer Identifier. (https://api.anva.live/identity)
2. authorization_endpoint- The URL of the Identity component’s OAuth 2.0
Authorization Endpoint. (https://api.anva.live/identity/authorize)
3. token_endpoint- The URL of the Identity component’s OAuth 2.0 Token Endpoint.
(https://api.anva.live/identity/token)
4. Userinfo_endpoint - The URL of the Identity component’s Userinfo Endpoint.
(https://api.anva.live/identity/userinfo)
5. jwks_uri- The URL of the Identity component’'s JSON Web Key Set [JWK] document.
(https://api.anva.live/identity/.well-known/jwks)
6. scopes_supported- JSON array containing a list of the OAuth 2.0 scope values that
the Identity component supports. (openid, profile, email, Basic, Customer)

7. response_types_supported- JSON array containing a list of the OAuth 2.0
response_type values that the Identity component supports. (code and token)

8. response_modes_supported- JSON array containing a list of the OAuth 2.0
response_mode values that the Identity component supports. (query)

9. grant_types_supported- JSON array containing a list of the OAuth 2.0 Grant Type
values that the Identity component supports. (authorization_code and client_credentials)
10. subject_types_supported- JSON array containing a list of the Subject Identifier
types that the ldentity component supports. (public)
11.id_token_signing_alg_values_supported - JSON array containing a list of the
JWS signing algorithms (alg values) supported by the Identity component for the ID
Token to encode the Claims in a JIWT [JWT]. (RS256)

12. token_endpoint_auth_methods_supported- JSON array containing a list of Client
Authentication methods supported by the Token Endpoint. (client_secret_basic)

13. token_endpoint_auth_signing_alg_values_supported- JSON array containing a
list of the JWS signing algorithms (alg values) supported by the Token Endpoint for the
signature on the JWT [JWT] used to authenticate the Client at the Token Endpoint for
the private_key_jwt and client_secret_jwt authentication methods. (RS256)

14. claim_types_supported- JSON array containing a list of the Claim Types that the
Identity component supports. (normal)

15. claims_supported- JSON array containing a list of the Claim Names of the Claims
that the Identity component shall be able to supply values for. (sub, iss, aud, jti, iat, exp,
nonce)

Sample Successful Response :-
{
"issuer": "http://localhost:8129/identity",

"authorization_endpoint": "http://localhost:8129/identity/authorize",
"token_endpoint": "http://localhost:8129/identity/token”,
"userinfo_endpoint": "http://localhost:8129/identity/userinfo",
"jwks_uri": "http://localhost:8129/identity/.well-known/jwks",
"scopes_supported”: [

"openid",

"Profile",

"Email",

"Basic",

"Customer"
1
"response_types_supported”: [

"code",

"token",

"id_token",

“id_token token”

1

"response_modes_supported": [
"query"

1

"grant_types_supported": [
"authorization_code",
"client_credentials"”,
“refresh_token”

1
"subject_types_supported": [
"public”
1
"id_token_signing_alg_values_supported": [

"RS256"

1
"token_endpoint_auth_methods_supported": [

"client_secret_basic",

“client_secret_post”

1

"token_endpoint_auth_signing_alg_values_supported": [
"RS256"

1

"claim_types_supported": [
"normal"

1

"claims_supported": [

"iss",
"sub",
"aud",

"jtit,

"iat",

"exp”,
"nonce",
“auth_time”,

“at_hash”

OpenlD Provider Configuration Error Response
An error response uses the 404 Not Found HTTP status code value.

JWKS URI Endpoint

This endpoint renders the Identity component’'s JSON Web Key Set [JWK] document. This
contains the signing key(s) the Relying Party uses to validate signatures from the ldentity
component.

JWKS Request
An OpenlID Provider JWKS URI endpoint MUST be queried using an HTTP GET request.

Endpoint: /identity/.well-known/jwks

Method: GET

Successful JWKS Response

A successful response MUST use the 200 OK HTTP status code and return a JSON object
using the application/json content type that contains a set of Claims as its members that are a
subset of the Metadata.

Response Body : The following parameters are passed in the Response Body-
1. keys- The value of the "keys" parameter is an array of JWK values.
i. kty- Identifies the cryptographic algorithm family used with the key. (RSA)
ii. use- Identifies the intended use of the public key. (sig)

iii. alg- ldentifies the algorithm intended for use with the key.(RS256)
iv. n- Modulus of the public key.
v. e- Exponent of the public key

Sample Successful Response :-
{

"keys": [
{
"kty": "RSA",
"use": "sig",
"alg": "RSA",

"n": <Public_Key_Modulus>,
"e": <Public_Key_Exponent>

JWKS Error Response
An error response uses the 404 Not Found HTTP status code value.

Userinfo Endpoint

The UserInfo Endpoint is an OAuth 2.0 Protected Resource that returns Claims about the
authenticated End-User.

To obtain the requested Claims about the End-User, the Client makes a request to the UserInfo
Endpoint using an Access Token obtained through OpenID Connect Authentication. These Claims
are normally represented by a JSON object that contains a collection of name and value pairs for the
Claims.

The UserInfo Endpoint MUST accept Access Tokens as Bearer tokens.

Userinfo Request
An OpenlID Provider Userinfo endpoint MUST be queried using an HTTP GET request.

Endpoint: /identity/userinfo

Method: GET

Header: Authorization: Bearer <id_token>

Permission Required: 1. openid (Must) 2. Profile/Email

Successful Userinfo Response

A successful response MUST use the 200 OK HTTP status code and return a JSON object
using the application/json content type that contains a set of Claims about the Authenticated End-
User.

Response Body:

1. With Both Profile and Email Scopes in the access_token

The following parameters are passed in the Response Body-
a. sub: The account_id of the end user.

name: Full_Name of the end user.

given_name: First_name of the end user

family_name: Last_name of the end user.

middle_name: Middle_name of the end user.

preferred _username: anva_username

email: email of the end User

Q@ +~0aoo0oC

h. email_verified: true, as Anva Always validate the email_address before User
Account Creation
i. updated_at: last time the end user account is updated.

Sample Response:
{
"sub": "account_id_of End_user",

"name": "full_name",

"given_name": "first_name",

"family_name": "last_name",

"middle_name": "middle_name",

"preferred_username": "anva_username”,
"email": "email_of_the_end_user",
"email_verified": true,

"updated_at": "last_time_end_user_updated”

2. With Profile Scope Only in the access_token

The following parameters are passed in the Response Body:
a. sub: The account_id of the end user.
b. name: Full_Name of the end user.
given_name: First_name of the end user
family_name: Last_name of the end user.
middle_name: middle_name
preffered_username: anva_username
updated_at: last time the end user account is updated.

Q@ "0 a0

Sample Response:
{
"sub": "account_id_of End_user",

"name”: "full_name",

"given_name": "first_name",
"family_name”: "last_name",

"middle_name": "middle_name",

"preferred_username": "anva_username”,

"updated_at": "last_time_end_user_updated"

3. With Email Scope Only in the access_token
The following parameters are passed in the Response Body-
a. sub: The account_id of the end user.
b. email: email of the end User
c. email_verified: true , as Anva Always validates the email_address before User
Account Creation.
d. updated_at: last time the end user account is updated.

Sample Response:

{
"sub “: "account_id_of_End_user",
"email": "email_of_the_end_user",
"email_verified": true,

"updated_at": "last_time_end_user_updated"

Userinfo Error Response
An error response uses the 404 Not Found HTTP status code value.

error errorCode error_Description

HTTP/1.1 401 Unauthorized WWW-Authenticate: error="invalid_token", error_description="The
Access Token expired

invalid_request 400 The request is missing a required parameter, includes
(Bad Request) an unsupported parameter or parameter value, repeats
the same parameter, uses more than one method for
including an access token, or is otherwise malformed.

invalid_token 401 The access token provided is expired, revoked,
(Unauthorized) malformed, or invalid for other reasons.

insufficient_scope = 403 The request requires higher privileges than provided by
(Forbidden) the access token.

JWT Token Signing
The JWT token is signed using a private key.

The signature can be verified by using the corresponding public key. The private key is unique
to each domain (.live, .me)

To verify the signature, just use the key from the keys array of the jwks uri response, which has
the use value as “sig”.

