
GOAT BitVM2 White Paper

GOAT Network Research Group

Email: contact@goat.network

Jan. 2026 - Version 1.0

Abstract. The BitVM2 protocol is often regarded as one of the most secure bridge frameworks for
Bitcoin and its side-systems. However, it still faces challenges in a real-world zkRollup setting and
deployment, such as the inability to support arbitrarily sized withdrawals, inconsistent challenge incen-
tives, potential double-spending attacks by operators, and large on-chain data for dispute resolution.
To address these issues (without compromising the 1-of-n honesty assumption), we introduce a trust-
minimized settlement protocol—enabling native zkRollups on Bitcoin—called GOAT BitVM2. 1) This
includes a method for committing ZK proof public inputs to Bitcoin as part of BitVM2’s optimistic
computation, e.g., a commitment to the L2’s sequencer-set configuration. With this, both state tran-
sitions and the latest L2 state can be verified by the sequencer set on Bitcoin, resisting potential
double-spending attacks by operators. 2) The operator and challenger collateral in the BitVM2 proto-
col are moved onto L2, with the operator’s reimbursement constrained by a chain based synchronization
primitive, in combination with CPFP1, improving the operator’s capital efficiency. 3) By integrating
with Atomic Swap, this protocol allows end-users to withdraw from L2 to L1 with arbitrary amounts,
and the operator reimburses themselves using L2 state transition proofs.
The subsequent innovation of the BitVM2 architecture, integrating garbled circuits (GC) with designated-
verifier (DV) SNARKs, further optimizes performance and reduces on-chain costs. By shifting compu-
tations (e.g., the SNARK verifier) off-chain with GC, committing the GC’s inputs and output labels
on-chain and revealing the input labels when challenged to compute the output cleartext, the system
minimizes its on-chain footprint. The correctness of the GC is guaranteed by zero-knowledge proofs,
while the validity of the DV-SNARK’s Structured Reference String (SRS) is ensured via pairing verifi-
cation for the BN254 curve, and through a combination of the Cut & Choose technique and a random
challenge mechanism for the Sect233k1 curve, thereby achieving a balance between on-chain and off-
chain complexity.
All implementations are publicly available on GitHub at BitVM, BitVM2-node, and bitvm2-gc, facili-
tating reproducibility and further research.

Keywords: GOAT Network, BitVM2, Garbled Circuits, zkVM, zkRollup, Cross-chain Bridge

1 Introduction

BitVM [12] and its evolutions BitVM2 [13], proposed by Robin Linus et al., establish a trust-
minimized bridge protocol for Bitcoin [14]. They enable Turing-complete smart contracts and side
systems (like zkRollups) through a fraud-proof arbitration mechanism without requiring a hard fork,
operating under the 1-of-n honesty assumption2. The protocol leverages pre-signed transactions,
one-time signatures, and SNARK proofs to verify off-chain computations on-chain, conceptually
similar to Optimistic Rollups in Ethereum [16][2].

Serving as the cryptographic foundation for cross-chain bridges and zkRollups, the original
BitVM2 protocol achieves two key breakthroughs: 1) Maintaining Bitcoin’s base layer integrity

1 CPFP: Child Pays For Parent (CPFP) is a fee bumping technique where a user spends an output from a low-feerate
unconfirmed transaction in a child transaction with a high feerate in order to encourage miners to include both
transactions in a block, https://bitcoinops.org/en/topics/cpfp/

2 The 1-of-n honesty assumption requires that liveness is maintained by at least one Operator, and that validity is
enforced by at least one honest Challenger who is obligated to challenge a dishonest Operator.

contact@goat.network
contact@goat.network
https://github.com/GOATNetwork/BitVM
https://github.com/GOATNetwork/BitVM2-node
https://github.com/GOATNetwork/bitvm2-gc

without protocol forks under the 1-of-n honesty assumption; 2) Compared to BitVM, BitVM2
allows anyone to challenge and slash a faulty Operator with only three on-chain transactions, with
a delay of no more than 2-3 weeks, thus enabling a relatively capital-efficient improvement.

However, the BitVM2 protocol continues to grapple with significant on-chain costs and oper-
ational inefficiencies. Delbrag [17] (and subsequently BitVM3 [11]) dramatically reduces on-chain
costs using garbled circuits (GC) [19]. During setup, a Garbler commits to a SNARK verifier cir-
cuit in a Taproot tree and shares it with an Evaluator. If the Garbler submits an invalid SNARK
proof, the Evaluator generates a fraud proof using the pre-shared circuit. This approach retains
BitVM2’s trust model while minimizing its on-chain footprint. This is achieved by directly verifying
the output label for publicly verifiable garbled circuits.

Representing the verification circuit as a Boolean circuit results in an extremely large circuit size,
with the number of gates reaching billions. This massive circuit imposes a significant burden on both
off-chain data storage requirements and the computational complexity of proving the correctness of
the GC construction. Although algebraic GC circuits offer a way to reduce the circuit scale, current
schemes [8] can only support computations over integers and cannot efficiently simulate modulo
operation over a large prime. Alpen Labs’ [3] proposed using SNARK schemes with designated
verifiers (DV-SNARK) on the binary curve to reduce the size of the GC circuit in the ZKP verifier,
as a sequencer converts Elliptic Curve Pairing to Multiple Scalar Multiplication and greatly reduces
the circuit size. For applications requiring different trade-offs, we provide two elliptic curve options:
BN254 and Sect233k1. The BN254 curve is pairing-friendly, allowing efficient pairing operations,
which enables straightforward verification of the SRS validity, and it is crucial to support more
concise and efficient protocol sequences. Alternatively, the Sect233k1 curve is defined over a binary
extension field. This characteristic supports constructing significantly smaller GC implementations
and reduces the GC size by two orders of magnitude.

In addition to the significant on-chain inefficiencies, use of BitVM2 to build a practical Bitcoin
zkRollup faces some critical challenges, listed below.

Operator’s Double-Spending Attack: When the operator gets challenged and reveals the exe-
cution trace of the ZK proof’s verifier, and the proof is the commitment of the L2’s state transition,
then an Operator could potentially create a valid proof for an incorrect or forked state (e.g., from
an L2 fork) and use it to fraudulently withdraw funds, executing a double-spend. How to determine
the correct latest state root becomes an issue since we can’t trust the operator to publish the proof’s
public input, especially when the L2 has its own decentralized sequencer network.

Inability to Withdraw Arbitrary Amounts: The operator in BitVM2 is able to withdraw from
Tapscript in the Peg-in transaction, however it is not possible for every end-user of an L2 to run
an operator. Furthermore, the peg-in transaction amount is fixed, hence it is necessary to allow
end-users to withdraw arbitrary amounts from L2 to L1.

Misaligned Incentives: BitVM2 lacks a practical incentive mechanism suited for real-world de-
ployment. This could result in serious security vulnerabilities if there are not enough challengers
or operators participating in the network. For instance, if no fraud occurs over an extended pe-
riod, challengers might not receive sufficient rewards to stay motivated and could decide to exit
the protocol. An additional concern is that challengers may not receive their rewards. During the
crowdfunding process for the Challenge transaction, the original challenger may not be the one who
ultimately submits the final Disprove transaction - a Bitcoin miner could front-run the transaction
to claim the rewards instead. As a result, the staked funds may not be properly distributed to the
honest challenger.

GOAT BitVM2 combines three architectural innovations to overcome these limitations.

2

Decentralized Sequencer Set Commitment Scheme: This innovation addresses the double-
spending attack by securely anchoring the L2 state on Bitcoin. Instead of directly trusting the
Operator’s public input, the system commits to the state of a decentralized sequencer set (e.g.,
their public keys) via a Bitcoin transaction. This committed state x then becomes a verifiable
public input3 for the computation f(x,w) = y in the Kickoff process, ensuring the Operator’s
proof is based on the canonical L2 state.

Universal Operator Abstraction: To balance risks and incentives, the distinct roles in the
system (Operator, Challenger, Committee, Sequencer, and Watchtowers, etc.) are unified into a
single Universal Operator role. Participants stake funds and are assigned different roles over time
through a rotation mechanism. This ensures that no single entity is permanently burdened with
high-cost roles or only profitable ones, leading to a more stable and sustainable economic model.

NIZK based Verifiable Garbled Circuit: Using GCs to improve the optimistic challenge ef-
ficiency - instead of verifying Groth16 on Bitcoin, DV-SNARKs can significantly reduce on-chain
computation complexity. In such a setting, the L2’s state transition is proven with Ziren4 and the
STARK proof is wrapped to the DV-SNARK proof, before the DV-SNARK verifier is proven by
Ziren for BitVM2’s dispute resolution.

Combining these innovations, GOAT BitVM2 improves on the theoretical framework of BitVM2,
resulting in a pragmatic, efficient, and secure foundation for Bitcoin zkRollups.

2 Background and Building Blocks

2.1 zkRollups

A zkRollup is a Layer-2 (L2) scaling solution that executes transactions off-chain while submitting
succinct validity proofs to the underlying Layer-1 (L1) blockchain. By leveraging zero-knowledge
(ZK) proof systems (e.g., Groth16), zkRollups cryptographically guarantee the correctness of off-
chain state transitions without requiring transaction re-execution on L1.

The core architecture of zkRollups is guided by the following two principles:

1. Succinct Verification: All off-chain computation is verified on L1 via succinct ZK proofs,
preserving integrity while avoiding redundant execution.

2. Data Availability: Only essential state data (e.g., state differences or compressed transaction
data) is published on L1 to ensure data availability.

Figure 1 illustrates the generic workflow of a zkRollup system. Users deposit assets on L1,
which are then represented and transacted on L2. After off-chain execution, the updated L2 state
is committed to L1 together with a validity proof, enabling trust-minimized withdrawals back to
L1.

Deposit (also referred to as Peg-in within the BitVM2 context): A user deposits assets by
locking them on L1 non-custodially. The zkRollup sequencer detects this event, validates the finality
of the deposit transaction, and updates the L2 state accordingly—typically by minting equivalent
wrapped tokens on L2.

Transaction Execution and State Commitment: A sequencer batches L2 transactions, exe-
cutes them off-chain, and generates a new L2 state root (e.g., a Merkle root representing the latest

3 Public inputs: a virtual machine reads the inputs, runs the logic, and generates the outputs. For a zkVM, to
commit the inputs, public inputs are introduced, which usually consist of a part of the inputs and all outputs.

4 https://github.com/ProjectZKM/Ziren.

3

Fig. 1: zkRollup Workflow

state). The sequencer then publishes the raw transaction data (for data availability) and a validity
proof (e.g., a zk-SNARK) to the L1 verifier contract. The proof attests to the correctness of the
state transition.

Withdrawal: To withdraw assets from L2 to L1, a user submits a burn transaction on L2. The
sequencer includes this in the next batch, generating a validity proof for the updated state (which
reflects the burned L2 tokens). The user then submits a Merkle proof to the L1 contract, which
verifies the validity proof and releases the locked L1 assets.

2.2 BitVM2 Protocol Overview

Peg-Out-Confirm

1 BTC connector-6

Peg-In-Deposit

 Alice
100BTC

100BTC
connector-z

Peg-Out

Oprator
99BTC withdrawer

Kickoff1

connector-6

connector-a

1 BTC
connector-1

connector-2

Challenge

connector-a
Operator

1 BTC
1BTC

Disprove

1 BTC
connector-5 burn, 50%

connector-c
f(z6) != z7 reward, 50%

Disprove-Chain

1 BTC
connector-b

burn, 50%

reward, 50%

Take-1

100 BTC
connector-0

Operator
101 BTC

connector-a

connector-3

1 BTC
connector-b

Take-2

100 BTC
connector-0

Operator
101 BTC

connector-4

1 BTC
connector-5

connector-c

Peg-In-Refund

connnector-
z Alice 100BTC

Peg-In-Confirm

connnector-
z

100BTC
connector-0

StartTime

connector-2 Operator

StartTime-Timeout

connector-2 burn, 95%

1 BTC
connector-1 reward, 5%

Kickoff2

1 BTC
connector-1

commit y

connector-3

1 BTC
connector-b

Kickoff-Timeout

connector-1

burn, 95%

reward, 5%

In 2 weeks

in 2 weeks

In 3 days

crowdfunding
sighash_single | anyonecanpay

AssertInitial

1 BTC
connector-b

1 BTC
connector-d

connector-e-1...

connector-e-2...

AssertCommit1

connector-e-1...
commit x, z1... connector-f-1

AssertCommit2

connector-e-2...
commit z100... connector-f-2

AssertFinal

1 BTC
connector-d connector-4

connector-f-1 1 BTC
connector-5

connector-f-2 connector-c

any verifier

any verifier

any verifier

Blue: committee pre_signed
Pink: operator pre signed

any verifier

operartor
any utxo

Fig. 2: Original BitVM2 Bridge Protocol

4

As shown in Fig.2, BitVM2 uses the presigned Transaction Graph5 to achieve logic persistence,
and uses a one-time signature [10] to implement storage persistence. In combination with timelock
and Taproot, BitVM2 can be used to implement a trust-minimized bridge protocol between Bitcoin
and an L2.

The protocol operation can be condensed into three key phases:

– Asset Deposit (Peg-in): A user locks BTC on L1 via a Peg-In-Deposit transaction. The Oper-
ator must respond with a Peg-In-Confirm transaction for the user to receive equivalent assets
on L2. If the Operator fails to respond, the user can retrieve their BTC using a Peg-In-Refund

transaction after a timeout.

– Withdrawal Initiation and Challenge Window (Kick-off): When a user burns L2 assets to with-
draw, the Operator advances the BTC payment on L1 and initiates a series of Kickoff trans-
actions. This starts a dispute period (e.g., two weeks). A Challenger can contest the withdrawal
during this time if they detect fraud (e.g., the Operator using an invalid L2 state).

– Settlement:

• Optimistic Path (Happy Path): If no challenge is raised after the dispute period, the Operator
submits a Take1 transaction to get reimbursed seamlessly.

• Challenge Path (Unhappy Path): If a challenge is issued, the Operator must publicly prove
the withdrawal’s validity on-chain. If the proof is invalid, the Challenger can block the reim-
bursement and claim a reward. If the challenge fails or times out, the Operator eventually
gets reimbursed via a Take2 transaction.

2.3 BitVM Bridge

BitVM is one of the promising protocols to build bridges between Bitcoin and side-systems, with its
core innovation being a trust-minimized solution achieved through the BitVM smart contract. This
solution is based on a key design principle: the security of funds is guaranteed as long as there is at
least one honest participant in the system who can detect and challenge malicious behavior. This
approach fundamentally eliminates the dependence on centralized authorities or multisig set-ups.

2.4 Ziren

A zkVM (Zero-Knowledge Virtual Machine) is a cryptographic system that enables verifiable com-
putation by generating a ZK proof for arbitrary program executions. It allows developers to write
code in high-level programming languages (e.g., Rust, Go) and compile it into instructions com-
patible with specific Instruction Set Architectures (ISAs). The zkVM executes these instructions,
generates a trace of the execution recording register states and memory accesses at each clock cy-
cle, and produces a succinct proof to validate the correctness of the computation. Key components
include zkCompiler, Prover and Verifier.

zkCompiler: Compiles high-level code into ISA-specific binaries (e.g. MIPS, RISC-V), generates
execution traces, and converts the traces into polynomials for constraint satisfaction checks.

5 In BitVM2, a Transaction Graph is a pre-defined, interconnected set of Bitcoin transactions that form a directed
acyclic graph. This structure is used to enforce a complex challenge-response protocol on Bitcoin without requiring
changes to Bitcoin’s core protocol.

5

Prover: Commits the polynomials, and generates ZK proofs. Compared to native execution, Zero-
knowledge proving is currently slower by 100-1000x. Hardware acceleration, continuation6, and
pipelined proving are exploited to reduce computing overhead and latency.

Verifier: A program to verify ZK proofs, run in an L1 smart contract or covenant to share the
security of an L1’s consensus and achieve the finality and settlement of an L2’s state transitions.

Ziren [18] is a production-grade zkVM based on the MIPS32r2 instruction set, a stable RISC
architecture known for deterministic execution and minimal circuit overhead. Developed by the
ZKM7 team, it optimizes zero-knowledge proof generation through efficient zkCompiler, pipelined
proof architecture, and a cutting-edge proof system, ensuring high instruction proof efficiency and
reduced audit requirements. Ziren demonstrates remarkable performance when accelerated by a
single NVIDIA RTX 4090 GPU, achieving a computational throughput of more than 4 million
Hz. This high-performance capability is particularly evident in its handling of the Poseidon2 hash
function, for which it can generate over 300,000 proofs per second.

2.5 Garbled Circuits and On-Chain Verification

A Garbled Circuit (GC) is a cryptographic protocol, introduced by Yao [19] in 1986, that enables
secure two-party computation. It allows two distrustful parties to jointly compute a function on their
private inputs without revealing those inputs to each other. The core idea is to encode the function as
a Boolean circuit (composed of gates like AND, OR, XOR etc.). One party, the Garbler, encrypts or
”garbles” the truth table of each gate, turning meaningful binary values (0/1) into random-looking
labels. The other party, the Evaluator, then obliviously evaluates this encrypted circuit using these
labels - through a process like Oblivious Transfer (OT) to obtain the labels corresponding to their
own inputs - and learns only the final output without gaining any information about intermediate
values or the Garbler’s inputs. This approach supports arbitrary functions with a constant round
of interaction. While early GCs had high communication costs, key optimizations like free-XOR
[9] (making XOR gates virtually free in terms of cost) and point-and-permute (which allows the
Evaluator to decrypt only one entry per garbled table) have significantly improved efficiency.

GC is compatible with optimistic verification computation on Bitcoin as introduced in Delbrag
[17]. In a GC protocol, the protocol proceeds in three rounds: garble, authenticate, and evaluate -
and is carried out entirely off-chain.

1. The Garbler will choose secret input and output labels and garble the circuit. The Garbler and
Evaluator also carry out a protocol to ensure the GC is correctly constructed.

2. The Garbler chooses some inputs and authenticates them by revealing their input labels.

3. The Evaluator will evaluate the GC using the input labels to compute the output labels.

For a SNARK verifier circuit, if the protocol is secure, then the Evaluator should learn the output 1-
label if and only if the Garbler authenticated a valid proof input. So, the output 0-label constitutes
a fraud proof. Given an authentication mechanism that is compatible with GC and verifiable on
chain, we can use this fraud proof to slash on-chain.

GOAT BitVM2 adopts the Poseidon2 hash function H(·) as the cryptographic primitive for
garbled circuit (GC) construction, and follows the free-XOR optimization together with the secret-
free garbling technique introduced in [5]. The garbler constructs the GC according to the following
procedure.

6 Continuation: https://docs.zkm.io/design/continuation.html
7 ZKM: https://zkm.io

6

Global Setup. The garbler samples a global offset r ∈ {0, 1}λ. For every wire w, the associated wire
labels w0 (encoding bit 0) and w1 (encoding bit 1) satisfy

w1 = w0 ⊕ r.

Input Wire Label Generation. For each input wire w, the garbler samples w0{0, 1}λ uniformly at
random and derives w1 = w0 ⊕ r.

Gate Garbling. Let a and b denote input wires, o the output wire, and gid the unique identifier of
the gate.

– XOR Gate (Free-XOR).
w0
o = w0

a ⊕ w0
b .

– NOT Gate (Free-NOT).
w0
o = w1

a.

– AND Gate. The garbler computes

w0
o = H(w0

a, gid),

and generates a single ciphertext

c = H(w1
a, gid)⊕ w1

o ⊕ w1
b .

– OR Gate. The garbler computes

w0
o = H(w1

a, gid)⊕ r,

and generates a single ciphertext

c = H(w1
a, gid)⊕H(w0

a, gid)⊕ w1
b .

For every output wire o, the 1-label is derived as

w1
o = w0

o ⊕ r.

Gate Evaluation. Given garbled input labels wx
a and wy

b , where x, y ∈ {0, 1} are the encoded bits
(note that the NOT gate requires only wx

a), the evaluator computes the output label wo as follows.

– XOR Gate:
wo = wx

a ⊕ wy
b .

– NOT Gate:
wo = wx

a .

– AND Gate (with ciphertext c):

• If x = 0, then wo = H(wx
a , gid).

• Otherwise, wo = H(wx
a , gid)⊕ c⊕ wy

b .

– OR Gate (with ciphertext c):

• If x = 1, then wo = H(wx
a , gid).

• Otherwise, wo = H(wx
a , gid)⊕ c⊕ wy

b .

7

2.6 Designated Verifier SNARK

DV-SNARK is an optimized variant of SNARK designed to address the high on-chain costs and
computational overhead associated with traditional SNARK verification circuits. It achieves this by
replacing expensive cryptographic operations with more efficient alternatives, making it particularly
suitable for blockchain applications like Bitcoin L2 solutions, where minimizing the on-chain script
is critical.

Traditional SNARKs (e.g., Groth16 [7]) rely on elliptic curve pairings for verification, which
require complex operations in large prime fields. These operations must be encoded as binary
circuits when integrated with GC, leading to massive circuit sizes (billions of gates) and prohibitive
off-chain communication cost.

DV-SNARK uses a designated verifier model, where the verifier holds a secret key, allowing the
prover to generate proofs tailored to that specific verifier without revealing critical information.
It adapts techniques from schemes like DV-KZG [15] to substitute pairing operations with elliptic
curve scalar multiplications and largely reduces the circuit size.

3 GOAT BitVM2’s Design Overview

GOAT BitVM2 aims to enable a trust-minimized Bitcoin zkRollup based on the BitVM2 protocol
and Garbled Circuit. Its core innovations include: 1) introducing a chain based synchronization
primitive over BitVM2 for operators to share collateral in multiples reimbursements; 2) combining
Atomic Swap with BitVM2 to implement a user-friendly Bridge-in and Bridge-out UX (see Section
3.2 for more details); 3) introduction of universal operator abstraction and shifting the collateral
inside BitVM2 from L1 to L2 to establish a concise and efficient penalty and incentive mechanism;
and 4) integration of GCs with DV-SNARK to optimize verification efficiency.

In this section, we introduce the main roles and components of GOAT BitVM2 in relation to
the overall Rollup protocol.

3.1 Roles and Universal Operators

The key participants in the GOAT BitVM2 protocol consist of the Committee, Operator, Chal-
lenger, Watchtower, Designated Verifier, and Relayer. Their primary duties are defined as follows
in Table 1 and the protocol consolidates all system roles (Prover, Challenger, Sequencer, and Des-
ignated Verifier) into a single Operator identity, which we call Universal Operator. Universal Op-
erators stake tokens on L2 and are assigned different roles in rotating epochs. It achieves certain
key advantages:

– Balanced Economics: Operators rotate through both profit-generating (e.g., Sequencer earning
fees) and cost-incurring roles (e.g., Prover generating proofs). This ensures a sustainable balance
between individual income and costs. See GOAT Network Economic Paper for more details.

– Aligned Incentives: Since Operators know they will perform various roles over time, short-term
costs in one epoch can be offset by profits in a subsequent epoch, creating a cross-subsidization
effect.

– Enhanced Reliability: The system avoids permanent dependency on any single entity. If an
Operator fails, its responsibilities can be reassigned to others in the next epoch, improving
resilience.

8

https://www.goat.network/

In summary, this design unifies different functions into a single pool of staked Operators who
share and rotate all responsibilities, mitigating centralization risks, and supporting a sustainable
incentive mechanism.

Table 1: GOAT BitVM2 Role Definitions

Role Responsibilities Honesty Assumption

Committee
– Acts as the n-of-n signers for the pre-signed

BitVM2 transaction graph
– Commits the active sequencer set to Bitcoin

1/n

Operator Anyone can act as an Operator.
– Exchanges PegBTC for native BTC with users
– Generates validity proofs, initiates reimburse-

ments, and responds to challenges
– Reveals pre-images of hashed timelocks to

Watchtowers [1]

1/∞

Challenger Anyone can act as a Challenger.
– Verifies reimbursement correctness off-chain
– Submits challenge transactions to force execu-

tion onto the unhappy path
– Upon full execution trace disclosure, detects

fraud and spends the Assert UTXO to halt re-
imbursement

1/∞

Watchtower
– Acts as monitors for Bitcoin’s longest chain
– Submits block headers from the longest Bitcoin

chain
– Commits sequencer updates on Bitcoin to deter-

mine public input correctness during challenges

1/n

Designated Verifier
– Participates in SRS generation
– Maintains and reveals secrets for the DV-

SNARK verifier circuit

1/n

Relayer
– Relays correlation information between Bitcoin

and GOAT

1/∞

3.2 Core Workflow

As illustrated in Figure 3, we introduce the lifecycle of the bridge protocol between Bitcoin mainnet
(L1) and GOAT Network (L2), and demonstrate the deposit and withdrawal with user Alice.

Peg-in

– Peg-In-Prepare: User Alice locks 100 BTC in a specific output to initiate the deposit process.

9

Kickoff-N

Kickoff
Connector-N

Connector-A

Connector-B

Connector-C

Connector-E

Guardian
Connector

anchor

Peg-In-Comfirm

Connector-Z
Connector-0

OP_RETURN

Challenge

Connector-A
Single | Anyonecanpay

Operator
0.02 BTC

Challenger-Stake
0.02 BTC

Take-1

Connector-0
SIGHASH_ALL

Operator
100 BTC

Connector-A
Timelock-T1

Connector-B

anchorConnector-C

Guardian
Connector

blue inputs are pre-signed by Committee

red inputs are pre-signed by Operator

green inputs can be replaced at will

anchor outputs are used to pay txn-fee via CPFP

Disprove

Connector-E

nil

Challenger-Pay-Fee

Take-2

Connector-0
SIGHASH_ALL

Operator
100 BTC

Connector-D
Timelock-T6

Connector-E

Connector-F
Timelock-T5

anchor
Guardian
Connector

Watchtower-Challenge-Init

Connector-B

Challenge-Connector-0

ACK-Connector-0

......

Challenge-Connector-N

ACK-Connector-N

Connector-G

Connector-F

anchor

Watchtower-Challenge-X

Challenge-Connector-X
Watchtower

Proof
Watchtower-Pay-Fee

Watchtower-Challenge-X-Timeout

Challenge-Connector-X
Timelock-T2

anchor
ACK-Connector-X

SIGHASH_ALL

Operator-Challenge-ACK-X

ACK-Connector-X
Hashlock

nil

Operator-Pay-Fee

Operator-Challenge-NACK-X

ACK-Connector-X
SIGHASH_ALL

Timelock-T3
anchor

Connector-F
SIGHASH_ALL

Peg-In-Cancel

Connector-Z
Timelock-T0

 Alice
100BTC

Peg-In-Prepare

 Alice
100BTC Connector-Z

Operator-Commit-BlockHash

Connector-G
WotsLock

nil

Operator-Pay-Fee

Operator-Commit-Timeout

Connector-G
Timelock-T2

anchor
Connector-F

SIGHASH_ALL

Skip-Kickoff-N

Kickoff
Connector-N

Challenge-Incomplete-Kickoff

Guardian
Connector-N

......
Pre-Kickoff

Connector-{N+1}

Pre-Kickoff-N

Pre-Kickoff
Connector-{N-1}

Force-Skip
Connector-N

replenish-fee
(Optional)

Kickoff
Connector-N

Pre-Kickoff
Connector-N

anchor

Pre-Kickoff-{N+1}

Pre-Kickoff
Connector-N

Force-Skip
Connector-{N+1}

replenish-fee
(Optional)

Kickoff
Connector-{N+1}

Pre-Kickoff
Connector-{N+1}

anchor

Force-Skip-Kickoff-N

Kickoff
Connector-N

......
Force-Skip

Connector-{N+1}

Quick_Challenge-N

Guardian
Connector-N

......
Force-Skip

Connector-{N+1}

Assert-Commit-X

Commit-Connector-X
nil

Operator-Pay-Fee

Assert-Commit-X-Timeout

Commit-Connector-X
Timelock-T4

anchor
Connector-D

SIGHASH_ALL

Assert-Init

Connector-C

Commit-Connector-0

......

Commit-Connector-15

Connector-D

anchor

Fig. 3: GOAT BitVM2 Transaction Graph

10

– Peg-In-Confirm: Confirms the deposit operation. Subsequently, Alice receives 100 PegBTC on
the L2 chain.

– Peg-In-Cancel: A fallback path. Alice can refund her BTC if the ‘Peg-In-Conform‘ transaction
is not confirmed in ‘T0‘, when the timelock expires.

Peg-out Here, we modify the BitVM2 protocol in two important ways, 1) integrating the Watch-
tower mechanism, and using Watchtowers to monitor Bitcoin’s longest chain; 2) shift the collateral
of the operator and challenger to the L2, making it work with Atomic Swap, and incidentally en-
suring that the verifier who initializes the ‘Challenge‘ transaction is rewarded the bonus - even if
another verifier submits a successful ‘Disprove‘ transaction. Based on this fair incentive mechanism,
CPFP is used for operators and verifiers to pay the transaction fee on different exit paths.

1. Withdrawal Initiation: When the Operator intends to withdraw BTC to L1 (after burning
PegBTC on L2), they initiate the Pre-Kickoff and Kickoff transactions on Bitcoin. These
transactions contain the Operator’s commitment of the L2’s state root.

2. Challenge Window: After the Kickoff transaction, a challenge period begins, in which chal-
lengers first submit a Challenge transaction to end the operator’s exit from Take1, and then
submit the fraud proof to disprove the withdrawal. A special type of challenger, namely Watch-
tower, should submit their Bitcoin longest chain with block number, including the sequencer
set commitment of L2’s consensus system, and also the corresponding state root.

3. Exit Path:

– Optimistic Path (No Challenge): If no Challenger disputes the withdrawal within the
challenge period, the Operator successfully completes the withdrawal via the Take1 trans-
action, receiving 100 BTC.

– Pessimistic Path (Challenged):

• The challenger locks 0.02 BTC and broadcasts (Challenge transaction).
• The operator must respond by publishing the Watchtower-Challenge-Init transaction

and initialize a HTLC with each watchtower. This implies that the operator allocates
each watchtower a hash lock - but keeps the pre-image at the beginning - then waits
for the watchtowers to submit their witness transaction (Watchtower-Challenge). At
least one watchtower submits it’s own Bitcoin longest header chain in this transaction
by a Groth16 proof in our security setting. After a timeout T4, the operator has to
acknowledge the watchtower’s witness by revealing the pre-image in timeout T5.

• After the watchtower’s challenge phase, the operator needs to reveal the execution trace
of the ZK proof’s verifier in the Assert-Init and Assert-Commit) transaction to prove
its correctness.

• After the execution trace has been revealed, any challenger is eligible to post collateral
on L2, find a fraud proof in the trace, and submit a Disprove transaction with the fraud
proof to prevent the operator’s exit via Take2. If no challenger submits Disprove, the
operator can proceed with the withdrawal using Take2.

Optimizing the Transaction Graph As shown in Figure 3, GOAT BitVM2 focuses on three
pivotal upgrades designed explicitly to enhance the Transaction Graph’s performance and reliabil-
ity:

– On-Chain Consensus Layer Verification via Watchtower Mechanism. To anchor the
system’s security directly to Bitcoin, the Watchtower mechanism was introduced. This innova-

11

tion involves the Watchtower mechanism on-chain that verifies the consensus of the L2 network.
It ensures that the state used for proofs is based on the canonical L2 chain, effectively mitigating
the risk of Operator-led double-spending attacks by leveraging Bitcoin’s own security model.

– Chain based Synchronization Primitive for Shared Collateral. To address capital ineffi-
ciency, a Pre-Kickoff chain was implemented. This allows an Operator to post a single collateral
that can be used for multiple Peg-out requests sequentially. As outlined in Figure 4, For op-
erator, 1) if the Operator completes reimbursement in Graph-N, or actively skips it, they can
directly enter the next Graph (i.e., broadcast Pre-Kickoff-N+1). If, upon entering the (N+1)th
Graph, the Nth Kickoff has been broadcast but reimbursement is not completed, the challenger
can issue a challenge via Challenger-Incomplete-Kickoff, which will result in the Operator’s
Graphs after N+1 all becoming unavailable. If, upon entering the (N+1)th Graph, the Nth
Kickoff or SkipKickoff has not yet been broadcast, the challenger can issue a challenge via
Force-Skip-Kickoff, which will result in the Operator’s Nth Graph becoming unavailable.

Pre-Kickoff-N

Pre-Kickoff
Connector-{N-1}

Force-Skip
Connector-N

replenish-fee
(Optional)

Kickoff
Connector-N

Pre-Kickoff
Connector-N

Pre-Kickoff-{N+1}

Pre-Kickoff
Connector-N

Force-Skip
Connector-{N+1}

replenish-fee
(Optional)

Kickoff
Connector-{N+1}

Pre-Kickoff
Connector-{N+1}

Kickoff-N

Kickoff
Connector-N

......

Guardian
Connector-N

Skip-Kickoff-N

Kickoff
Connector-N

Challenge-Incomplete-Kickoff-N

Guardian
Connector-N

......
Pre-Kickoff

Connector-{N+1}

Take1-N / Take2-N

......
......

Guardian
Connector-N

Force-Skip-Kickoff-N

Kickoff
Connector-N

......
Force-Skip

Connector-{N+1}

Quick-Challenge-N

Guardian
Connector-N

......
Force-Skip

Connector-{N+1}

Fig. 4: Chain based Synchronization Primitive for Shared Collateral

– Adoption of Child-Pays-For-Parent (CPFP) for Fee Payment. To ensure the reliable
confirmation of the pre-signed transactions that comprise the BitVM2 Transaction Graph—

12

especially during periods of Bitcoin network congestion—the protocol integrates the CPFP
fee mechanism. This allows any participant to attach a child transaction with a higher fee to
incentivize miners to confirm a stalled parent transaction, thereby safeguarding the liveness and
progression of the challenge-response protocol.

3.3 Operator Locking and Slashing

In the original BitVM2 protocol, the operator locks it’s collateral on L1 directly and leverages an
experimental opcode OP BLOCKHASH to check its confirmation in the longest chain, but this is
not operational. Instead, GOAT BitVM2 requires the operators to lock collateral on L2, and use
the Atomic Swap to pay the end-user. In this way, we can simplify the original protocol.

The Operator locking contract serves as a prerequisite for network participation and duty fulfill-
ment, such as handling Peg-in/Peg-out operations and generating proofs. Its core objectives include
providing security assurances and enabling permission authentication. The locking mechanism con-
sists of two essential steps - facilitating the secure transition of funds from an unrestricted state to
one governed by the protocol.

Based on the locking contract, the committee member can verify the operator’s qualification to
act as a valid operator for the user’s Peg-in and have enough funds to kick off the withdrawal.

To unlock the funds from the locking contract, the operator must:

1. Submit an unlock request to the committee and provide proof that all associated Take1/Take2

transactions have been fully processed or discarded.

– This can be done by having the operator spend the latest PreKickoff-connector output
via a Non-PreKickoff transaction, demonstrating that no further Kickoff transactions can
be initiated.

2. The Committee verifies the proof. If valid, a sufficient number of Committee members sign to
approve the request.

3. With enough Committee signatures, the unlock transaction can be submitted to the contract,
and unlocks the operator’s funds from the locked state back to Locking, which allows the
operator to exit the locking contract.

The slashing mechanism is the core defense against malicious operator behavior. System security
is not based on trusting the Operator’s honesty but on a crypto-economic game theory mechanism.
By making the economic cost of malicious behavior far exceed any potential gain, the slashing
mechanism fundamentally discourages the Operator from acting maliciously. We need to state that
as long as one Operator acts honestly, any malicious conduct by the remaining Operators will not
result in loss of user assets.

3.4 On-chain Sequencer Set Commitment

GOAT BitVM2 runs on a decentralized sequencer network to resist liveness attacks, and publish the
sequencers’ public key on Bitcoin. The core idea is to use a chain of pre-signed Bitcoin transactions
to ensure that any change to the L2 Sequencer set is approved by a sufficient number (e.g., 2/3) of
the current members and anchored on the Bitcoin.

The commitment of the sequencer set’s public key needs a trusted setup ceremony and then
the publishing of the new set once it is updated in the sequencer network by opening the old
commitment via Bitcoin threshold signature in Figure 5.

13

Fig. 5: Sequencer Set Update Flow

The core of the update process revolves around two key transactions: the Sequencer-Update

transaction, which primarily triggers and organizes the update process, and the Sequencer-Commit
transaction, which carries the hash commitment of the next cycle’s (N+1) Sequencer set, signed by
a majority of the sequencers.

When the sequencer set is changed in round N, all sequencers use the Update-Connector-N as
the first input of the transaction Sequencer-Update-N and commit the new sequence set’s hash in
the transaction Sequencer-Commit-N. Specifically:

– Once the new Sequencer set is determined, the structures of the Sequencer-Update-N and
Sequencer-Commit-N transactions are fixed, except for the UTXO used to supplement fees and
the fee rate setting, which require consensus among nodes.

– A fund pool is needed to supplement/pay fees, represented by the ‘replenish-fee’ input.

– The locking script of the Commit-Connector includes a hash lock for the next round’s sequencer
set. In the Validator-Commit transaction, the pre-image of the next round’s Sequencer set is
revealed, and an OP RETURN output is used to commit to the hash of the next round’s Sequencer
set for easier verification.

After collecting signatures from 2/3 of the Sequencers for both Sequencer-Update-N and
Sequencer-Commit-N transactions, they are broadcast on the Bitcoin network, finalizing the se-
quencer set update.

3.5 L2 Bridge Contracts

The L2 Bridge contracts consist of a PegBTC, a CommitteeManagement, and a Gateway. PegBTC
refers to Wrapped BTC, a tokenized version of Bitcoin’s native cryptocurrency, BTC. PegBTC is
pegged 1:1 to the value of BTC and complies with the ERC-20 token standard.

The CommitteeManagement contract is a multisig contract to manage the committee mem-
ber’s registration, rotation, and exit, leveraging the decentralized sequencer network to achieve the
agreement.

The Gateway contract acts as the bridge to work with BitVM2 pre-signed transactions to
implement the core rollup.

– PegBTC Mint. The relayers monitor the Peg-In-Confirmation transaction and submit it to
Gateway contract, and the contract verifies the Peg-In-Confirmation transaction’s confirmation
on Bitcoin by SPV.

14

– Peg-out Initialization.

• Init-Withdraw: An operator initiates the withdrawal process by calling this function. It
locks the user’s PegBTC tokens and the corresponding Peg-in record on the L2, preventing
double-spending.

• Proceed-Withdraw: After the initiation, this function is used to submit the final withdrawal
transaction, leading to the burning of the PegBTC tokens on the L2.

– Slash and Incentive.

• Disprove-Withdraw: triggers a successful L1 challenge, confiscates the operator’s collateral,
and rewards the challenger.

• Finish-Withdraw: this function is called to finalize the process once the operator’s reim-
bursement is successful.

4 Rollup Protocol

The BitVM2 protocol is widely used to build bridge protocols with certain advantages:

– 1-of-N Honesty Assumption: As long as at least one participant deletes their private key and
supervises malicious actions, then fund theft can be effectively prevented. This security model
significantly reduces the trust assumptions compared to models that require a majority of honest
participants.

– Verifiable Deployment for Deposits: Peg-in users can verify the correctness of a specific smart
contract instance before depositing any funds. This ensures that financial resources are only
committed after successful validation, eliminating risk for all parties if no deposit occurs.

– Pre-defined Exit Paths: The transaction graph pre-defines all possible exit paths for the locked
funds. This ensures that unauthorized withdrawals are impossible, as the pathways for moving
assets are established and immutable from the outset.

These designs ensure that funds are secured by the cryptographic guarantees of the smart contract
itself, rather than by a traditional, centralized third party.

BitVM2 enables the creation of covenants on Bitcoin, which involves planning and securing a
set of Bitcoin transactions before any funds are moved. The detailed steps are:

1. Define the Transaction Graph: First, designers map out the entire contract’s logic as a detailed
flowchart of Bitcoin transactions. This “transaction graph” acts as the contract’s rulebook,
specifying every possible action participants can take.

2. Pre-sign the Graph: Next, this transaction graph is reviewed and approved by a designated
group. Using multi-signature authority, the members of this attesting committee jointly sign
the graph. This step finalizes the rules, effectively “locking in” the contract and preventing any
single party from changing it later.

3. Publish the Graph: Finally, the pre-signed transaction graph is made publicly available. This
ensures that all participants have access to the same unchangeable set of rules, which can be
distributed by way of a decentralized storage network.

4.1 Deposit and Withdrawal in a Bitcoin zkRollup

The protocol combines the following:

15

– Transaction graphs with pre-signed spending paths.

– Timelock-enforced refund and challenge mechanisms.

– An optimistic Peg-Out design with Watchtower based dispute resolution.

Timelocks and Global Timing Model The protocol relies on Bitcoin timelocks to enforce safety
and dispute resolution.

Timelock Scope Purpose

T0 Peg-In User refund via Pegin-Cancel
T1 Peg-Out Delay before Take-1
T2 Peg-Out Watchtower response window
T3 Peg-Out Operator ACK / NACK deadline
T4 Peg-Out AssertCommit deadline
T5 Peg-Out Connector-F maturity
T6 Peg-Out Final Take-2 eligibility

Time

T0 T1 T2 T3
T4 T5

T6

Pegin refund
(non-critical)

Challenge window

Watchtower
HeadChainProof

Operator
ACK

Operator
AssertCommit

Challenger
Disprove

Challenger
Disprove

> τ(n+1) + τ3 > τ5 + τ(1) > τ5 + τ(1)

Key Properties

– All locks are relative timelocks using OP CSV.

– Safety is enforced by strict ordering between T2–T6.

– Longer timelocks increase robustness but slow down reimbursement.

Deposit Protocol Flow

1. The User initiates a Peg-in request via the Layer 2 contract and broadcasts the request to the
P2P network, locking the relevant UTXO.

2. Committee members validate the request and respond on-chain. Once a threshold is reached,
the participating Committee set is finalized.

3. The User constructs Pegin-Prepare, Pegin-Cancel, and Pegin-Confirm transactions and broad-
casts Pegin-Prepare.

4. The Operator verifies the transactions, constructing a transaction Graph, pre-signs required
components, and sends the Graph to the Committee.

5. Committee members verify the Operator’s stake on Layer 2 and pre-sign the Graph.

6. The Operator aggregates signatures, finalizes the Graph, and broadcasts it.

7. Committee members sign both the Pegin-Confirm transaction and the Graph digest.

8. A Relayer aggregates Committee signatures and broadcasts Pegin-Confirm.

16

9. After Bitcoin confirmation, the Pegin-Confirm transaction and SPV proof are submitted to the
Layer 2 contract.

10. The contract verifies correctness and mints PegBTC to the User.

Deposit State Machine

Init
Prepare−−−−−→ Prepared

Confirm−−−−−→ Completed

Refund path:

Prepared
Cancel−−−−→
T0

Refunded

Invalid behavior results in the Discarded state.

Withdrawal Protocol Flow. The withdrawal protocol enables a user to redeem PegBTC on
Layer 2 for native BTC on the Bitcoin blockchain. The protocol is realized via a cross-chain atomic
swap, combining a hash time-locked contract (HTLC) on Layer 2 with a corresponding HTLC
transaction on Bitcoin.

As illustrated in Figure 6, the user first locks PegBTC on Layer 2 using a hash commitment,
while the operator subsequently locks BTC on Bitcoin with the same hash. The user redeems BTC
by revealing the preimage on Bitcoin, which is then observed by the operator to unlock PegBTC
on Layer 2. Timeout conditions on both chains ensure atomicity and protect both parties against
counterparty failure.

A basic atomic swap requires the user to manage the preimage explicitly, which may lead to
a suboptimal user experience. This requirement can be eliminated by incorporating Bitcoin SPV
verification, allowing the Layer 2 system to learn the preimage trustlessly without introducing
additional security assumptions.

GOAT HTLC Contract BTC HTLC Tx

1. lock PegBTC with Hash

Unlocking conditions:
1. Operator with preimage
2. User after 48hours

User Operator

2. lock BTC with Hash

Unlocking conditions:
1. User with preimage
2. Operator after 48hours

3. unlock BTC & publish preimage

listen & get preimage

4. unlock PegBTC with preimage

Fig. 6: Cross-chain Atomic Swap

The Peg-Out is the procedure for the operator’s funds to exit from L2 to L1, and involves the
following steps:

17

1. An Operator locks the corresponding amount of PegBTC in the Layer-2 contract by issuing an
Init-Withdraw transaction. The contract records the current Bitcoin block height and locks
the associated Pegin reference to prevent double-withdrawal.

2. The Operator broadcasts Kickoff (possibly preceded by PreKickoff), initializing the Bitcoin
spending path with minimal fee. CPFP is used to adjust fees dynamically.

3. Relayers or the Operator calls ProceedWithdraw on Layer 2, submitting the Kickoff trans-
action and burning the locked PegBTC. The contract verifies the Bitcoin SPV proof and trans-
action consistency.

4. Watchtowers monitor the Bitcoin network and submit proofs if they detect misbehavior. A
challenge period T2 ensures that Operators cannot bypass external validation.

5. Challengers can dispute Operator behavior by broadcasting Challenge transactions. Operators
respond via ACK/NACK transactions. Failure to respond or incorrect proofs can result in
slashing.

6. After all challenges and Watchtower proofs are resolved, and all timelocks expire (T1 through
T6), the Operator may broadcast Take-1 and Take-2 transactions to receive reimbursement.

7. If any challenge succeeds, the Operator’s stake is confiscated and distributed to the Challenger
and relayers, ensuring economic incentive alignment and safety.

Peg-Out State Machine We can abstract the Peg-Out protocol into the following simplified
state machine:

Idle
Init-Withdraw−−−−−−−−−→ Kickoff

Kickoff
No Challenge−−−−−−−−→ Take-1/Take-2 → Finalized

Kickoff
Challenge−−−−−−→ Watchtower-Monitoring

Watchtower-Monitoring
Watchtower Proof−−−−−−−−−−−→ Operator-Response

Operator-Response
ACK / AssertCommit−−−−−−−−−−−−−→ Verification , Operator-Response

NACK / Timeout−−−−−−−−−−−→ Slashed

Verification
No Dispute−−−−−−−→ Take-2 / Finalized , Verification

Disprove−−−−−→ Slashed

This state machine emphasizes the main stages:

– Kickoff : Operator initiates a Bitcoin withdrawal.

– Watchtower-Monitoring: Watchtowers observe the Bitcoin chain and submit proofs if nec-
essary.

– Operator-Response: Operator broadcasts ACK or NACK, and may commit assertions.

– Verification: Layer-2 contract validates Operator proofs and Watchtower submissions.

– Take-1 / Take-2: Successful reimbursement paths.

18

– Slashed: Penalty state for misbehavior or failed challenge response.

This abstraction hides lower-level transaction details (e.g., CPFP, Anchor outputs, Connector-F)
while retaining the essential economic and security guarantees.

This protocol demonstrates that a trust-minimized Bitcoin–Layer2 bridge can be constructed
using multisignature Committees, transaction graphs, and optimistic dispute resolution, while pre-
serving strong economic incentives and cryptographic verifiability.

4.2 Operator Proof Generation

To ensure that an Operator can legitimately withdraw funds from the Bitcoin network (i.e., initiate
a Peg-out), the Operator must prove two critical facts on the L2 chain: 1) that they possess and
have burned the corresponding assets, and 2) that this burning operation is included in the correct,
canonical L2 state. The validity of this L2 state itself is derived from the most recent Sequencer set
commitment, which must be proven to have been legitimately updated and recorded on the Bitcoin
blockchain.

The workflow for generating the definitive Operator Proof, which guarantees the legitimacy of
a Peg-out, relies on the sequential verification of four core components:

– Watchtower Proof : Serves as a monitor for the Bitcoin’s longest chain. Each watchtower
proposes its own Bitcoin longest chain that includes the sequencer set commitment.

– Bitcoin Header Chain Proof : Establishes the canonical Bitcoin chain state. It cryptograph-
ically verifies that the transactions containing all Sequencer set updates introduced in Section
3.4 are confirmed on the longest valid Bitcoin PoW chain.

– Commit Chain Proof : Commit the Sequencer set updates on the Bitcoin through legal
Sequencer-Update transaction (i.e., containing enough signatures of the previous Sequencers).

– L2 State Chain and Asset Burn Proof : Demonstrates that the canonical L2 state was
correctly derived through legitimate transactions and provides cryptographic evidence that the
Operator has successfully burned the corresponding assets within this proven state, thereby
making them eligible for withdrawal on the Bitcoin network.

By chaining these proofs together, the system constructs an irrefutable cryptographic guarantee
that the Operator is using the correct and agreed-upon L2 state for the Peg-out. Any attempt to
use an invalid or forked state will fail the verification process, allowing a Challenger to detect
the fraud, submit a dispute, and trigger a slashing penalty, thereby securing the system against
malicious withdrawal attempts.

4.3 Data Availability

A data availability (DA) layer for zkRollups must satisfy the following properties: (i) mandatory
publication of all state-transition data, (ii) public retrievability by any verifier, and (iii) consensus-
level enforcement such that missing data invalidates the corresponding state update. Bitcoin fails
to meet these requirements due to the absence of a programmable, stateful execution layer and
native mechanisms for enforcing data publication.

Although arbitrary data can be embedded in Bitcoin transactions (e.g., via OP RETURN or witness
data), Bitcoin provides no means to reject state transitions when such data is unavailable. Bitcoin
consensus validates only transaction correctness and proof-of-work, but does not verify data com-
pleteness or retrievability. Consequently, a zk proof may attest to the correctness of a rollup state

19

transition even when the underlying data is unavailable, placing data availability strictly outside
Bitcoin’s consensus scope. Therefore, Bitcoin-based zkRollups must rely on external DA layers or
adopt validity-only (validium-style) trust assumptions.

On GOAT Network, a set of decentralized sequencers forms a permissionless execution layer,
where each sequencer maintains a full replica of the Rollup state and collectively guarantees system
liveness. All Layer 2 state transitions are recorded in an L2 State Chain, whose virtual blocks encode
incremental state differences. These state differences are accumulated until reaching a pre-defined
size threshold, after which they are published to the Bitcoin blockchain as data commitments.

Using the Watchtower mechanism in conjunction with Bitcoin header chain proofs, the system
verifies that the data publication transaction has been confirmed on Bitcoin, thereby providing a
verifiable and censorship-resistant record of Layer 2 state evolution.

5 Optimizing GOAT BitVM2 with Garbled Circuit and DV-SNARK

5.1 Motivation and Core Component

Garbeled Circuits (GC) enables an Evaluator to perform computations on encrypted data (known as
labels), with visibility restricted solely to the inputs supplied by the Garbler and the resulting labels
of intermediate and final values. This cryptographic primitive facilitates verifiable computation on
the Bitcoin network. In the proposed design, the Operator (acting as the Garbler) constructs a
GC that represents a ZKP verifier circuit. The Operator commits to a set of all possible input and
output labels. During the verification phase, if a proof is invalid, revealing the corresponding labels
results in a 0-output label. This specific value can then be used on-chain to Disprove the malicious
Operator’s claim and trigger a penalty.

By streamlining the Disprove process, this approach significantly reduces the complexity of the
dispute procedure and its on-chain cost, making BitVM2 practically feasible.

The integration of a Designated Verifier substantially reduces the complexity of the underlying
verification circuit, resulting in a GC that is more efficient to construct and verify.

The integration of GC into the BitVM2 framework primarily involves three phases: Peg-in,
Assert, and Disprove. The latter two phases are activated during the Peg-out process when a
challenge is presented.

The detailed workflow is structured as follows:

– Phase 1: Peg-in

• The Designated Verifier generates the Structured Reference String (SRS) while holding the
trapdoor (secret values). The Operator verifies the correctness of the SRS generation using
a pairing-based check for the pairing-friendly curve BN254. For curves that do not support
efficient pairings, such as Sect233k1, a combination of the Cut & Choose technique and a
random challenge mechanism is employed to attest to the validity of the SRS (see Section
5.2 for details).

• After verifying the correctness of the SRS, the Operator generates a GC based on the DV-
SNARK verifier circuit, publishes this GC off-chain, and uses a ZKP to prove that the GC
was constructed correctly.

• The Operator commits to the input and output labels of the GC on-chain. The Verifier
commits the trapdoor on-chain.

– Phase 2: Assertion after A Challenge

20

• The Operator has already published a SNARK proof, asserting that the off-chain state
transition is valid. Once challenged, the Operator reveals the corresponding input labels
excluding those related to the Verifier’s trapdoor on-chain.

• The Designated Verifier responds by disclosing the trapdoor on-chain.

• The Operator then publishes the input labels corresponding to the revealed trapdoor.

– Phase 3: Disprove

• If the SNARK proof or the circuit execution is invalid, any Challenger will:

∗ Evaluate the garbled circuit using all the published input labels.
∗ Derive the specific output label representing a logical ‘0’ (indicating failure).
∗ Submit this ‘0’-output label on-chain as a fraud proof to invalidate the Operator’s
Kick-off.

The architectural shift necessitates substantial engineering changes in both on-chain and off-
chain components to support the GC-based paradigm:

– Restructuring On-Chain Verification Scripts. The on-chain script logic must be rewritten to
handle GC-based verification instead of multi-round interactions. The scripts now focus on
verifying cryptographic commitments and GC output correctness. For example, scripts will
heavily rely on hash functions like OP SHA256 to validate that the submitted GC data matches
the committed hash.

– Off-Chain Storage Architecture. With the computational burden moved off-chain, managing the
large amount of GC circuit data becomes critical. A robust off-chain storage and distribution
network, such as IPFS, must be integrated to ensure that verifiers can reliably access the
complete GC data when needed.

– Off-Chain Computation and Proving Systems. A high-performance proof generation system (i.e.,
Ziren) is essential. This involves proving the validity of withdraw operations and the correctness
of GC generation.

To ensure security, the protocol requires at least one honest Designated Verifier. During the
Peg-in setup, n (i.e., 10) verifiers are selected, and the GC’s are produced in n independent copies.
The system guarantees that if at least one of the verifiers is honest and performs correctly, it can
prevent a malicious Operator from successfully executing an illegal BTC withdrawal.

5.2 SRS Verification

The DV-SNARK-based BitVM2 scheme significantly reduces the size of GC and decreases off-chain
communication overhead. When instantiated with the pairing-friendly BN254 curve, the GC size
can be reduced by approximately five times. In contrast, using the Sect233k1 curve—which does
not natively support efficient pairings—can achieve a reduction of about two orders of magnitude,
compressing the GC from hundreds of gigabytes to just a few gigabytes compared to traditional
SNARKs that rely on pairing verification.

For the BN254 curve, the pairing property can be leveraged to directly verify the correctness of
the SRS [6]. However, using Sect233k1 introduces new challenges for SRS verification, as alternative
methods—such as interactive proofs or circuit-based checks—must be employed in the absence of
efficient pairings.

SRS Correctness Burden for Sect233k1. Each Designated Verifier must generate an individual
SRS (no universal reference string exists), requiring rigorous validation. When using non-pairing-

21

friendly elliptic curves such as Sect233k1, verifying SRS correctness becomes computationally in-
tensive - often exceeding the cost of GC verification itself when using methods like non-interactive
zero-knowledge (NIZK) proofs.

Combining Cut & Choose and Randomized Challenge Solution. Instead of direct SRS
verification, the protocol employs a probabilistic game to ensure SRS reliability under Sect233k1
using parameters (n,m, k):

– Cut-and-Choose Procedure:

1. The Designated Verifier generates n SRS instances and commits to each (e.g., via short
digests of the SRS and associated trapdoor).

2. The Prover randomly selects n−m instances and requests the Verifier to reveal the corre-
sponding trapdoors.

3. The Prover recomputes the SRS using the revealed trapdoors and verifies consistency with
the commitments. If inconsistencies are detected, the protocol terminates.

– Random Challenge Procedure (applied to the remaining m SRS instances):

1. The Verifier sends the full SRS data for the m instances to the Prover.

2. The Prover generates k random proofs (using random public inputs) for each SRS and sends
them to the Verifier.

3. The Verifier uses a NIZK proof to demonstrate that these proofs pass the verification circuit
associated with the committed trapdoor.

– On-Chain Deployment: The m GC circuits corresponding to the m trapdoors are deployed on-
chain. Verification results are combined using an OR logic, allowing the Prover to withdraw
funds if at least one GC circuit validates successfully. But it’s still necessary to avoid the
collusion between operators and designated verifiers, like doing a random selection during the
peg-in pre-signing phase off-chain, or in the kickoff transaction.

With parameters n = 20, m = 2, and k = 10, the probability of an honest Porver fails to pass
the DV-SNARK verification circuit in face of a malicious Verifier is bounded by:

2

n(n− 1)
· (1− α)nα2 ≤ 1

190
·
(
10

11

)20

·
(

1

11

)2

≈ 6.5× 10−6.

5.3 Parameters Used in GC-optimized BitVM2 Construction

The cryptographic parameters for BitVM2 with DV-SNARK are configured as follows:

– Label Width: 128 bits (Security against brute-force attacks).

– Poseidon2 Hash Configuration (adopted for GC circuit proving efficiency, the 32-byte result is
truncated to the higher-order 16 bytes):

• Base Field: KoalarBear prime field Fp with p = 231 − 224 + 1.

• Rate: 8.

• Permutation width: 16.

• Round Structure: 8 for external rounds and 13 for internal rounds.

– Pairing-friendly Elliptic Curve BN254 for efficient SRS verification.

– Or, Efficient Elliptic Curve for Boolean circuits:

• Curve: Ek233/F2233 : y2 + x · y = x3 + 1.

22

Table 2: Complexity comparison of the DV-SNARK verifier GC.

Metric BN254 Secp256k1

Non-free gates 5.06× 108 8.8× 106

GC communication 7.9 GB 141 MB

ZKP hash operations 1.6× 109 1.76× 107

SRS size 863 MB

On-chain setup ≈ 84 KB

On-chain assert ≈ 42 KB

On-chain disprove ≈ 16 B

• Base Field: F2233 = F2[X]/(X233 +X74 + 1).

Complexity Analysis The DV-SNARK verifier circuit based on the Secp256k1 curve comprises
approximately 8.8 million non-free gates. Our analysis considers a single garbled circuit (GC);
in practice, n distinct GC circuits are required for n verifiers.

On-chain Complexity. The total size of on-chain inputs is 268 bytes, including the SNARK proof,
public inputs, and trapdoor values. We employ Lamport signatures with a 160-bit hash output
to commit to all input bits and the output bit. For each bit, two 128-bit labels are generated as
secret keys.

The resulting on-chain communication overhead consists of: (i) a setup phase for committing
to all input bits, (ii) an assert phase revealing one label per input bit, and (iii) a disprove phase
revealing only the output label. The concrete costs are summarized in Table 2.

Off-chain Complexity. Off-chain costs include both communication and computation overheads
arising from garbled circuit transmission, structured reference string (SRS) distribution, and zero-
knowledge proof generation. A detailed comparison between BN254 and Secp256k1 is also shown
in Table 2.

5.4 Performance Testing

The primary computations within the process are concentrated in the Bridge-In phase. The As-
sertion in the Reimbursement Process only involves a proving for the DV-SNARK circuit, and the
Disprove in the Reimbursement Process only requires evaluating the GC. The key computational
steps are illustrated in the Fig. 7 .

The process begins with a DV-SNARK circuit (designed for verifying off-chain computations)
and a verifier’s Boolean circuit. First, the designated verifier generates the SRS and must subse-
quently prove its correctness or ensure its validity via a specific protocol. Then, the prover constructs
the GC and must prove the correctness of the GC.

During the Assertion phase, the prover generates a proof and discloses the input labels corre-
sponding to both the proof and the trapdoor (later revealed by the Designated verifier). If the proof

23

Fig. 7: Key Computational Steps in the Overall Workflow

is invalid, the designated verifier (or any other Challenger) can initiate a Disprove by evaluating
the GC circuit.

The measured execution times for these major computational steps are summarized in the ac-
companying hackmd doc. With the exception of the GC proving step, all other processes can be
completed quickly (within minutes) on a 16-core AMD EPYC 7R13 processor. The computationally
intensive GC proving is accelerated by 8 NVIDIA RTX 4090 GPUs. The total number of Boolean
gates is 2.0/2.4 billions, with 506/8.8 millions non-free (AND) gates for BN254/Sect233k1, and The
GC is transformed into about 344/66 billion cycles respectively. Currently, with an 8-GPU config-
uration, the Ziren system can prove approximately 24 million cycles per second. This performance
translates to a total GC proof generation time of about 4 hours for the BN254 curve and a much
faster 0.8 hours for the Sect233k1 curve, demonstrating significant potential for real-world deploy-
ment. Furthermore, since we can partition the total circuit into smaller independent sub-circuits,
the entire proving process can be substantially accelerated through parallel sub-circuit execution
with additional GPU scaling.

6 Conclusion

GOAT BitVM2 significantly advances practical zkRollups on Bitcoin by systematically extending
the canonical BitVM2 protocol.

First, GOAT BitVM2 generalizes the original BitVM2 construction for building native Bitcoin
zkRollups. This extension integrates an Atomic Swap that supports arbitrary withdrawal amounts,
together with a chain-based synchronization primitive that enables Rollup operators to share col-
lateral across multiple reimbursements in a secure and capital-efficient manner.

Second, building upon the extended BitVM2 protocol, GOAT BitVM2 introduces on-chain con-
sensus layer verification using a watchtower mechanism and a decentralized sequencer architecture,
materially enhancing the Rollup’s liveness and decentralization. Furthermore, the Universal Opera-
tor Abstraction formalizes the allocation of revenue and risk among the participating roles, thereby
synergistically incentivizing broader participation by challengers and strengthening the overall se-
curity of the network.

Third, the GOAT BitVM2 implementation demonstrates significant performance improvements
that effectively bridge the gap between theoretical design and practical application. By integrating
with the Ziren proof system, Operator reimbursement proofs can now be generated in approximately

24

https://hackmd.io/@goatresearch/BJ3Iim2-Ze

40 seconds - a substantial reduction that makes frequent on-chain verification feasible. Furthermore,
current GC proof generation times (4 hours for the SRS verification-friendly curve BN254 and 0.8
hours for curve Sect233k1 using a composed verification method) demonstrate the practical viability
of our approach.

GOAT BitVM2 establishes a solid foundation for the continued evolution of Bitcoin Layer-2
solutions. Future work will focus on strengthening the robustness and formal verification of the op-
timistic computation model, optimizing SNARK verifier’s Garbled Circuit[4] and the corresponding
proof generation to achieve sub-minute latency, enabling real-time reimbursement proof generation,
and substantially reducing operators’ reimbursement costs.

By demonstrating a fully functional implementation that effectively balances cryptographic
security with practical performance constraints, this work contributes to the broader ecosystem of
trust-minimized Bitcoin scaling solutions.

References

1. Ekrem Bal, Lukas Aumayr, Atacan İyidoğan, Giulia Scaffino, Hakan Karakuş, Cengiz Eray Aslan, and Orfeas
Stefanos Thyfronitis Litos. Clementine: A collateral-efficient, trust-minimized, and scalable bitcoin bridge. Cryp-
tology ePrint Archive, 2025.

2. V. Buterin. Ethereum: A next-generation smart contract and decentralized application platform. URL:
https://github.com/ethereum/wiki/wiki/White-Paper, 2014.

3. L. Eagen. Glock: Garbled locks for bitcoin. https://cdn.prod.website-
files.com/67cfca80708eb505376820af/68a3e174eaff71d197ac4080glock.pdf, 2025.

4. Liam Eagen and Ying Tong Lai. Argo MAC: Garbling with elliptic curve MACs. Cryptology ePrint Archive,
Paper 2026/049, 2026.

5. S. Zahur et al. Two halves make a whole reducing data transfer in garbled circuits using half gates.
https://eprint.iacr.org/2014/756.pdf, 2015.

6. Sean Bowe et al. A multi-party protocol for constructing the public parameters of the pinocchio zk-snark.
https://eprint.iacr.org/2017/602.pdf, 2017.

7. J. Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology - EUROCRYPT
2016, 2016.

8. D. Heath. Efficient arithmetic in garbled circuits. https://eprint.iacr.org/2024/139.pdf, 2024.
9. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and applications. https://www.

cs.toronto.edu/vlad/papers/XOR ICALP08.pdf, 2008.
10. Leslie Lamport. Lamport signature - short private key. 1979.
11. R. Linus. Bitvm 3s – garbled circuits for efficient computation on bitcoin. https://bitvm.org/bitvm3.pdf, 2025.
12. Robin Linus. Bitvm: Compute anything on bitcoin. URL: https://bitvm. org/bitvm. pdf-(12.12. 2023), 2023.
13. Robin Linus, Lukas Aumayr, Alexei Zamyatin, Andrea Pelosi, Zeta Avarikioti, and Matteo Maffei. Bitvm2:

Bridging bitcoin to second layers. 2024.
14. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
15. Michele Orr‘u. Revisiting keyed-verification anonymous credentials. https://eprint.iacr.org/2024/1552.pdf, 2024.
16. J. Poon and V. Buterin. Plasma: Scalable autonomous smart contracts. URL: https://plasma.io/plasma-

deprecated. pdf, 2017.
17. J. Rubin. Delbrag. https://rubin.io/public/pdfs/delbrag.pdf, 2025.
18. ZKM Team. zkmips: Universal zero-knowledge virtual machine on mips32r2 isa. 2023.
19. A. C. Yao. Protocols for secure computations. https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf, 1982.

25

	GOAT BitVM2 White Paper

