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CHAPTER1

Why Real-Time Al Needs
Streaming Data

At its core, real-time AI is about immediacy; that is, delivering
insights, making decisions, and adapting to new information as it
emerges. This demand for immediacy stems from the fundamental
nature of intelligence itself, which is the ability to respond to the
world as it changes. Human cognition does not process events
in fixed intervals; rather, people react to them as they happen.
Similarly, real-time AI reacts instantly, drawing on extensive pre-
training while adapting continuously to live conditions. In these
systems, freshly retrieved information brings immediate relevance
into the context window, either through mechanisms like retrieval-
augmented generation (RAG) or by leveraging recent context. This
fresh data enables timely, informed responses grounded in the most
relevant available knowledge.

Unlike batch processing, which relies on delayed inputs, streaming
data provides a continuous flow of up-to-the-moment information.
This empowers organizations to act in real time, rather than waiting
for insights that may already be outdated. Consider the following
use case that involves a customer calling into a call center:

1. The customer begins a conversation with a support agent
through live chat, or a phone call is transcribed into text in
real time.




2. As the conversation unfolds, the system captures the most
recent portion of the dialogue to maintain an up-to-date context
window.

3. This context is transformed into a structured representation
that allows for semantic comparison with existing knowledge.

4. The system uses this representation to search a repository of
internal content, such as documentation, frequently asked ques-
tions, and previous support tickets.

5. The search returns the most relevant documents that match the
current conversation context.

6. The retrieved documents are combined with the live conversa-
tion to form an input prompt for a language model.

7. The language model generates a response that incorporates both
the retrieved content and the customer’s current inquiry.

8. The response is either sent directly to the customer or reviewed
by a support agent before being delivered, depending on the
workflow.

9. As the conversation continues, this process repeats, continu-
ously updating the context and generating new responses.

10. Feedback from agents or customers, including edits or ratings,
is recorded and may be used to improve the quality of future
retrieval and generation.

This workflow delivers immediate, context-aware assistance that
enhances the experience for both customers and support agents.
Customers benefit from accurate, relevant answers without long
wait times or the need to repeat themselves, while agents are sup-
ported by intelligent suggestions that reduce cognitive load, allowing
them to focus on complex or sensitive issues. The system draws on
institutional knowledge in real time, making even new or junior
agents more effective by surfacing resolutions drawn from prior
cases and documentation. Managers gain insight through feedback
loops, enabling continuous improvement of both the knowledge
base and AI performance. As a result, the interaction becomes
more efficient, scalable, and aligned with the organization’s service
standards.
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This customer service example uses Al as part of its processing in
real time. It, like most real-time systems, is reducible to three enti-
ties: producers, brokers, and consumers (see Figure 1-1), although
the terminology may differ slightly between implementations:

Producers
These entities create and broadcast data or events, triggered by
human input or automated systems capturing live interactions.
In the customer support scenario, the producer is the ongoing
chat or voice transcription, which generates conversational data
as the user engages with the support interface.

Brokers and pipelines

These entities transport and refine data as it moves through
the system. Pipelines may clean the input, extract context, or
enrich it with additional metadata such as user history or ticket
categorization. Al assists in these steps by maintaining context
windows, identifying intents, and performing semantic encod-
ing for retrieval. In this case, the broker is the orchestration
layer that receives the live input and prepares it for retrieval and
generation.

Consumers

Consumers listen for specific, relevant input, retrieve associ-
ated knowledge, and generate responses. These responses are
then presented to the support agent, who may review, edit,
or approve them before sharing them with the customer. In
this scenario, the consumer is the agent-facing AI assistant that
synthesizes responses in real time based on retrieved knowledge
and evolving conversation context.

Broker
Producer Consumer

Figure 1-1. The basic message pattern

This is a basic template for more particular messaging patterns
commonly used in real-time data systems.
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Common Messaging Patterns

Most modern systems follow different architectural patterns,
depending on the use case. Three widely used messaging patterns
are point-to-point (queue), publish-subscribe (pub/sub), and event
streaming. All of these build on the concept of a producer, broker,
and consumer. They all involve message passing, but they serve
distinct purposes in terms of message distribution, scalability, and
processing guarantees. Table 1-1 gives a summary of the patterns.

Table 1-1. Message pattern summary

Pattern Common use cases  Supporting How Al assists
technologies

Point-to- Task/job distribution; ~ RabbitMQ (queue), Filters messages before enqueue

point background Azure Queue Storage,  (noise reduction, context
(queue) operations; Amazon SQS, awareness); classifies and enriches
decoupling app layers ~ ActiveMQ data before queuing; prioritizes

queue handling (value, latency);
enables dynamic, context-driven
consumer logic

Publish— Real-time Google Pub/Sub, Enriches, filters, and routes
subscribe notifications; event- Azure Service Bus messages at broker; predicts
(pub/sub)  driven microservices;  (topics), Amazon SNS,  subscriber needs; manages
Internet of Things RabbitMQ (fanout) topics dynamically; enables
(loT) data processing adaptive consumer logic (dynamic

escalation/suppression); manages
stateful consumers (buffering,

retry)
Event High-volume data Apache Kafka, (lassifies and detects anomalies
streaming  ingestion; real-time ~ Redpanda, Apache on ingestion; performs trend
analytics; replayable  Pulsar, Amazon detection and aggregation over
event history Kinesis, Azure Event  time windows; enables stateful,
Hubs sequential, and multievent

reasoning for consumers

Point-to-Point

The point-to-point (queue) pattern ensures that each message is
consumed by only one recipient. A producer sends messages to a
queue, where they are held until a single consumer retrieves and
processes them, as seen in Figure 1-2. Once processed, the message
is removed from the queue, preventing duplicate processing. This
model is ideal for task distribution and job processing, such as
handling background operations in a web application.
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Figure 1-2. A consumer queue

AT enhances this traditional pattern at all points:

Producer
Al can decide whether to queue data based on context, thresh-
olds, or patterns, reducing noise and ensuring relevance. The
customer service example uses an algorithmic approach with
heuristics to trigger events.

Pipeline
Before enqueueing, AI can preprocess, classify, or enrich data
with metadata or transformations for better downstream use.
As mentioned, the customer service agent pipeline filters and
enriches context with AL

Queue management
Al can guide prioritization based on value or latency needs,
though queues remain FIFO (first in, first out) unless they are
priority based. The customer service agent pipeline can use Al
or other enrichments to filter or throttle messages on a queue.

Consumer
Al can analyze messages and decide on actions like escala-
tion, reprocessing, or follow-ups, replacing static handling with
dynamic logic. The app does do Al but it could further enrich
the data or do analysis against historical data.

Technologies supporting this pattern include RabbitMQ (queue-
based exchange), Azure Queue Storage, Amazon SQS, and
ActiveMQ.

Pub/Sub

The publish-subscribe (pub/sub) pattern is designed for broadcast-
ing messages to multiple independent consumers (see Figure 1-3).
In this pattern, a publisher sends messages to a central message
broker, which then delivers them to all subscribers who have
expressed interest in a given topic. This allows multiple systems
or services to consume the same event simultaneously without
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direct awareness of one another. This model is commonly used
in event-driven microservices, real-time notifications, and IoT data
processing.

)
J

Messages are delivered to subscribers in real time as soon as they
are published. The system pushes these messages to consumers, who
process them and typically discard them once their task is complete.

Figure 1-3. A publisher with subscribers

Al in this context works much like point-to-point messaging, but
with some nuances specific to the way queues work with AI:

Broker
AT can enrich, filter, or reclassify messages, predict usage, and
route them to the most relevant subscribers.

Subscription
AT can manage when and what topics a subscriber listens to,
optimizing for relevance and workload.

Consumer logic
Al enables adaptive responses, adjusting actions like thresholds,
escalations, or suppression based on context.

Stateful consumers
AT guides buffering, retries, and message retention when offline,
based on value or urgency.

Examples of pub/sub technologies include Google Pub/Sub, Azure
Service Bus (topics), Amazon SNS, and RabbitMQ (fanout
exchange). While this pattern enables flexibility and scalability, it
does not guarantee strict message ordering, and messages are often
transient unless explicitly configured for persistence. These are often
supplemented by processing technologies, like serverless functions
or stream processing frameworks.
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Event Streaming

Unlike pub/sub or point-to-point messaging, event streaming is
designed for high-volume, continuous data processing. In this pat-
tern, events are persistently logged into a stream, allowing multiple
consumers to read and process events in order. Whereas pub/sub
messages may be transient, event streaming systems generally allow
consumers to replay past events from a given point in time.!

Because of replayability, event streaming—in contrast to pub/sub—
introduces a more stateful approach to consuming events. Rather
than simply pushing messages to subscribers in real time, events are
persistently logged in an ordered stream. Consumers read from this
log at their own pace, allowing them to process independently (see
Figure 1-4). The trade-off is that event streaming systems, such as
Apache Kafka, require more infrastructure and state management.
Consumers must track their position in the stream to ensure that
they process events in the correct order.

)

Producer

\ 4

===

—

e
Producer anuv

\ 4

—_— Subscriber

===

\ 4

Producer

-—

Figure 1-4. Event streams with subscribers

Al in this context has some unique uses that enrich how event
streaming works:

Producers
Al can classify, transform, or detect anomalies in real time
before data enters the log.

1 Sooter Saalu, “Enterprise Messaging and Event Streaming Comparison,” Redpanda
blog, October 3, 2023, https://www.redpanda.com/blog/enterprise-messaging-vs-event-
streaming.
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Pipelines
Al processes event sequences, performing aggregations, trend
detection, and adaptive reasoning over windows of time.

Consumers
Al analyzes current and historical data with stateful context,
enabling sequential decisions and multievent reasoning.

The customer service example is designed to give real-time feedback
of conversations as they occur. It could take advantage of event
streaming if the agent wants to replay a context window, such as the
conversation for the last five minutes, or replay the entire conversa-
tion for training purposes.

Technologies that enable event streaming include Redpanda, Apache
Kafka, Apache Pulsar, Amazon Kinesis, and Azure Event Hubs.
These systems support many-to-many processing, ensuring that
multiple consumers can process the same data at different times,
either in real time or retrospectively.

Key Trade-offs in Latency and Throughput
with Streaming Al

Real-time streaming and batch processing differ mainly in latency.
Streaming delivers insights in milliseconds to seconds for immediate
actions, while batch processing processes data in intervals for deep
analysis and historical reporting. Systems often combine both bal-
anced speed and analytical depth across a spectrum from real time
to batch.

Building a scalable, real-time AI system is not a single architectural
choice; rather, it comprises layered optimizations that compound.
Each one of these categories is a lever, and there are trade-offs
between latency, persistence, computational complexity, and scal-
ability that are deeply interconnected. A system that prioritizes
low latency must minimize computational overhead, which in turn
influences the choice of AI models, favoring simpler, more efficient
approaches when possible. No single optimization exists in isolation.
Latency—the time between data generation and consumption—is
shaped by factors such as pipeline complexity, data volume, com-
putational load, and reliance on persisted data for context (see
Figure 1-5).
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Low latency High latency
Simple pipelines Complex pipelines
Atomic transactions or microbatches Bulk data
Simple computations Complex computations
Minimal persistent data access Heavy use of data access

Real time Near real time Time series Batch

Figure 1-5. Trade-offs in latency

Simpler Pipelines Versus Complex Pipelines

Data pipelines range from simple, fast, and low latency with min-
imal steps, to complex pipelines with multiple transformations,
branching, and parallel processing. Unlike simple pipelines, com-
plex ones integrate with various data sources, APIs, microservices,
and cloud services.? There is no strict boundary between what
defines a simple or complex pipeline; complexity increases as more
processing steps, integrations, or conditional logic is added.

Location

Latency is impacted by where AI runs. All things being equal, the
closer the AI processing happens to the data source, the lower
the latency, because remote processing can introduce delays due
to network communication and data transfer times. Also, the more
intermediators something has to pass through, the more latency it
experiences.” Al, however, can live at any potential location. AI typi-
cally will run in one of three different categories or locations. Not
every application has three or even two, but for illustrative purposes,
consider Figure 1-6, which illustrates an idealized hierarchy com-
prising devices, edge, and centralized processing for Al distribution.

2 Kayly Lange and Laiba Siddiqui, “Data Pipelines and Optimizing Pipeline Effi-
ciency,” Splunk blog, September 19, 2024, https://www.splunk.com/en_us/blog/learn/
data-pipelines.html.

3 “Real-Time Al Inference Latency Analysis,” Restack.io, accessed March 2, 2025,
https://www.restack.io/p/real-time-ai-inference-answer-latency-analysis-cat-ai.
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Figure 1-6. Device, edge, and centralized processing

The hierarchy in Figure 1-6 is described as follows:

On-device Al

This eliminates network delays, achieving near-zero latency by
processing data directly on hardware such as smartphones, IoT
sensors, or embedded systems.* This allows for instant deci-
sion making in real-time applications like voice recognition,
Al-powered camera filters, and drone navigation. However, the
trade-oft is limited processing power and energy efficiency, thus
making it unsuitable for complex deep learning models or com-
putationally heavy tasks.> Many consumer-oriented surveillance
applications do on-device AI with object detection.

Edge AI

This reduces latency by processing data on nearby computing
infrastructure, such as edge appliances, routers, or gateways.
While it balances speed and scalability better than on-device
Al, it requires investment in localized computing resources
and careful management of distributed workloads to avoid bot-
tlenecks. Edge AI hardware—such as NVIDIA Jetson, Google
Coral, and Intel Movidius—provides efficient inference for
applications that require low latency.® In the customer service
example, edge AI could leverage localized AI for call centers if

4 “Understanding On-Device Al: Benefits and Applications,” 8allocate blog, Sep-
tember 13, 2023, https://8allocate.com/blog/understanding-on-device-ai-benefits-and-
applications.

5 “The Key Benefits of On-Device AL’ Deloitte, accessed March 2 2025, https://
www2.deloitte.com/us/en/pages/technology-media-and-telecommunications/articles/on-
device-ai-key-benefits.html.
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they are geographically distributed. In this case, the call centers
have agents working on a local network, with Al applications
running on edge systems to perform the enrichments as part of
the real-time streams.

Centralized Al
This provides the highest computational power because it offers
large-scale data processing for Al, such as the cloud. Advanced
strategies such as tensor parallelism and pipeline parallelism,
commonly used in large language models (LLMs), take advan-
tage of multi-GPU execution that improves latency in central-
ized AL

However, it introduces increased latency due to the time
required for data to travel across networks to centralized
data centers and back. Additionally, network congestion and
bandwidth limitations can further impact latency, making
cloud-dependent AI unreliable in environments with unstable
connectivity” Modern workforces nowadays, though, leverage
remote workers for customer service agents. In these cases,
centralized cloud AI makes more sense because of the wide
geographic distribution of such a workforce.

Hybrid Al
This combines the advantages of local and cloud processing,
optimizing latency by ensuring that immediate tasks run on-
device or at the edge while offloading computationally intensive
processes to the cloud.® While hybrid AI reduces overall latency,
it introduces complexity in determining which tasks should be
processed locally versus remotely.

Note that shifting AI workloads between different points can
improve latency by taking advantage of more powerful compute
hardware. The net savings reduces the total amount of time. Also,

(=)}

“Edge AI Hardware Comparison,” Restack.io, accessed March 2, 2025,
https://www.restack.io/p/edge-ai-answer-hardware-comparison-cat-ai.

N

Salvatore Salamone, “How Real-Time Decisions at the Edge Avoid Critical Latency
Problems,” RTInsights, September 25, 2024, https://www.rtinsights.com/how-real-time-
decisions-at-the-edge-avoid-critical-latency-problems.

Deval Shah, “Balancing the Cloud and the Edge: A Close Look at Enabling Hybrid AI”
Wevolver, September 21, 2023, https://www.wevolver.com/article/balancing-the-cloud-
and-the-edge-a-close-look-at-enabling-hybrid-ai.

)
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distributed Al—where AI runs at multiple points—can have a net
reduction in latency by spreading the Al workload across a fleet of
devices.

Multistep processing

Distributed systems often use multistep pipelines where data under-
goes several transformations before delivery. While this enables
richer analytics, it increases latency, as each step depends on the
timely completion of the previous one. Complex operations can
cause bottlenecks, especially with large datasets. Reducing the num-
ber of steps is key to minimizing latency in real-time applications.

The service agent system uses several different approaches with AL
Some of them are more algorithmic, while others leverage embed-
ding models and generative AI models for the RAG components.

Atomic Transactions and Microbatches
Versus Bulk Processing

Data processing strategies vary in granularity, thus affecting how Al
models analyze and act on incoming data. Atomic transactions and
microbatches are fundamental to real-time AI, ensuring that each
event is processed independently or in small, sequential groups. This
enables Al to react continuously to individual transactions, such
as detecting fraud in a single credit card purchase or adjusting a
recommendation system based on a user’s latest interaction.” By
contrast, bulk processing is computationally efficient for long-term
analysis, but it lacks the ability to respond dynamically to live
changes.'

For stream processing, focus on data simplicity, as not all data points
require deep analysis, and not every event needs to be processed at
the same level of detail:

9 “Real-Time Data Processing Versus Micro-Batch Processing,” CloverDX blog, April
26, 2021, https://www.cloverdx.com/blog/real-time-data-processing-versus-micro-batch-
processing.

10 “Stream Processing vs. Batch Processing: A Comparative Analysis of Their Key Benefits
and Limitations,” Edge Delta blog, June 5, 2024, https://edgedelta.com/company/blog/
stream-processing-vs-batch-processing.
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 Before data enters the system, unnecessary or redundant inputs
can be discarded, allowing only the most relevant events to be
processed."

o Instead of processing full data payloads, selecting only the
essential attributes for real-time Al models minimizes process-
ing time."

o Some decisions can be made at the edge or closer to the data
source, reducing the need for centralized processing.

In addition to simplifying the data, a system should be capable of
handling a constant influx of data without bottlenecks. This requires
distribution such that workloads are spread across multiple comput-
ing resources. However, distribution comes with its own trade-offs:
the more spread out the system becomes, the more effort is required
to manage synchronization, consistency, and fault tolerance. The
goal is to distribute workloads intelligently so that no single node
is overwhelmed, while also avoiding unnecessary duplication of
processing:

o Efficient routing mechanisms ensure that only the necessary
components process specific events, preventing wasted compu-
tation. (AI can control routing through a concept known as
agentic AI. More on that in Chapter 4.)

o Even distribution prevents some nodes from being overbur-
dened while others remain idle.

o Where possible, processing should avoid retaining excessive
state, reducing dependencies between distributed components.

Simpler Computations Versus Complex Computations

Real-time Al prioritizes speed, using lightweight, pretrained models
for instant decisions with minimal computation. Batch processing
handles heavy tasks like deep learning on large datasets, producing
deeper insights but requiring more time and resources. For example,
spam filters classify emails in real time, but training those models

11 Nikolaj Buhl “Mastering Data Cleaning and Data Preprocessing,” Encord, August 9,
2023, https://encord.com/blog/data-cleaning-data-preprocessing.

12 “Data Preprocessing: Artificial Intelligence Explained,” Netguru S.A., accessed March 3,
2025, https://www.netguru.com/glossary/data-preprocessing.
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requires batch processing. AT's complexity drives its computational
demands, affecting latency and scalability.”® That said, the following
is a tiered view of computational complexity; it is not a strict rank-
ing of speed, but a relative view of computational complexity based
on the time required to complete tasks:

Rule-based and statistical methods
This involves using predefined logic or basic statistical relation-
ships to make decisions. These methods are fast and lightweight
and do not involve learning. They are used in email filtering
rules, fraud detection thresholds, thermostat controls, and sim-
ple quality checks in manufacturing.

Basic machine learning
This entails learning patterns from structured data using simple
algorithms. It is suitable for small-scale tasks and requires min-
imal processing power. It is used in credit scoring, customer
churn prediction, basic product recommendations, and senti-
ment analysis on small datasets.

Advanced machine learning
This uses more complex structures and ensemble methods. It
requires more data and processing but remains practical for
most modern systems. It is used in loan approval systems,
medical diagnostics (e.g., predicting disease risk), stock price
prediction, and targeted marketing optimization.

Deep learning models
This involves using multilayered neural networks to capture
complex patterns in data. They are computationally inten-
sive and typically require GPUs or specialized hardware.
They are used in image and speech recognition, real-time

13 “Computational Complexity Theory,” Autoblocks, accessed March 3, 2025, https://
www.autoblocks.ai/glossary/computational-complexity-theory; Vijay S. Agneeswaran,
“Computational Complexity of Deep Learning: Solution Approaches,” Medium,

May 27, 2021, https://medium.com/walmartglobaltech/computational-complexity-of-
deep-learning-a-birds-eye-view-2250b7c098al; Paritosh Kumar, “Computational Com-
plexity of ML Models,” Medium, December 14, 2019, https://medium.com/
analytics-vidhya/time-complexity-of-ml-models-4ec39fad2770; and Rayan Yassminh,
“Time Complexity in ML: Ensuring Model Performance with Growing Data Sizes,”
Medium, November 1, 2024, https://medium.com/@ryassminh/time-complexity-in-ml-
ensuring-model-performance-with-growing-data-sizes-42007e5b7305.
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language translation, autonomous driving perception systems,
and advanced chatbots.

Frontier Al

This is the most advanced and resource-intensive category.
These models involve massive datasets, distributed computing,
and high-performance hardware. They drive breakthroughs
in AI capabilities and are used in robotics control systems,
generative Al for images/text/code (e.g., DALL-E, ChatGPT),
cross-modal search, adaptive gameplay in video games, and
autonomous scientific discovery.

As Al advances, balancing complexity, scalability, and real-
time needs is key. Simple models offer lower latency and
better scalability, while complex models yield deeper insights
but demand more resources. Developers should choose task-
optimized methods, favoring rules or lightweight models like
Naive Bayes or k-nearest neighbors (KNN) over resource-heavy
LLMs when possible.

Minimal Use of Persisted Data
Versus Heavy Data Persistence

Data storage architecture directly influences the performance and
scalability of AI systems. Real-time Al uses in-memory processing
with minimal data persistence, handling events quickly and discard-
ing them to maintain low latency. Batch AI relies on persistent
storage, processing large, historical datasets for deeper analysis and
model training.

Streaming systems must balance speed with minimal retention,
sometimes using summaries or short-lived states. Batch systems
require scalable, high-performance storage to manage massive data
volumes. Regardless of the approach, Al systems must retain only
essential data while supporting learning and improvement without
overwhelming storage resources. Here are some tips for making the
most of persistent memory performance:

« For ephemeral memory, one approach is short-term state reten-
tion, which provides fast access to recent data without long-
term storage overhead. In-memory caching solutions, such
as Redis or Memcached, allow embeddings or Al processing
results to be stored temporarily for rapid retrieval. For Al
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applications that rely on fast similarity searches, approximate
nearest neighbor (ANN) indexing structures embeddings in
memory.

Beyond short-term retention, summarization techniques help
Al systems retain useful insights while reducing storage
demands. Simpler methods like rolling statistical summaries
capture trends over time while discarding granular records.

For tasks that require the persistent storage of embeddings or
Al-generated insights, consider using vector databases—such as
Milvus, FAISS, or Weaviate—for storing and indexing embed-
dings."* When dealing with continuously generated Al data,
time-series databases such as InfluxDB or TimescaleDB provide
a structure that efficiently handles high-speed read and write
operations and have integrated mechanisms for inputs and out-
puts that allow them to integrate as part of pipelines."

Many streaming systems may not even need persisted data for anal-
ysis, but some might. The agent example leverages both the histori-
cal context of the conversation and a broader library of historical
resources to provide enriched, contextually relevant feedback as the
conversation unfolds. Table 1-2 summarizes the trade-offs between
streaming and batch. (Note that data processing is not always one or
the other.)

Table 1-2. Summary of real-time versus batch processing

Streaming data Batch data

Latency Milliseconds to seconds; enables Minutes to hours or longer; insights
immediate insights and action are delayed

Processing Continuous, event by event, or Periodic, large batches at set

mode microbatch intervals

Pipeline Simpler, optimized for speed; minimal ~ Can be more complex, with multiple

complexity steps transformations and integrations

Computation Lightweight, pretrained models for Heavy, deep learning or complex
speed; simple algorithms analytics for depth

14 Mike Vincent, “Which Vector DB Should You Choose?,” Medium, October 28, 2024,
https://mike-vincent.medium.com/which-vector-db-should-you-choose-cee2a89¢0939.

15 “System Properties Comparison InfluxDB vs. Quasardb vs. TimescaleDB,” DB-Engines,
accessed March 6, 2025, https://db-engines.com/en/system/InfluxDB%3BQuasardb%3BTi
mescaleDB.
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Streaming data Batch data

Location of On-device, edge, centralized, or hybrid;  Typically centralized in data centers

processing closer to data source for lower latency ~ or the cloud

Granularity Atomic transactions or microbatches; per  Bulk processing of large datasets
event

Data storage In-memory, minimal persistence; short-  Persistent storage; retains historical
lived state records

Actionability Enables real-time decision makingand  Supports deep analysis, reporting,
automation and long-term trends

Scalability Scales for high data velocity and Scales for high volume and complex
immediate response aggregation

Trade-offs Lower latency but may sacrifice Higher latency but richer insights
analytical depth

Example use Fraud detection, personalized Periodic reporting, model training,

cases recommendations, real-time monitoring historical trend analysis
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CHAPTER 2

Real-Time Data as Part of
Application Architecture

Modern applications operate in dynamic data ecosystems, requiring
real-time processing and action. Traditional synchronous models
struggle with growing data and latency demands, leading to the rise
of real-time data pipelines. These pipelines enable asynchronous
communication, high-throughput event handling, and consistency
across distributed systems. Key architectures include microservices,
modular monoliths, and serverless. Each uses real-time data effec-
tively, but with distinct trade-offs.

Microservices Architecture

Microservices architecture is a design paradigm that breaks an
application into a collection of small, independent services, each
responsible for a specific function.

Services in a microservices suite have traditionally communicated
over a network using lightweight protocols like HTTP or gRPC.
This kind of communication has relied on synchronous request-
response mechanisms with direct service-to-service calls, but it
can create bottlenecks, thereby increasing complexity and reduc-
ing resilience. To address these challenges, many organizations
turn to message brokers to communicate asynchronously through
messaging and event streams rather than direct API calls. With
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event-driven messaging, services operate autonomously, processing
events as they arrive. The backbone of streaming pipelines is built
on event streaming platforms like Apache Kafka, Redpanda, Apache
Pulsar, Google Pub/Sub, and solutions from cloud service providers,
such as Azure Event Hubs and Amazon Kinesis.!

Two common application patterns are used with microservices
to manage the decoupling through brokers and are often used
together: event sourcing and command query responsibility segrega-
tion (CQRS).

CQRS separates read and write operations into distinct models so
that each is optimized for its specific workload. Instead of forcing a
single database to handle everything, CQRS introduces two special-
ized components. The first is the command model, which is respon-
sible for processing writes and updates. This model often works in
tandem with event sourcing, where changes are stored as immutable
events rather than direct database updates. The second is the query
model, which is optimized for fast and efficient reads.” Figure 2-1
depicts the CQRS application pattern.

] Write-optimized

storage

Eventually
Client consistent
Query model | Read-optimized
storage
——

Figure 2-1. CQRS

1 “gRPC vs Message Broker for Microservices,” GeeksforGeeks, last modified
July 23, 2025, https://www.geeksforgeeks.org/system-design/grpc-vs-message-broker-for-
microservices/.

2 “CQRS Pattern,” Microsoft Learn, February 21, 2025, https://learn.microsoft.com/en-us/
azure/architecture/patterns/cqrs.
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Event sourcing works with CQRS. With event sourcing, every
change to an application’s state is recorded as an immutable event,
instead of updating and overwriting records in a database. These
events form an append-only log (much like a ledger) of historical
record of everything that has happened in the system.?

Al integrates and enhances CQRS and event sourcing in a few
different ways:

o Al-powered analytics can process the historical event logs
stored in an event-sourced system to detect patterns, anomalies,
and trends that inform business decisions.

+ In CQRS, Al models can optimize the query model by dynam-
ically generating predictive insights and personalizing data
retrieval based on user behavior.

o Al-driven automation can enhance data pipelines by intelli-
gently prioritizing events, reducing noise, and ensuring that
critical updates propagate efficiently through the system.

o Machine learning models can also improve resilience by pre-
dicting potential failures or bottlenecks in the microservices
workflow.

Adopting microservices brings challenges. This is especially the
case with CQRS and event sourcing, which introduce eventual con-
sistency, meaning that parts of the system may not always align.
Ensuring message ordering and deduplication is critical, as out-of-
order or duplicate events can cause errors in fast-paced systems.
Observability is also complex, requiring tools like OpenTelemetry or
Jaeger to trace events across services. Operationally, microservices
demand robust service discovery, API gateways, distributed logging,
and seamless deployments to handle frequent updates. Despite this,
microservices excel in scalable, high-availability environments like

3 Mehmet Ozkaya, “Event Sourcing Pattern in Microservices Architectures,” Medium,
September 8, 2021, https://medium.com/design-microservices-architecture-with-patterns/
event-sourcing-pattern-in-microservices-architectures-e72bf0fc9274; and Chris Richard-
son, “Pattern: Event Sourcing,” Microservices.io, accessed March 4, 2025, https://micro
services.io/patterns/data/event-sourcing. html.
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web apps, cloud native systems, and software-as-a-service (SaaS)
platforms.*

Serverless Architecture

In a serverless architecture, applications are composed of small,
stateless functions that execute on demand, typically in response
to external events such as HTTP requests, database changes, or
message queue events.

This approach often relies on tightly integrated cloud services pro-
vided by vendors such as AWS Lambda, Azure Functions, and
Google Cloud Functions. These platforms automatically manage
computing resources by scaling them up or down as required.’

As serverless apps grow more complex, especially with real-time
data and AI needs, serverless functions alone fall short. Their state-
less, ephemeral nature limits data persistence and coordination.
Streaming pipelines extend serverless by providing a persistent,
scalable way to manage event flows, enabling reliable, sequential,
and asynchronous data processing.® Integrating streaming pipelines
with serverless architectures enables seamless handling of unpre-
dictable workloads. Streaming buffers traffic spikes, while serverless
functions auto-scale to process data in parallel, allowing for real-
time analysis and responsive actions—such as triggering events on
anomalies—without overloading traditional systems.”

4 Matt Tanner, “Ten Common Microservices Anti-Patterns and How to Avoid
Them,” vFunction blog, February 4, 2025, https://vfunction.com/blog/how-to-avoid-
microservices-anti-patterns; and Erick Zanetti, “Microservices Architecture: Prin-
ciples, Patterns, and Challenges for Scalable Systems,” Medium, March 4,
2025, https://medium.com/@erickzanetti/microservices-architecture-principles-patterns-
and-challenges-for-scalable-systems-9eac65b97b21.

5]

“Serverless Architecture,” GeeksforGeeks, last updated July 23, 2025, https://www.geeks
forgeeks.org/serverless-architectures.

(=)}

“What Is a Serverless Data Pipeline: A Comprehensive Guide,” Airbyte, November 19,
2024, https://airbyte.com/data-engineering-resources/serverless-data-pipeline.

“Real-Time Streaming Data Architectures That Scale,” Tinybird blog, April 24, 2025,
https://www.tinybird.co/blog-posts/real-time-streaming-data-architectures-that-scale; and
Lucas Rettenmeier and Kirill Bogdanov, “Build a Near Real-Time Data Aggrega-

tion Pipeline Using a Serverless, Event-Driven Architecture,” AWS Database Blog,
November 1, 2021, https://aws.amazon.com/blogs/database/build-a-near-real-time-data-
aggregation-pipeline-using-a-serverless-event-driven-architecture.

~
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Despite its advantages, serverless computing, and its natural integra-
tion with pipelines, comes with several trade-offs:

Cold start latency
Since serverless functions do not run continuously, they may
experience a delay when spinning up after inactivity. This can
impact real-time processing.

Execution time limits
Most serverless platforms enforce strict time limits on function
execution, making them unsuitable for long-running processes
without careful orchestration.

Observability and debugging
The ephemeral nature of serverless functions makes logging,
tracing, and debugging more complex compared to traditional
applications. Developers often rely on managed observability
tools to track event flows across distributed pipelines.

Despite these challenges, serverless architecture combined with
streaming pipelines provides a powerful and scalable approach to
building event-driven applications.®

One of the most impactful Al integrations is in intelligent scaling
and routing. Machine learning models analyze historical workloads
and predict traffic surges. The output from the models will pre-
warm instances and mitigate cold start latencies. Al also enhan-
ces observability in serverless architecture by looking at intelligent
log analysis and anomaly detection, automatically identifying per-
formance bottlenecks or failures across distributed event-driven
pipelines. Additionally, AI-driven orchestration optimizes workflow
execution by dynamically adjusting function triggers, event priori-
ties, and message routing based on changing data patterns.

In a serverless architecture, the agent example is implemented as
an independent function triggered by events. All components are
connected via an event-driven system, such as message queues
and event streams powered by products like Redpanda, to ensure
scalability and cost-efficiency while minimizing infrastructure
management.

8 Softvery Solutions, “Serverless Functions and Cloud Functions for Event-Driven
Architecture,” Medium, July 17, 2024, https://medium.com/@softverysolutions/serverless-
functions-and-cloud-functions-for-event-driven-architecture-62dc82dac70b.
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CHAPTER 3
Real-Time Al in Industries

Al is already impacting businesses in dramatic ways. The use cases
that follow all share a general pattern: they identify data and col-
lect data for real-time AI, which involves capturing relevant inputs.
Once the data is collected, the AT models and processing techniques
are selected, ranging from machine learning algorithms and deep
neural networks to rule-based systems and reinforcement learning,
depending on the complexity of the analysis required. The AI sys-
tem then generates outputs, which may take the form of predictive
analytics, automated decisions, or adaptive responses that modify
system behavior in real time. All of these use cases have real-world
business impacts that show how Al transforms data into actionable
intelligence, optimizing processes and driving innovation.

The use cases follow the same basic pattern outlined in the opening
section of the report, with a producer, broker, and consumer. Chap-
ter 1 explained how the customer service agent system follows this
basic pattern, but in general it goes as follows:

1. The producer identifies and streams relevant data; Al may filter
noise to focus on significant events.

2. The broker performs real-time analysis, transforming, enrich-
ing, and applying Al techniques (e.g., natural language process-
ing [NLP], computer vision, predictive analytics) for deeper
insights.
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3. The consumer receives the results, which may be an Al system
(e.g., chatbot, fraud detection) or a human operator; results can
also be stored for future use.

Whether driving immediate action or informing future analysis,
real-time AI enables organizations to respond more quickly, make
smarter decisions, and gain deeper insights from their data streams.

Finance (Algorithmic Trading)

Real-time AI processes live market data streams and makes trad-
ing decisions at speeds far beyond human capabilities. In financial
markets, timely insights can mean the difference between profit
and loss, making high-frequency trading (HFT) and quantitative
strategies heavily reliant on Al-powered data streams. The core use
case is to automate trading decisions with precision and minimal
latency, allowing traders to capitalize on fleeting opportunities while
managing risk dynamically.!

The primary data sources for real-time Al in trading come from
multiple financial and economic channels, such as price feeds
from exchanges that supply up-to-the-millisecond updates on stock,
foreign exchange (forex), cryptocurrency, and commodity prices.
Order-book data captures bid-ask spreads, liquidity changes, and
market depth. Macroeconomic indicators, central bank announce-
ments, and corporate earnings reports influence market sentiment,
while news streams and social media sentiment analysis help gauge
investor reactions to events.

With these data sources, Al-driven trading relies on a combination
of deep learning, reinforcement learning, and NLP models to extract
insights.? Recurrent neural networks (RNNs) and long short-term

—

Leo Mercanti, “AI for High-Frequency Trading: The Hidden Engines Behind
Lightning-Fast Market Decisions,” Medium, September 20, 2024, https://leomercanti
.medium.com/ai-for-high-frequency-trading-the-hidden-engines-behind-lightning-fast-
market-decisions-e0a571cc6a03.

¥}

Jesse Anglen, “Deep Reinforcement Learning: Definition, Algorithms, and Uses,”
Rapid Innovation, accessed March 6, 2025, https://www.rapidinnovation.io/post/deep-
reinforcement-learning-definition-algorithms-uses; and Guanghe Cao, Yitian Zhang, Qi
Lou, and Gaike Wang, “Optimization of High-Frequency Trading Strategies Using
Deep Reinforcement Learning,” Journal of Artificial Intelligence General Science 6, no. 1
(November 5, 2024): 231-245, https://doi.org/10.60087/jaigs.v6i1.247.
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memory (LSTM) are commonly used for time-series analysis, cap-
turing historical patterns to predict future trends. Transformers,
initially for NLP, are now also used in financial forecasting for
their strength in handling long-range dependencies. Reinforcement
learning techniques allow Al agents to optimize trading strategies
dynamically based on trial and error, and NLP models analyze sen-
timent from news headlines, earnings reports, and financial state-
ments to assess the impact of market events on asset prices. The
fusion of these AI techniques enables more accurate predictions and
adaptive trading strategies.

After processing, the Al generates actionable trading signals, risk
assessments, and portfolio adjustments. These outputs include buy/
sell signals for automated execution, alerts on market anomalies,
volatility estimates, and liquidity forecasts. The AI continuously
refines these outputs by optimizing trade execution through adjust-
ments in order timing, sizing, and pricing to minimize market
impact. It also provides real-time portfolio analytics by assessing
risk exposure and recommending hedging strategies to mitigate
potential losses.’

Implementing real-time AI in trading can significantly enhance
decision making, profitability, and risk management by reducing
latency in trade execution.

Cybersecurity (Real-Time Threat Detection)

Unlike traditional rule-based security solutions that rely on pre-
defined signatures of known threats, Al-powered systems use
machine learning to establish baselines of normal network behav-
ior and identify deviations that might signal an attack. Real-time
Al-powered cybersecurity monitoring systems continuously analyze
network traffic and user activity to detect and respond to threats as
they emerge. The core use case of this stream is proactive threat
detection and mitigation. This stream enables organizations to
monitor millions of network events per second; identify threats like
zero-day exploits, unauthorized access attempts, or insider threats;
and trigger immediate response actions.

3 “Harnessing Al in the Stock Market: An Overview,” Newo.ai, accessed March 6, 2025,
https://newo.ai/insights/harnessing-ai-in-the-stock-market-an-overview.
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The Al-driven cybersecurity system ingests multiple data sources
in real time. These sources include network packets, firewall logs,
intrusion detection system (IDS) alerts, user authentication logs,
cloud activity logs, endpoint security events, and DNS queries.
Additionally, behavioral telemetry from devices and users—such as
login times, file access patterns, and data transfer volumes—feeds
into AI models to distinguish between legitimate activity and poten-
tial threats. Al also integrates threat intelligence feeds, which pro-
vide information on emerging attack patterns, known malicious IPs,
and vulnerabilities.

Various Al techniques and models are employed to analyze real-
time security data effectively. Machine learning models, including
supervised and unsupervised learning, are used to classify threats
and detect anomalies. Deep learning models enhance malware
detection by learning to recognize malicious patterns within net-
work payloads. NLP models can analyze phishing emails and
suspicious messages for social-engineering attacks. Reinforcement
learning models continuously improve security responses by adapt-
ing to new threats over time. Additionally, graph-based AI models
map relationships between entities in a network, identifying the
lateral movement patterns of attackers.*

The output of the Al-powered security stream includes real-time
alerts, risk scores, and automated response actions. Al assigns risk
scores to detected anomalies so that analysts can prioritize their
responses. In automated systems, the Al stream can trigger security
measures such as isolating compromised devices, blocking suspi-
cious IP addresses, or enforcing multifactor authentication when an
account exhibits unusual behavior.

4 Youssef Singer, “Al and Machine Learning in Cybersecurity;” Bachelor’s the-
sis (German University in Cairo, 2024), https://www.researchgate.net/publication/
380889139_AI_Machine_Learning_in_Cybersecurity; and Xianghui Meng, “Advanced
Al and ML Techniques in Cybersecurity: Supervised and Unsupervised Learn-
ing, and Neural Networks in Threat Detection and Response,” Applied and
Computational Engineering 82 no. 1 (July 26, 2024): 24-28, https://doi.org/
10.54254/2755-2721/82/2024GLG0054.

Lizzy Ofusori, Tebogo Bokaba, and Siyabonga Mhlongo, “Artificial Intelligence in

Cybersecurity: A Comprehensive Review and Future Direction,” Applied Artificial Intel-
ligence, 38(1), https://doi.org/10.1080/08839514.2024.2439609.

%]
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Al-driven cybersecurity delivers faster threat detection and quicker
response, improving efficiency by filtering false positives and priori-
tizing real threats. This allows security teams to focus on critical
incidents. Automated mitigation reduces downtime and financial
risks from ransomware, fraud, and compliance issues, strengthening
overall security.

AdTech (Personalization
and Campaign Performance)

Digital advertising relies on real-time AI to deliver highly person-
alized ads and optimize campaign performance dynamically. The
core use case of streaming data in this context is to enable instant
decision making for ad selection, bidding, and placement. Real-time
AT ensures that ads remain relevant, timely, and engaging while
maximizing return on investment (ROI) for advertisers.® Streaming
data enables automated campaign adjustments, such as reallocating
budgets and shifting bidding strategies, based on evolving user
interactions and market conditions.

The Al-driven ad selection process relies on a continuous stream of
user interaction data collected from multiple sources. This includes
behavioral data such as website visits, search queries, purchase his-
tory, and engagement with previous ads, clicks, page views, and past
interactions, to determine the most relevant ads. Contextual data,
such as keywords on a web page or the type of content being viewed,
is also incorporated to enhance ad relevance. Data is sourced from
ad exchanges, demand-side platforms, and supply-side platforms,
creating a real-time flow of information across the advertising space.
Privacy-compliant identifiers, such as hashed user profiles or con-
textual signals, help AI models make informed decisions while
respecting user privacy regulations like the General Data Protec-
tion Regulation (GDPR) and the California Consumer Privacy Act
(CCPA).

6 Megan Graham, “Taco Bell and KFC’s Owner Says Al-Driven Marketing Is Boosting
Purchases,” Wall Street Journal, November 15, 2024, https://www.wsj.com/articles/taco-
bell-and-kfcs-owner-says-ai-driven-marketing-is-boosting-purchases-ab3a5f36.
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A variety of Al techniques and models power real-time advertising
decisions on the data sources:’

» Recommendation systems, often based on collaborative filtering
and deep learning models, predict the most relevant ads for
individual users by analyzing past interactions.

+ Reinforcement learning models optimize bidding strategies in
real time, learning from each auction outcome to improve
future decisions.

o NLP models analyze web page content to ensure contextual ad
placement.

+ Computer vision models analyze video frames or images to
match ads with relevant visual content.

o Predictive analytics models, often using logistic regression or
gradient boosting, assess the likelihood of user engagement
(clicks, conversions) and adjust ad targeting accordingly.

The Al-powered stream outputs real-time decisions that determine
ad selection, placement, and bidding values. In a user session,
the system instantly returns an optimized ad choice tailored to
that user’s behavior and context. In the case of programmatic
advertising, it outputs bid recommendations for each available ad
impression, ensuring that advertisers compete effectively for the
most valuable placements. Additionally, real-time analytics and
performance insights flow from the stream, providing advertisers
with up-to-the-second data on impressions, clicks, conversions, and
audience engagement trends.®

Integrating real-time Al into AdTech results in smarter, data-driven
advertising strategies that drive revenue growth and competitive
advantage by improving ad relevance, increasing user engagement,
and optimizing ad spending. The automated decision-making

7 “Al in Digital Marketing - The Ultimate Guide,” Digital Marketing Institute blog, April
14, 2025, https://digitalmarketinginstitute.com/blog/ai-in-digital-marketing-the-ultimate-
guide; and “7 machine learning algorithms for reccommendation engines,” lumenalta,
January 28, 2025, https://lumenalta.com/insights/7-machine-learning-algorithms-for-
recommendation-engines.

8 Mar Ferndndez Parra, “The Future of Personalization with Gen AI and Real-Time
Data,” Medium, February 18, 2024, https://medium.com/@MarBlue-Bucket.Al/trully-
real-time-personalization-in-genai-times-c4bd0bae3416.
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process ensures that advertisers maximize ROI by bidding only
on impressions likely to convert, reducing wasted ad spending.
Al-driven personalization enhances user experience by displaying
relevant ads, leading to higher engagement and improved brand
perception. The ability to adjust campaigns in real time allows
marketers to react swiftly to changing consumer behaviors and
market trends, ensuring sustained effectiveness. Predictive insights
help advertisers allocate budgets more efficiently by prioritizing
high-performing audience segments and content channels. The net
gains from these different streams create highly optimized advertise-
ments for users.

Manufacturing (Predictive Maintenance)

Real-time Al in industrial operations is used for predictive mainte-
nance, ensuring that equipment runs smoothly by detecting failures
before they cause costly downtime. IoT sensors continuously stream
data from factory machines, capturing metrics like temperature,
vibration, pressure, and voltage. Instead of relying on scheduled
maintenance or reacting to failures after they occur, AI analyzes this
data in real time to identify subtle changes that indicate wear and
tear or malfunctions.

The effectiveness of real-time AI depends on a continuous influx
of data from industrial IoT (IIoT) sensors embedded in machinery.
These sensors monitor key operational parameters such as tem-
perature fluctuations, vibration patterns, pressure levels, motor effi-
ciency, and electrical performance. This high-frequency, time-series
data is transmitted to AI-driven analytics platforms, where machine
learning models process it instantaneously. Some systems also inte-
grate historical maintenance records, environmental conditions, and
operational logs to improve predictions. By aggregating data from
multiple sources, Al can establish normal operating baselines and
detect deviations that signal potential failures, allowing maintenance
teams to intervene before serious issues arise.’

9 Sai Surya Mounika Dandyala, Vinod Kumar Karne, and Parameshwar Reddy
Kothamali, “Predictive Maintenance in Industrial IoT: Harnessing the Power of
Al International Journal of Advanced Engineering Technologies and Innovations
1, no. 3 (2020), 1-21, https://www.researchgate.net/publication/384295658_Predictive
_Maintenance_in_Industrial_IoT_Harnessing_the_Power_of Al

Manufacturing (Predictive Maintenance) | 31


https://www.researchgate.net/publication/384295658_Predictive_Maintenance_in_Industrial_IoT_Harnessing_the_Power_of_AI
https://www.researchgate.net/publication/384295658_Predictive_Maintenance_in_Industrial_IoT_Harnessing_the_Power_of_AI

A combination of AI techniques processes the real-time data to
provide accurate predictions and actionable insights:'

Time-series forecasting
AT models (often using RNNs or other forecasting algorithms)
project sensor readings into the future to predict when they
might cross a failure threshold. For example, a model might
forecast that a motor’s vibration level will exceed safe limits in
two days, indicating a probable failure if not serviced.

Anomaly detection
The AI establishes normal operating ranges for equipment per-
formance and flags anomalies as soon as they emerge. If a
normally stable temperature starts fluctuating unpredictably or
a pump’s output pressure drops suddenly, the system recognizes
these as out-of-profile behaviors.

Sensor fusion

Data from multiple sensors on a machine is combined to
improve diagnostic accuracy. For instance, an increase in vibra-
tion taken together with a rise in motor temperature and a drop
in output efficiency forms a clearer picture of an impending
fault than any one sensor alone could. AI models merge these
signals to reduce false alarms and pinpoint the true cause (e.g., a
misaligned shaft or impending bearing failure).

The real-time Al system generates multiple types of outputs that
drive decision making. When a potential issue is detected, the sys-
tem can produce alerts or notifications for maintenance personnel,
detailing the nature of the anomaly and its predicted impact. It
can also generate prioritized maintenance schedules, identifying
which machines require immediate attention. In advanced imple-
mentations, Al can trigger automated responses, such as adjusting
machine parameters, shutting down malfunctioning equipment to
prevent damage, or dynamically updating maintenance workflows."!

10 Angel Jaramillo-Alcazar, Jaime Govea, and William Villegas-Ch, “Anomaly Detection
in a Smart Industrial Machinery Plant Using IoT and Machine Learning,” Sensors 23,
no. 19 (2023), https://www.mdpi.com/1424-8220/23/19/8286.

11 Jesse Anglen, “Al in Anomaly Detection for Businesses,” Rapid Innovation,
accessed March 6, 2025, https://www.rapidinnovation.io/post/ai-in-anomaly-detection-
for-businesses.
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For manufacturing, real-time AI transforms industrial maintenance
from a reactive expense into a strategic advantage, optimizing
productivity and reducing waste. Implementing real-time AI for
predictive maintenance enhances operational efficiency and cost
savings by preventing unplanned downtime—factories can avoid
production halts that lead to revenue loss. Additionally, AI-driven
prioritization ensures that maintenance resources are allocated
more efficiently, and proactive maintenance extends the lifespan of
machinery.?

Gaming (Personalization and Player Analytics)

Real-time Al in video games uses continuous data streams to
dynamically adapt gameplay to create an immersive and personal-
ized player experience. The primary use case is to analyze player
behavior in real time and modify game elements accordingly. This
includes dynamic difficulty adjustment (DDA), where AI monitors
performance metrics (such as reaction time, accuracy, and success
rate) and modifies in-game challenges to keep players engaged.
Additionally, AI-powered personalization tailors content to individ-
ual playing styles, such as prioritizing exploration-based missions
for those who favor open-world discovery or adjusting enemy
behavior based on combat tendencies.

Such AI streams rely on multiple sources of real-time data gener-
ated by player interactions within the game. Every action—such
as movement patterns, time spent on objectives, choices made,
win/loss records, and response times—is captured and fed into the
AT system. Data from input devices (keyboard, controller, mouse
movements) helps assess reaction times and precision, while teleme-
try from the game engine tracks in-game progress, player choices,
and combat efficiency. Multiplayer environments further enhance
data streams by incorporating player-versus-player interactions,

12 Magda Dgbrowska, “Power of Predictive Maintenance with IoT: Reducing
Downtime and Costs,” IoT Now, accessed March 6, 2025, https://www.iot-now.com/
2024/10/23/147629-power-of-predictive-maintenance-with-iot-reducing-downtime-and-
costs.

Gaming (Personalization and Player Analytics) | 33


https://www.iot-now.com/2024/10/23/147629-power-of-predictive-maintenance-with-iot-reducing-downtime-and-costs
https://www.iot-now.com/2024/10/23/147629-power-of-predictive-maintenance-with-iot-reducing-downtime-and-costs
https://www.iot-now.com/2024/10/23/147629-power-of-predictive-maintenance-with-iot-reducing-downtime-and-costs

teamwork dynamics, and communication patterns. AI models pro-
cess this vast dataset in real time, looking for trends that indicate
player skill levels, frustration points, or engagement drops."

Several Al techniques are employed to analyze and respond to the
incoming data stream:

o Machine learning models, including deep neural networks, pre-
dict player behaviors and make real-time recommendations.

 Reinforcement learning is often used to power adaptive non-
player characters (NPCs) that learn from player strategies and
modify their behavior dynamically.

o NLP may also be applied in narrative-driven games to generate
responsive dialogues that reflect player choices.

o Rule-based Al, often seen in game directors (the part of the
program that adjusts pacing, difficulty, tension, or events in
real time based on the player’s actions, performance, or situa-
tion), operates alongside machine learning models to enforce
predefined difficulty-scaling rules and ensure smooth game
progression.

o Clustering algorithms segment players based on behavioral
patterns so that Al can tailor content or offer incentives for
engagement.

The Al-driven stream generates multiple forms of output that
directly impact gameplay. In the simplest form, it modifies game
variables such as enemy difficulty, puzzle complexity, and item avail-
ability based on real-time player data.

AT analysis aims to boost player engagement, retention, and sat-
isfaction, directly affecting business outcomes. By enabling adap-
tive difficulty and personalized experiences, it prevents frustration
and boredom. AI also optimizes monetization by recommending

13 Milijana Komad, “Product Design and Psychology: The
Use of Dynamic Difficulty Adjustment in Video Game
Design,” Medium, August 12, 2023, https://medium.com/@mili
janakomad/product-design-and-psychology-the-use-of-dynamic-difficulty-adjustment-in-
video-game-design-7ale2d919b96.
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in-game purchases tailored to playing style. Real-time analytics help
developers quickly refine level design and balance, while adaptive
matchmaking improves fairness in multiplayer games, reducing
player drop-off."*

14 Svitlana Varaksina and Ivan Dyshuk, “AI in Game Development: Analyzing Player
Behavior;” Mind Studios blog, January 23, 2024, https://themindstudios.com/post/ai-
in-analyzing-player-behaivor; and “Al in Gaming: How Al Is Creating Personalized
Gaming Experiences,” Openfabric blog, July 26, 2024, https://openfabric.ai/blog/ai-in-
gaming-how-ai-is-creating-personalized-gaming-experiences.
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CHAPTER 4
Getting Started with Real-Time Al

Implementing real-time Al requires more than just technical capa-
bility; it demands a clear understanding of the business value it
delivers. Real-time AI is not merely about speed but about mak-
ing timely, data-driven decisions that enhance efficiency, enable
automation, and improve responsiveness. Organizations must first
define their objectives by asking:

» What real-time insights will create a competitive advantage?
o What specific problems can immediate data processing solve?

o How will Al improve decision making beyond traditional data
pipelines?

Answering questions like these aligns real-time Al initiatives with
business goals, because they focus on meaningful outcomes rather
than simply adopting technology for its own sake. The following
step-by-step guide provides a road map for building an effective
real-time Al strategy.
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|dentifying Data for Real-Time Al
for a Producer

In real-time AJ, not all data is equally important. Only relevant data
should be classified:

Event-triggering data
These sources generate immediate-action events, such as sensor
readings, user activity logs, social media reactions, financial
transactions, or security alerts. They drive AI decisions.

Enrichment/contextual data
These refine decisions by adding background—historical
trends, customer profiles, knowledge graphs, or third-party
APIs. Some need frequent updates (e.g., weather, stock prices),
while others remain static.

AT filters noise, reducing unnecessary processing, and can automate
data classification, identifying relevant patterns in structured and
unstructured data to support real-time decisions.

Implementing a Real-Time Data
Processing Pipeline as a Broker

Once event triggers and contextual data sources are defined, the
next step is to establish a real-time data processing pipeline that
rapidly transforms data into actionable insights. This pipeline must
efficiently ingest, process, and analyze data to support timely deci-
sion making.

The first priority is efficient data ingestion, which requires an event-
driven architecture capable of handling high-velocity data streams.
Technologies such as Redpanda, Kafka, RabbitMQ, or real-time
databases enable seamless message queuing, ensuring that incoming
events are processed in an orderly and scalable manner. Next, Al-
driven real-time transformations and enrichments refine the data,
adding relevant context to enhance decision making. AI models
analyze events using various techniques, such as:
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Anomaly detection to identify irregularities (e.g., fraudulent
financial transactions)

NLP to extract meaning from customer complaints, social
media posts, or support tickets

Predictive analytics to forecast demand in logistics, supply
chains, or market trends

Image and video analysis to detect defects in manufacturing,
monitor security footage, or process medical imaging in real
time

To ensure low-latency processing, AI models must be optimized
for real-time inference. Technologies like edge AI enable on-device
processing, reducing dependence on cloud latency, while lightweight
models—such as quantized or distilled versions—maintain speed
without sacrificing accuracy.

Delivering Processed Data to Consumers

Once data has been processed and enriched, it must be directed
to the appropriate endpoint for action or storage. For many appli-
cations, automated Al-driven consumers act on processed data
instantly.

However, some scenarios require human-in-the-loop decision mak-
ing, where Al provides insights but ultimate decisions rest with
human operators. Processed data can be visualized through dash-
boards, real-time alerts, or reports, allowing experts to assess the
situation and take appropriate action. This approach is often used
in fields like cybersecurity, health care diagnostics, and financial risk
management, where human judgment is still crucial.

Additionally, data storage and feedback loops play an essential role
in refining Al models over time. Not all processed data requires
immediate action.

Emerging Applications for Real-Time Al

Artificial intelligence is rapidly evolving, and new approaches are
emerging that push the boundaries of what machines can do.
Agentic Al real-time RAG, and the movement toward self-hosted
models all seek to enable systems that act with intention, adapt
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on the fly, and place control back in the hands of organizations.
Their core ambition is to bridge the gap between static automation
and true machine agency with Al systems that reason, reflect, and
interact with their environments in fundamentally new ways.

AgenticAl

Agentic Al refers to autonomous, goal-oriented systems that make
decisions and act without human input, using machine learning
and LLMs like GPT. These systems interact with data sources, APIs,
and other systems to make real-time, informed choices, adapting to
changing conditions or deciding when to act. Unlike nonagentic Al
which performs fixed tasks based only on input and context, agentic
Al can learn and adapt dynamically.’

Agentic Al is defined by its autonomy and reflective capabilities. It
operates independently, adapting to changing conditions to achieve
goals, and improves over time by learning from experience. Draw-
ing from human psychology, agentic Al involves planning, action,
memory, and reflection, allowing it to set objectives, create strate-
gies, monitor outcomes, and refine future behavior.

These modules work together to give agentic Al the ability to act
intentionally, adapt dynamically, and reflect on past outcomes to
improve future performance.

Agentic Al can work in numerous applications. It operates inde-
pendently in complex environments by continuously processing
real-time data from sensors like cameras, LiDAR, radar, and ultra-
sonics. It identifies objects such as pedestrians, vehicles, traffic signs,
and obstacles, constructing a dynamic three-dimensional map to
maintain situational awareness and enable safe, autonomous deci-
sion making.?

Agentic Al in autonomous systems uses real-time sensor data to
build a dynamic map of the environment, evaluating possible tra-
jectories based on traffic rules, road conditions, and the behavior
of other road users. It predicts movements to avoid collisions,

1 Vanna Winland, Jess Bozorg, and Cole Stryker, “What Is Agentic Architecture?,” IBM,
accessed March 7, 2025, https://www.ibm.com/think/topics/agentic-architecture.

2 “openpilot,” Wikipedia, last modified April 1, 2025, https://en.wikipedia.org/wiki/
Openpilot.
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determines the optimal path by considering factors like congestion
or obstacles, and sends precise commands to control acceleration,
braking, and steering. The Al continuously monitors data to adjust
in real time, maintaining lane discipline and speed limits, and exe-
cuting maneuvers such as lane changes or turns. Through machine
learning, it improves decision making by learning from each driv-
ing experience, adapting to varied conditions and enhancing per-
formance. Companies like Waymo and NVIDIA have developed
agentic Al platforms that enable autonomous vehicles to safely nav-
igate urban environments with real-time processing and advanced
decision-making capabilities.

Agentic Al is reshaping education by introducing agentic systems
that dynamically adjust educational content to suit individual stu-
dent needs by analyzing performance data in real time to tailor
instruction. This personalization ensures that learners receive mate-
rial aligned with their pace and comprehension levels, fostering
more effective outcomes. Beyond content delivery, agentic Al serves
as a virtual tutor and streamlines administrative tasks such as grad-
ing and attendance tracking.

Additionally, agentic Al is fundamentally changing the way soft-
ware is developed by enabling systems that generate code, under-
stand development goals, reason about tasks, and take autonomous
actions across the lifecycle of an application. These systems can
scaffold projects based on high-level descriptions, iteratively refine
code in response to errors or test failures, and coordinate between
multiple tools or services without constant human oversight. As
the AI interacts with developers, it learns preferred styles, recog-
nizes common patterns, and adapts to team conventions, helping
to reduce repetitive work and cognitive load. Over time, this trans-
forms developers into higher-level problem solvers by creating the
boilerplate code and handling orchestration in the background. The
result is faster iterations with fewer errors.

These examples are already creeping into organizations, but chal-
lenges remain:

Data quality
Agentic Al relies heavily on the quality of the data it processes.
Biased or inaccurate data can cause harmful decisions, includ-
ing discriminatory behavior. Ensuring that data is accurate, rep-
resentative, and unbiased is critical for reliable outcomes.
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Security risks
These systems often manage sensitive data, making them attrac-
tive targets for cyberattacks. Vulnerabilities can lead to breaches
or manipulation, as seen in some open source Al models with
severe security flaws.

Ethical concerns
The autonomy of agentic Al raises ethical issues, especially
when decisions affect human lives.

The integration of agentic Al into real-time systems marks a signif-
icant step toward intelligent, responsive operations, with growing
potential for solving complex, time-sensitive problems while requir-
ing vigilance around data, security, and ethics.

Real-Time RAG

In-memory embeddings work like in-memory vector databases.
They’re conducive to real-time AI applications by facilitating effi-
cient storage, retrieval, and processing of high-dimensional data for
real-time RAG.

Embeddings are numerical representations of data—such as words,
images, or other entities—transformed into vectors in a high-
dimensional space. This transformation allows Al systems to pro-
cess and understand complex data types by capturing semantic
relationships; for instance, words with similar meanings are repre-
sented by vectors that are close together in this space.

Consider the words king, queen, man, and woman. In a high-
dimensional vector space, these words can be represented as vectors
with specific coordinates.

A vector database is a specialized system for storing and manag-
ing vector embeddings, which are numerical representations of raw
data generated by machine learning models. These databases enable
fast similarity searches for AI applications like recommendation
systems. Vector searches use algorithms such as ANN to quickly
find similar vectors. In-memory vector databases enhance this pro-
cess by storing embeddings directly in RAM, thus allowing for
rapid retrieval and processing, which is critical for real-time AI
applications. Systems like Vemcache, Milvus, and Aerospike support
in-memory vector searches and efficiently handle large-scale data to
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meet the demands of low-latency environments. Some applications
for real-time Al and in-memory vector databases include:

Recommendation systems
In-memory embeddings enable recommendation systems to
swiftly analyze user behavior and preferences, providing per-
sonalized suggestions in real time. For instance, platforms can
process user interactions and immediately update recommenda-
tions for products or content, enhancing user engagement and
satisfaction.

Real-time search
Embeddings stored in memory enable search engines to inter-
pret the contextual meaning behind user queries, delivering
more relevant and accurate results instantly.

NLP
In-memory embeddings are crucial for NLP applications such
as sentiment analysis, language translation, and text summari-
zation. They allow AI models to process and understand text
data quickly.

Cybersecurity and finance
In domains like cybersecurity and finance, in-memory embed-
dings facilitate the rapid detection of anomalies or fraudulent
activities by enabling real-time analysis of data patterns.

Virtual assistants
In-memory embeddings allow chatbots and virtual assistants to
maintain context and understand user inputs more effectively,
leading to more natural and coherent interactions. This capabil-
ity is vital for delivering real-time, context-aware responses in
conversational Al applications.

Self-Hosted Models Versus Cloud-Hosted Models

Self-hosting AI models involves deploying and managing machine
learning models on an organization’s own infrastructure, as opposed
to utilizing third-party, cloud-based Al services. Advancements in
open source LLMs, such as Meta’s Llama 3.1, have made self-hosting
a practical option for enterprises by offering performance on par
with proprietary models. The dramatic improvements in hardware
specially designed for AI have made hosting models of all sizes,
even complex LLMs, a real possibility for organizations. Companies

Emerging Applications for Real-Time Al | 43



like NVIDIA have introduced compact, high-performance systems
designed for AI workloads.?

One of the biggest motivations for self-hosting is driven by data
privacy concerns, especially for industries handling confidential or
regulated data, such as health care or finance. Self-hosting ensures
that proprietary data remains within the organization’s control,
reducing exposure to such risks.*

Beyond data security, there are a number of reasons to consider
self-hosting AT models:

Regulatory compliance
Industries subject to regulations like GDPR, the Health Insur-
ance Portability and Accountability Act (HIPAA), and other
oversight requirements find that self-hosting provides a clear
path to compliance.

Reduced external dependency
Self-hosting mitigates risks associated with vendor lock-in and
service disruptions. Organizations gain autonomy over their Al
infrastructure.

Performance and customization
Self-hosted models can be fine-tuned to specific organizational
needs, potentially enhancing performance for particular tasks.

Cost management
While initial hardware investments for self-hosting can be high,
ongoing costs are typically low and predictable, encompassing
maintenance expenses. In contrast, cloud-hosted proprietary
models often operate on a pay-as-you-go model.

3 Umar Shakir, “Nvidias Cute ‘Digits’ AI Desktop Is Coming This Summer with
a New Name and a Big Brother,” The Verge, March 18, 2025, https://www.the
verge.com/news/631957/nvidia-dgx-spark-station-grace-blackwell-ai-supercomputers-gtc;
and Stephen J. Bigelow, “GPUs vs. TPUs vs. NPUs: Comparing Al Hardware Options,”
TechTarget, August 27, 2024, https://www.techtarget.com/whatis/feature/ GPUs-vs-TPUs-
vs-NPUs-Comparing-Al-hardware-options.

4 Tim Abbott, “Self-Hosting Keeps Your Private Data out of AI Models,” Kandra
Labs, May 23, 2024, https://blog.zulip.com/2024/05/23/self-hosting-keeps-your-private-
data-out-of-ai-models.
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Latency and inference speed
Self-hosted models provide consistent latency and inference
speed, limited by available hardware.

Customization
Self-hosting offers full ability to host fine-tuned models, allow-
ing organizations to tailor models to their specific needs. Cloud-
hosted solutions often have limited customization options.

Conclusion

Real-time Al marks an evolution in how organizations perceive and
leverage data—not merely as historical artifacts to be analyzed after
the fact, but as living signals that demand immediate interpretation
and response. Organizations that embed real-time Al into their
operations are not just automating tasks; they are enabling systems
that perceive, interpret, and act as events unfold. This paradigm
shift allows businesses to move beyond reacting to change and
toward anticipating and shaping it.

The value unlocked by real-time AI is multifaceted and compound-
ing. In customer service, it augments human agents with contextual-
ized, adaptive support that reduces cognitive load and improves
resolution times. In cybersecurity, it transforms passive monitoring
into proactive defense, identifying threats the moment they emerge.
In manufacturing, it converts maintenance from a reactive cost
center to a predictive asset-management function. In finance, it
automates trading at a scale and speed that no human could match.
In advertising and gaming, it delivers personalization so fluid and
dynamic that user engagement becomes self-reinforcing. In each
of these cases, it redefines the experience by shortening the time
between insight and action, which in turn compresses the time
between opportunity and impact. In doing so, it directly influences
business outcomes: faster time to resolution, higher customer sat-
isfaction, lower operational costs, greater resiliency, and increased
revenue per interaction.
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