

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2017

EXAMINATION NUMBER						

MATHEMATICS: PAPER II

Time: 3 hours 150 marks

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This question paper consists of 25 pages and an Information Sheet of 2 pages (i–ii). Please check that your question paper is complete.
- 2. Read the questions carefully.
- 3. Answer ALL the questions on the question paper and hand this in at the end of the examination. Remember to write your examination number on the space provided.
- 4. Diagrams are not necessarily drawn to scale.
- 5. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated.
- 6. Ensure that your calculator is in **DEGREE** mode.
- 7. All the necessary working details must be clearly shown. Answers only will not necessarily be awarded full marks.
- 8. It is in your own interest to write legibly and to present your work neatly.
- 9. Round off to two decimal places unless otherwise stated.

FOR OFFICE USE ONLY: MARKER TO ENTER MARKS

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	TOTAL
7	14	18	11	12	15	12	14	8	12	12	15	/150

SECTION A

QUESTION 1

A study is done with twelve employees in a company to understand the relationship between the number of rest days given in a year and the productivity of each employee.

The results are shown in the table below:

Rest days given	5	2	9	1	3	12	10	4	4	5	8	6
Productivity of the employee	0,87	0,65	0,9	0,58	0,7	0,91	0,88	0,78	0,72	0,91	0,82	0,62

	er to your correlation coefficient and circle the letter that best describes relationship. Only one letter must be circled.
A	Fairly strong, negative correlation
В	Very weak, positive correlation
С	Fairly strong, positive correlation
D	Perfect, positive correlation
tne	values of A and B. Give answers correct to four decimal places.
emp	uld the regression line in (c) be used to predict the productivity of ar ployee if thirty rest days were given to the employee in a year? (Explair ranswer.)

(4)

QUESTION 2

In the Cartesian plane below, $\triangle OAB$ with O(0;0), A(2;4) and B(6;0) is drawn.

Write down the	equation of the	ne nernendi	cular hisactor (of OB	
write down the	equation of the	ie perpendit	diai bisector t	oi Ob.	
Determine the	equation of th	e circle pass	sing through O), A and B.	
			sing through O		

(a)		31°.cos 22° + sin 22°.cos 31° = k , then without the use of a ator, determine the value of the following in terms k :
	(1)	sin 53°
	(2)	cos 143°
	(3)	sin 75°.sin 22° + cos 75°.cos 22°

Prove that $\frac{\cos \theta}{\sin 2\theta}$	$-\frac{\cos 2\theta}{2\sin \theta} = \sin \theta.$

(3)

QUESTION 4

In the Cartesian plane below, circle centre M is drawn.

- A is a point on the *x*-axis.
- Point B lies on the circle and the *x*-axis.
- Point C lies on the circle and the *y*-axis.
 The equation of the circle is (x 3)² + (y + 1)² = 25.
 Line AC is a tangent to the circle at C.

Determine the coordinates o	f point C.	

Datamaia a tha lama	th of AD I agus you		. to our decimal	-1
Determine the leng	ith of AB. Leave you	ur answer correct	to one decimal	piace.

(5)

QUESTION 5

(a) Prove the theorem that states the angle between a tangent and a chord is equal to the angle in the alternate segment.

Given: DE is a tangent to circle centre O at A. B and C are points on the circle.

Required to prove:	
Construction:	
Proof:	
	_

- (b) In the diagram below, two circles are drawn intersecting at B and F.
 - CF is a tangent to the smaller circle at F.
 - A and G are points on the circumference of the smaller circle.
 - Chords FC and BD of the larger circle intersect at E.
 - ABD is a straight line.
 - $\hat{C} = 70^{\circ} \text{ and } \hat{D} = 52^{\circ}.$

Determine the size of	etermine the size of \ddot{G}_1 .				

A number of learners were asked how many WhatsApp messages they sent during a day.

The results are summarised in the table and the cumulative frequency curve given below.

WhatsApp messages sent	Frequency
$50 \le x < 100$	20
100 ≤ <i>x</i> < 150	30
150 ≤ <i>x</i> < 200	Р
200 ≤ <i>x</i> < 250	М
$250 \le x < 300$	80
$300 \le x < 350$	70
$350 \le x < 400$	50

How many learners we	re asked for in		
Determine the values o	of P and M in th		

(e) Calculate an estimate for the mean WhatsApp messages sent per day.

(3)

(f)

I	How would this affect the median? Explain.
_	
-	
ı	How would this affect the standard deviation? Explain.
_	
-	
I	In which direction would the data be skewed? Explain.
-	
_	

SECTION B

QUESTION 7

In the diagram below, $\triangle AOC$ with A(2;6) and O(0;0) is drawn.

- C is a point on the *x*-axis.
- AO = AC.

(a)

- E lies on the *y*-axis and F lies on the *x*-axis.
- Line EF goes through the points B and D on OA and CA respectively.
- The equation of EF is given by 2y + x = 10.

Determine the coordinates of B and hence the area of ΔEBO.

-		

IEB Copyright © 2017

In the Cartesian plane below, circle centre O(3;1) is drawn.

- A and C(0;–2) are fixed points on the circle.
- CÂB = 30°.
- B is a variable point on the circle.

(a)	(1)	Determine the length of OC.
	(2)	B moves along the circle until BC is parallel to the <i>x</i> -axis. Write down the new coordinates of B.

Вm	oves from its original position along the circle in an anti-
clock	wise direction until the area $\triangle OBC = \frac{9}{2}$ square units.
	_
abov	the shortest distance that B has to move along the circle for the e to occur.
abov	_

In the diagram below, a circle passing through A, B and D is drawn.

• CD is a tangent to the circle at D.

(a)	Prove that	AADCII	I ADBC.

_____ (4)

(b) Show that $AB.BC = DC^2 - BC^2$.

(4) **[8]**

In the diagram below, two circles touch internally at A.

- AB is the diameter of the larger circle and AL is the diameter of the smaller circle.
- S and L are the centres of the circles.
- D is a point on the smaller circle and C is a point on the larger circle. ADC is a straight line.
- M is a point on LB so that MN || LC.

Determine the value	of SL AB.
If AB = 30 units and	$\frac{BN}{NC} = \frac{7}{9}$, then determine the length of LM.

- (a) In the diagram below, a circle with centre O is drawn.
 - OD ⊥ AC and OD and AC intersect at E.
 - A, B, C and D lie on the circumference of the circle.

(1)	Determine the length of BE in terms of AO and ED.	
		_
		_ (2)
(2)	Prove that $(2AO - ED)^2 = BC^2 - AE^2$.	_ , ,

Prove that $(2AO - ED)^2 = BC^2 - AE^2$.

(4)

- (b) In the diagram below, a circle is drawn passing through A, B, C and D.
 - $B\hat{E}D = \theta$.
 - BE and ED are tangents at B and D respectively.

(5)

QUESTION 12

(a) In the diagram below, three EQUAL circles of radius 3 units are positioned so that they touch each other. BT is a vertical common tangent to two circles and CD is a horizontal common tangent to the same circles.

Show that the length of BT = $3\sqrt{3} + 6$.

- (b) Three **identically sized** cylinders are stacked on top of each other as shown in the diagram below. They are anchored down by a piece of rope from A to B and another piece of rope from B to E.
 - A, C, D and E lie on the same horizontal plane.
 - B, C and D lie on the same vertical plane.
 - B is the highest point on the cylinder.
 - The angle of elevation from A to B is 50°.
 - BÊA = 70°.
 - The radius of each cylinder is 3 metres.

(1)	Calculate the length of AB (the rope required to anchor the cylinder down).

(4)

2)	If the second rope EB has a length of 13 metres then determine the straight-line distance between E and A.	
		ı

Total: 150 marks

73 marks