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ABSTRACT

BACKGROUND: Cumulative stress is a major risk factor for developing major depressive disorder (MDD), but not
everyone experiencing chronic stress develops MDD. In those who do not, it is unclear at what point or by what
mechanism a trajectory of stable resiliency emerges.

METHODS: Utilizing a 10-day repeated social defeat stress (RSDS) model for MDD, we observed that a critical
period between 7 and 10 daily defeats marks the phenotypical divergence of resilient from susceptible male
mice. Cell-type selective electrophysiology, chemogenetics, optogenetics, and RNA quantification were used to
investigate the nature of stress effects on neuroadaptation in the oval nucleus of the bed nucleus of the stria
terminalis (BNSTov) required to determine resilience.

RESULTS: In response to ongoing stress, corticotropin-releasing factor (CRF', but not CRF~) neurons of the
BNSTov displayed a sustained increased firing rate in resilient but not susceptible mice. This neurophysiological
adaptation was self-sustaining, but only after 7 critical stress exposures, indicating that the process of
developing resilience is dependent on stress history.

CONCLUSIONS: Our study reveals a novel process by which individuals may persist in the face of adversity by way
of stress-provoked activation, not inhibition of a key CRF limbic region that establishes a pathway to resilience.

https://doi.org/10.1016/j.bpsgos.2025.100656

Major depressive disorder (MDD) is a crippling, heterogeneous
neuropsychiatric condition with high morbidity and lifetime
prevalence (1,2). Major life stressors are key precipitants in the
onset of an episode (3,4). Cumulative stress causes numerous
psychological insults that predispose people to neuropsychiatric
conditions (5-7). Many studies have explored individual differ-
ences in stress susceptibility or resiliency, but the process critical
to driving the divergence in phenotypes remain elusive. With the
odds of treatment failure increasing with subsequent depressive
episodes (2,8,9) and increased depression risk associated with
cumulative stress, a potentially more effective strategy would be
to target the mechanisms mediating resilience, thereby
enhancing the ability to cope with cumulative stress.

Resiliency is defined as the “process of adapting well in the
face of adversity, threats, or significant sources of stress” (10—
12). Repeated social defeat stress (RSDS) induces robust
depression-like behavioral phenotypes in approximately two-
thirds of mice (7,13). The standard 10-day RSDS protocol
has been widely used to identify and study neurobiological
features of susceptible and resilient subpopulations (13-21).
Studies on stress vulnerability often test hypotheses after
establishing vulnerable subgroups, making the processes that
led to such phenotypic diversification unclear.

The bed nucleus of the stria terminalis (BNST) is well posi-
tioned in the social salience network to integrate external cues
with internal states to influence the outcome and context of
social interactions (22-25). The oval nucleus of the BNST
(BNSTov) is a stress-sensitive subregion that is a key candidate
region for encoding stress modulation of social behavior
through its projections to areas such as the ventral tegmental
area (VTA) (26-29) and dorsal raphe (30,31). Corticotrophin-
releasing factor (CRF) neurons of the BNSTov (BNSTovC")
are a significant output of this region and can influence affective
states (32-35). CRF receptor type 1 (CRFR1) has been
confirmed to be distributed on BNSTov®"™ neurons, and
CRFR1-mediated hyperexcitation of these BNSTov°RF neurons
has been shown to encode female-biased susceptibility to
anxiety (36). Since BNSTov "™ neurons are thought to promote
arousal and adaptive responding according to stress-related
changes in internal state (22,23,25,37-43), we hypothesized
that they may play a role in establishing resiliency to repeated
social stress.

With the 10-day RSDS paradigm, we used cell-type—selective
ex vivo electrophysiology, chemogenetics, optogenetics, and
in vivo fiber photometry to interrogate the BNSTovCRF system to
explore its role in the divergence of susceptible and resilient
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phenotypes. Unexpectedly, we observed that resiliency entails
cumulative stress history—dependent neuroadaptive changes,
whereas susceptibility emerges in the absence of similar adap-
tations. Activation of BNSTov°™" neurons using DREADDs
(designer receptors exclusively activated by designer drugs)
during social defeat led to a resilient phenotype while inhibition
caused susceptibility. Finally, using RNAScope and opto-
genetics, we provided intriguing evidence for a potential role of
Crfr1 in BNSTovCRF neurons in mediating resilience.

METHODS AND MATERIALS

Mice

The study used male, wild-type, Crf-ires-Cre (Jackson Labs:
011087), ai1l4 (Cre-responsive tdTomato reporter mouse;
Jackson Labs: 007915), ai32 (Cre-responsive ChR2
[channelrhodopsin-2)/fused with eYFP [enhanced yellow fluo-
rescent protein]; Jackson Labs: 012569) mice on C57BL/6J
background that were bred at the Icahn School of Medicine at
Mount Sinai ISMMS) and were used between 6 and 7 weeks at
the start of experimental manipulations. All experiments were
approved by the Institutional Animal Care and Use Committee
and comply with institutional guidelines for the Animal Care and
Use Committee set forth by ISMMS.

RSDS Paradigm

The RSDS paradigm was performed according to published
protocols (6,19,21,44-47). Briefly, CD1 aggressors were singly
housed in cages (26.7 cm width X 48.3 cm depth X 15.2 cm
height; Allentown Inc.) at least 24 hours before the start of the
experiment on one side with a clear perforated Plexiglas
divider. Social stress consists of physical and sensory stress
components.

Viral Constructs

For DREADD experiments in CRF neuronal populations,
CRF-ires-Cre animals were injected with AAV5-hSyn-DIO-
hM4D(Gi)-mCherry (Addgene: 44362-AAV5) (=7 trillion),
AAV5-hSyn-DIO-hM3D(Gqg)-mCherry  (Addgene: 44361-
AAV5) (=7 trillion), and AAV5-hSyn-DIO-mCherry (Addg-
ene: 50459). For fiber photometric recordings, CRF-ires-Cre
animals were injected with AAV9-syn-FLEX-jGCaMP71-
WPRE (Addgene: 104492-AAV9) (>1 trillion). All viruses
were purchased from Addgene.

Clozapine N-Oxide Drinking Water Construct

Clozapine N-oxide (CNO) was obtained from Hello Bio (cat. #
HB6149). The dry chemical was dissolved in drinking water
obtained from the vivarium and diluted such that each mouse
received 5 mg/kg/day based on previous studies. CNO was
made fresh each day for the 3 days it was administered. CNO
solutions were protected from light throughout the experimental
procedure. On average, mice consumed approximately 4 to 5
mL of water per day. Water bottles and mice were weighed daily.
Please see the Supplemental Methods for further details.

Statistical Analysis

Animals were randomly assigned to control and experimental
groups, and all experimenters were blinded. Mice were
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excluded if viral infection was off target. No data were
excluded for other reasons. Two-tailed Student’s t tests were
used for comparisons of 2 experimental groups. For para-
metric datasets, comparisons among 3 or more groups were
performed using one or two-way ANOVAs followed by Tukey’s
or Bonferroni post hoc tests. For all tests, p < .05 was the
cutoff for significance. Statistical analyses were performed
using GraphPad Prism version 9.3.1 software. For data not
normally distributed, nonparametric analyses were performed.

RESULTS

Susceptible Versus Resilience Phenotypes Emerge
Between 7 and 10 Daily Episodes of SDS

RSDS produces divergent and enduring resilient/susceptible
phenotypes following 10 episodes of SDS (6,19) and enables
the investigation of the consequences of stress accumulation
(5,7). To examine the temporal divergences of resilient and
susceptible phenotypes in mice, a modified RSDS protocol
was used in which mice were subjected to discrete numbers
of social defeat episodes (SDEs) interspersed with social
interaction (SI) and sucrose preference (SP) tests administered
after 1, 4, 7, and 10 SDEs (Figure 1A-D). The Sl ratio is a
behavioral score of the Sl test and measures the time spent in
the area proximal to the enclosure of a novel social target (Sl
zone) (19).

Surprisingly, we found that the susceptible phenotype
emerged discretely between 7 and 10 SDEs (Figure 1E and
Figure S1A) (Sl ratio: 2.062 *= 0.226 after 7 SDEs to 0.559 *
0.093, p < .0001, n = 11 for susceptible and 1.967 + 0.188 [7
SDEs] to 1.554 = 0.163 [10 SDEs], p = .2929, n = 11 for resil-
ient). There were no significant differences in Sl ratios after 7
SDEs between mice that went on to become susceptible versus
resilient after 10 SDEs (mean: 2.062 + 0.226 vs. 1.967 + 0.188,
two-tailed t test, p = .7483, n = 11/group) (Figure S1B, C). This
effect was not due to repeated Sl tests (Figure S2D-F). Resilient
mice had an indistinguishable Sl ratio from all mice after 7 SDEs,
while susceptible (10 SDEs) mice had an Sl ratio significantly
lower than both groups (Figure 1F, G). Previous studies reported
that RSDS produces susceptible and resilient phenotypes after
10 SDEs in a bimodal distribution (19). Here, we observed a
unimodal distribution of social interaction toward a novel
conspecific in 7-SDE mice but a bimodal distribution in 10-SDE
mice, consistent with the emergence of distinct resilience
and susceptible phenotypes (Kolmogorov-Smirnov, p <
.0001) (Figure 1H-J). The time spent interacting with a novel
conspecific was significantly less in susceptible 10-SDE mice
compared with the 7-SDE and 10-SDE resilient mice, which
were indistinguishable (Figure 1K). The phenotypic diver-
gence was dependent on the number of SDEs rather than the
passage of time and dependent upon the anterior dorsal
BNST (Figures 1G and 2A-E).

Divergence in BNSTov°"F Neuronal Firing Rate
Tracks the Emergence of Resilient and Susceptible
Phenotypes

CRF neurons of the BNST are a major output source of the
BNSTov that are sensitive to chronic stressors (25,48-50).
Thus, we hypothesized that chronic stress would alter

2 Biological Psychiatry: Global Open Science March 2026; 6:100656 www.sobp.org/GOS


http://www.sobp.org/GOS

Biological
Psychiatry:
GOS

Stress Promotes Resilience via CRF Neurons

A Repeated x10 B Repeated social defeat stress Socialtintteraction D Sucrosié)sr(taference
es
,l . |( RSDS episodes j [ ]
6 ! ! 1 4 7 10 o amm—n
1 — @ no target | L 7
4 | ¢ ' ' ' 5 " _d
" — SI/SP SI/SP SI/SP SI/SP o
Social S | N
defeat . oi‘tsl:ct Tests Tests Tests Tests | target |
10 min ~24 h
Control ~ ---. |§
H — *
E Suscel;.)tlble |* ns F . ns G ns ns
Resilient * _— T L.
2.5+ _ kk kkkk kkkk kkkk
’ ek *kkk bk
ke 51
5 ® 8100+
c 44 CICJ
)
5 5 804
o k) o)
‘g § ot 60
s » B 40-
g o
1) g 20
0.0 T T T 1 @ 0-
1 4 7 10 X
RSDS episodes (#)
10
H  Rspsx7 ' RSDS x 10 J . Stressed X7 — %
2 % Susceptible —'*
Stressed x7 ® Susceptible @ Resilient O SE5 ¥ Ins
ES 7 Resilient ¥
15 15 38
©
/ ) A A—
~ 0 50 100 150
.8 104 _8 10 / K Social interaction time (s)
I €
5 G
; g Stressed x7 E
5 4 5 1
Susceptible : ns
E
I/ | I Resilient - *
0 T T 1 0 T T 1 : : ;
0 50 100 150 0 50 100 150 0 50 100 150
Social interaction time (s) Social interaction time (s) Social interaction time (s)

Figure 1. Susceptible and resilient subgroups emerge between 7 and 10 daily episodes of SDS. (A) Experimental design for RSDS. (B) Experimental
timeline of SDS and behavioral tests: Sl and SP. (C) Sl test schema involving target and no-target trials. (D) SP test schematic. (E) Effect of cumulative SDS on
social interaction measured as Sl ratios after 1, 4, 7, and 10 SDEs (n = 11-18 mice/group), two-way ANOVA interaction Fg 134 = 5.783, ***p < .0001, row factor
F3134 =12.11, ™p < .0001, column factor F, 134 = 4.086, “p < .05; Tukey’s post hoc test susceptible vs. resilient ***p < .0001, susceptible vs. control *p <
.01, resilient vs. control p = .2751. Sl test susceptible (Sl test stressed X7 vs. stressed X10) ***p < .0001. (F) Aggregated data on Sl test across experiments.
One-way ANOVA treatment F3 109 = 14.61, ***p < .0001. Tukey’s post hoc test control vs. stressed X7 *p < .05, control vs. susceptible *p < .01,
stressed X7 vs. susceptible ***p < .0001, susceptible vs. resilient ***p < .0001 (n = 25-37 mice). (G) SP test. One-way ANOVA treatment F3 o3 = 24.06, ***p
< .0001. Tukey’s post hoc test control vs. stressed X7 p = .77, control vs. susceptible ***p < .0001, control vs. resilient p = .9387, stressed X7 vs. sus-
ceptible ***p < .0001, stressed X7 vs. resilient p = .984, susceptible vs. resilient “***p < .0001 (n = 23-25 mice). (H) Distribution of stressed mice that
underwent 7 SDEs. (l) Distribution of mice that underwent 10 SDEs sorted into susceptible and resilient mice. (J) Cumulative distribution of all stressed mice.
Kolmogorov-Smirnov (distance) 0.2054, susceptible vs. resilient ***p < .0001. (K) Time spent interacting socially with a novel conspecific. One-way ANOVA
F2 201 = 76.63, ™ p < .0001. Tukey’s post hoc susceptible vs. resilient **p < .001, susceptible vs. stressed X7 ***p < .0001, stressed vs. resilient p = .4984
(n = 72 susceptible, 64 resilient mice). All data represent mean = SEM. *p < .05, **p < .01, **p < .001, ***p < .0001. ANOVA, analysis of variance; ns, not
significant; RSDS, repeated social defeat stress; SDE, social defeat episode; S, social interaction; SP, sucrose preference.
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BNSTov°RF neuronal activity, coinciding with the divergence
in resilient and susceptible behavioral phenotypes. To test this
hypothesis, Crf-ires-Cre;ai14 (tdTomato) mice (28,51-54) were
subjected to either 7 or 10 daily SDEs, and cell-attached
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ex vivo electrophysiological recordings were conducted in
the BNSTov (Figure 2A, B). CRF*, but not CRF~, BNSTov
neurons of 7-SDE mice had significantly increased firing rates
compared with stress-naive control mice. CRF~ neuronal
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Figure 2. Firing rate alterations in BNSTovCRF neurons occur as adaptation to social stress, persisting in resilient but not susceptible mice. (A) Mouse
genotype and timeline of cell-attached electrophysiology experiments. (B) Fluorescence-guided cell-attached electrophysiology setup, brain slice of the
BNST (CRF cells, tdTomato) and DIC image of CRF neurons; scale bar 0.63 mm. (C) Representative trace of BNSTovCRF-positive and negative neurons of
control, stressed (SDEs X 7), susceptible, and resilience mice. (D) Firing rate of CRF* neurons (n = 9-31 cells/group), ****o < .0001, one-way ANOVA, Tukey’s
multiple comparison’s test, control vs. stressed (SDEs X 7) *p < .01, susceptible vs. resilient *p < .01, susceptible vs. stressed (SDEs X 7) ***p < .0001.
Firing rate of CRF ™~ neurons (n = 7-15 cells per 4-6 mice/group), one-way ANOVA, F3 45 = 3.113, *p < .05, Tukey’s multiple comparison’s test, control vs.
stressed X7 p = .9192, control vs. susceptible p = .0769, control vs. resilient p = .1742, stressed (SDEs X 7) vs. susceptible p = .1370, stressed X7 vs.
resilient p = .3219, susceptible vs. resilient p = .9673. (E) Correlation of firing rate with social interaction ratio: CRF*, R?=0.5726, *p <.05; CRF ™, R? =0.0609,
p =.5219. (F) Representative sample of burst firing. (G) Representative sample of tonic firing. (H) Percentage of bursting cells per animal group. (I) Percentage
of spikes within burst. (J) Number of spikes per burst. (K) Number of bursts per cell. (n = 10-52 cells per 4-6 mice/group). All data represent mean = SEM.
*p < .05, *p < .01, **p < 0.001, ***p < .0001. ANOVA, analysis of variance; BNSTov, oval nucleus of the bed nucleus of the stria terminalis; CRF,
corticotropin-releasing factor; DIC, differential interference contrast; ns, not significant; SDE, social defeat episode.
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Figure 3. Chemogenetic modulation of BNSTovCRF neurons bidirectional recapitulates behavioral tipping point. (A) Viral targeting of the BNSTov. (B) Experimental
design of chemogenetic manipulation of BNSTov neurons with CNO-drinking water construct. (C) Sl test, two-way ANOVA F3 gg = 18.01, row ***p < .0001, row factor
F368=9.965, p =.2616 (time), row factor X time F; gg = 1.281, **p < .0001, Sidak’s multiple comparisons test mCherry (S), **p = .0017 (n = 10 mice); mCherry (R), p =
.1322 (n = 9 mice); hM4Di, ***p < .0001 (n = 10 mice); hM3Dgq, **p = .0018 (n = 9 mice). (D) SP test. One-way ANOVA treatment F3 o7 = 8.310, **p < .001, Tukey’s post
hoc testing susceptible vs. hM4Di, p = .9619; susceptible vs. resilient, **p < .01; susceptible vs. \M3Dq, **p < .01; hM4Di vs. resilient, **p < 0.01; hM4Di vs. hM3Dq, *p <
.05; resilient vs. hM3Dq, p = .9368 (7-9 mice per group). (E) Distance traveled, one-way ANOVA F3 »7 = 1.031, p = .3944. (F) Percentage of susceptible or resilient mice:
DIO-hM4Di, 100% susceptible; DIO-hM3Dg, 89% resilient and 11% susceptible; mCherry, 40% resilient and 60% susceptible. %% = 15.66, **p < .001 (1 =21 mCherry,
10 hMDi, 9 hM3Dqy); Fisher’s post hoc test mCherry vs. hM4Di, *p < .05; mCherry vs. hM3Dq, *p < .05; hM4Di vs. hM3Dq, ***p < .0001. (G) Repeated social defeat
DREADDs manipulation (4-7 episodes of stress), two-way ANOVA treatment F; 16 = 0.01749, p = .8964; Sl test 1 vs. Sl test 2, F4 16 = 0.2377, p = .6325; interaction
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firing did not differ between groups (Figure 2C, D). Moreover,
there was a strong correlation between firing rate and the SI
ratio in CRF" but not CRF~ neurons in 10-SDE mice (CRF™,
R? = 0.5725, *p = .0113; CRF~ R? = 0.06096, p = .5219)
(Figure 2E). CRF neurons display both burst and nonburst
firing patterns (39,55,56) (Figure 2F). Burst firing patterns were
prominent in resilient and 7-SDE mice compared with sus-
ceptible and control mice (Figure 2H). Additionally, percentage
spikes within burst were higher in 7-SDE and resilient mice
compared with susceptible 10-SDE mice (one-way analysis of
variance [ANOVA], p = .0004) (Figure 2I) but not susceptible or
control mice. The number of spikes per burst and number of
bursts per cell were not significantly different between the
groups (Figure 2J, K). These data and correlation analysis
suggest the possibility that there is a causal link between the
neuronal activity of BNSTovC"" neurons and the divergence of
behavioral phenotypes.

BNSTovC"F Neurons Bidirectionally Modulate the
Emergence of Resiliency

To test the hypothesis that BNSTov®R" neurons regulate and
maintain resilience over the last 3 episodes of RSDS, we
injected Crf-ires-Cre mice with AAVs (adeno-associated vi-
ruses) encoding Cre-dependent excitatory (DIO-hM3Dq),
inhibitory (DIO-hM4Di) DREADDs, or mCherry construct
(control) into the BNSTov and administered CNO via drinking
water (57-59) (Figure 3A, B). The mCherry control mice
exhibited both susceptible and resilient phenotypes (Sl ratio
<1.0 and =1.0, respectively) in approximately a 60:40 ratio as
expected (6,19) (Figure 3C, F). Interestingly, mice injected with
inhibitory DIO-hM4Di displayed a robust susceptible pheno-
type, while DIO-hM3Dqg mice displayed resilient phenotypes
following CNO drinking water administration (Figure 3C).
Moreover, none of the DIO-hM4Di + CNO mice went on to
develop resilience (0/10, SI > 1.0), while 89% (8/9, SI = 1.0) of
the DIO-hM3Dq mice were resilient (Figure 3C, F). Notably, the
social defeat experience was not affected by the DREADD
manipulations (Figure 3A, B). The SP test—a test of hedonic
behavior—revealed differences between mCherry-susceptible
(mCherry [S]) and resilient (mCherry [R]) mice that were
mirrored in DIO-hM4Di and hM3Dqg mice, respectively.
mCherry (S) and hM4Di mice displayed a significant decrease
in SP relative to mCherry (R)- and hM3Dg-injected mice
(Figure 3D). There were no significant differences in locomo-
tion (Figure 3E). The chemogenetic manipulation also pro-
duced bidirectional effects on anxiety-like behavior in elevated
plus maze and open-field tests (Figure S4). Surprisingly, mice
injected with hM3Dq DREADDs went on to become resilient
(Figure 3C), although activation of Crf neurons of the BNST
has previously been shown to produce depressive- and
anxiogenic-like responses (25,32,38,49,52,60). Interestingly,
resilience was established if BNSTovC®F chemogenetic
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activation occurred between 7 and 10 SDEs; excitatory
hM3Dqg DREADD activation during episodes 4 to 7 or 10 to 13
was not associated with resiliency (Figure 3G-l), suggesting
that stress history plays a critical role in the behavioral out-
comes of CRF modulation. Modulating Crf neurons with
inhibitory hM4Di or excitatory hM3Dqg DREADDs between 8
and 10 SDEs led to enduring susceptible or resilient pheno-
types, respectively, up to 6 weeks after CNO manipulation
(Figure S6). These observations strongly support that the
behavioral outcomes induced by the activation of BNSTovCRF
neurons are stress history dependent.

Calcium Dynamics Underlying Stress Adaptation

To draw a link between neural changes and behavior in vivo,
we combined fiber photometry (QCAMP7f) with excitatory or
inhibitory DREADDs (Cre-dependent -hM4Di, -hM3Dq
DREADDs, or mCherry viral vectors) to mimic the neuro-
adaptive changes in BNSTov°R" neurons and bidirectionally
drive the development of resilience/susceptibility (Figure 4A,
B). CNO was administered via drinking water over the last 3
SDEs. We hypothesized that calcium-encoded neural activity
may diverge in susceptible/resilient mice concomitant with the
display of their respective behaviors on the Sl test. When
comparing changes in calcium-encoded neural dynamics
between Sl tests 1 and 2, mCherry (S) mice showed no dif-
ference, whereas mCherry (R) mice developed an increase
concomitant with the display of resilience (Figure 4C-E), not
observed in mice enduring only 7 SDEs. These findings sug-
gest that the persistence of neural activity across SDEs 8 to 10
is associated with resiliency.

During Sl test 1, similar to control mice, DREADDs-injected
mice experienced a decrease in calcium-related neural activity
upon initiating Sl with a novel conspecific (Figure S7A), whose
neural pattern was observed in both no-target and target trials
(Figure S7B). In hM4Di-injected mice, there were no significant
differences in neural activity during Sl test 1 and 2 trials,
similar to control mCherry (S) mice (Figure 4F-H and
Figure S7A-C). As was observed in the resilient (mCherry
[R]) mice, the hM3Dg-injected group showed an increase in
calcium-encoded neural activity (Figure 4F-H). Mice injected
with Cre-dependent hM4Di showed a significant decrease in
calcium-related neural activity. In contrast, Sl initiation led to
increased activity in DIO-hM3Dg-injected mice (Figure 4F-H).
There were no significant differences in the S| of mice sub-
jected to 7 SDEs, but differences emerged following 3 addi-
tional SDEs, with a subset of mice becoming susceptible and
resilient (mCherry[R]/[S]) or activating/inhibiting DREADD
promoting resiliency and susceptibility in the direction pre-
dicted (Figure 4l). We observed a strong correlation between
the Sl ratio and calcium activity only after 10 SDEs (Figure 4J).
There were no significant differences observed in calcium-
based neuronal activity upon Sl with a novel conspecific in

F1,16 = 0.07055, p = .6218 (n = 5-6 mice/group). (H) RSDS DREADDs manipulation (7-10 episodes of stress), two-way ANOVA treatment, F; 5, = 8.675, *p <
.01; Sl test 1 vs. Sl test 2, F1 2, = 2.549, p = .1247; interaction Fq o = 2.549, p = .1247. Sidak’s post hoc test Sl test 1 vs. Sl test 2, control, p = .5533; DIO-
hM3Dgq, *p < .05 (n = 6-7 mice/group). (I) RSDS DREADDs manipulation (10-13 episodes of stress), two-way ANOVA treatment, F; 30 = 1.192, p = .2623. S|
test 1 vs. Sl test 2, Fy 30 = 0.3132, p = .2836. Interaction F 30 = 0.2623, p = .5799. All data represent mean = SEM. *p < .05, *p < .01, **p < .001, **p <
.0001. ANOVA, analysis of variance; BNSTov, oval nucleus of the bed nucleus of the stria terminalis; CNO, clozapine N-oxide; DREADD, designer receptors
exclusively activated by designer drugs; ns, not significant; RSDS, repeated social defeat stress; Sl, social interaction; SP, sucrose preference.
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Figure 4. BNSTovCRF calcium-dynamics encode stress effect on social interaction. (A) Viral targeting of the the BNSTov. (B) Experimental design of
multiplexed chemogenetics with drinking water-CNO delivery and fiber photometry. (C-F) Representative calcium recordings of mCherry susceptible (S),
mCherry resilient (R), hM3Dq, and hM4Di groups, respectively. The vertical scale bar is equal to a z score of 1, and the horizontal scale bar is equal to 10
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mice subjected to 7 SDEs (Figure S7A, B) or in the absence of
Sl (Figure S7C). In contrast, after 10 SDEs, mCherry (R)- and
DIO-hM3Dg-injected mice displayed significantly greater
neuronal activation upon social contact relative to mCherry
(S)- and DIO-hM4Di-injected mice (Figure S7D). Despite the
difference in time spent interacting with a novel conspecific,
the number of interaction zone entries was not significantly
different nor were differences in distance traveled (Figure 4K
and Figure S7E). These data suggest that BNSTovCR"
neuronal dynamics are differentially altered by stress modu-
lation in accordance with phenotypical display resiliency/
susceptibility.

Crfr1 Expression in BNSTov®"F Neurons Mirrors
the Behavioral Emergence of Resilience

We observed a stress-induced enhancement in firing rates of
BNSTovC"F neurons in resilient mice. To explore the effect of
this BNSTov°"F stress modulation on CRF receptor trans-
mission, we used RNAScope in situ hybridization to quantify
Crfr1 and Crfr2 in accordance with stress history. Mice were
subjected to either 7 or 10 daily SDEs, and the BNST and Crfr1
and Crfr2 genes were assessed (Figure 5A-C) due to their
reported role in mediating stress responses (28,61-63). The
percentage of CRFR1-expressing neurons among CRF-
expressing neurons was higher in mice subjected to 7 SDEs
than in susceptible mice but not significantly different than
resilient mice (Figure 5D). In contrast, there were no significant
differences in BNSTov neurons co-expressing Crfr2 and Crf
messenger RNA (mRNA) across groups of mice (Figure 5E).
The overlap between Crfr1 and Crf in the BNST was signifi-
cantly greater in the oval nucleus than in anterolateral, ante-
romedial, and ventral subregions of the anterior dorsal BNST
(Figure 5C, F).

To explore the role of firing rate changes on gene expression
and the development of resiliency, we optogenetically stimu-
lated BNSTov®"F neurons using transgenic Crf-Cre::ai32 mice,
which express ChR2 in Crf-containing neurons (64) (Figure 5G).
Stimulation frequency of 5 Hz was used to mirror the average
firing rate observed in the spontaneous firing rate of resilient
mice (Figure 2D). Mice received 15 minutes of 5-Hz photo-
stimulation of BNSTov®"" neurons following physical stress
during SDEs 8 to 10. The compartment divides the aggressor
cage in half by a clear plexiglass that allows for continuous
sensory cues (Figure 5H, I). Photostimulation of Crf::ChR2 mice
led to a significantly higher Sl ratio and greater percentage
resilient than Crf::tdTomato mice (89% vs. 33%) when stimu-
lated during SDEs 8 to 10 (Figure 5J). Surprisingly, Crf::ChR2
mice that received photostimulation but were not subjected to
SDEs 8 to 10 showed a significant decrease in the Sl ratio and

Stress Promotes Resilience via CRF Neurons

100% of the mice, becoming susceptible (0/6, SI = 1.0)
(Figure 5J). Photostimulation paired with SDEs 8 to 10
increased the percentage of cells co-expressing Crfr1 mRNA in
CRF* neurons relative to mice that experienced photo-
stimulation in the absence of additional stress (Figure 5K, L).
Additionally, we obtained slice preparation from the opto-
genetically induced resilient mice and performed cell-attached
single-unit recordings from BNSTov ChR2-expressing CRF
neurons (Figure S8A). Our recording data showed that opto-
genetic stimulation reliably induced 2.5, 5, and 10-Hz spike
responses as expected (Figure S8B) and interestingly triggered
burst firing after the 5-Hz optical stimulation (Figure S8C, D).
Importantly, bath-applied CRFR1-selective antagonist NBI
27914 significantly decreased the firing rate of tested BNSTov
ChR2-expressing CRF neurons (Figure S8E). We have
confirmed the correct placement of optical fibers for these
experiments (Figure S8F). Optogenetic stimulation in Crf-
Cre::ai32 mice may activate both BNSTov- localized CRF
neurons and CRF™ afferent inputs from extra-BNSTov regions.
However, results consistent with previous chemogenetic ex-
periments, together with specific optogenetic activation fre-
quency (5 Hz), support the conclusion that the observed effects
are primarily mediated by BNSTov°e"" neurons. In summary,
these data show that maintenance of resiliency requires SDS.
BNSTovCRF activation is correlated with the upregulation of
Crfr1 expression in a stress history—-dependent manner.

DISCUSSION

The RSDS paradigm was modified to observe the effects of
cumulative stress on neuroplasticity in regions critical for
mood regulation. Indeed, our work has uncovered a discrete
window of neuronal and behavioral plasticity between 7 and
10 SDEs during which susceptible and resilient phenotypes
are established. By capturing behavioral, electrophysiological,
and in vivo fiber photometric measures during the intra-SDS
period, we uncovered the mechanisms underlying the estab-
lishment of resilience. We hypothesized that the region would
be instrumental in processing contexts associated with social
stress. Indeed, we observed that individual differences in
stress effects on social behavior are encoded by BNSTovCR"
neurons. Prior studies have implicated the overactivation of
CRF neurons in the BNST as being prodepressive and anx-
iogenic (29,38,49,50,52). We observed that Cre-dependent
hM3Dq action produced resilient mice only after a certain
dose of daily stressors (7 SDEs), suggesting that the BNSTov
may be tightly modulated based on stress history. In addition
to the difference between cumulative stress and acute stress
(65), the heterogeneity of CRF neurons in different subregions
of the BNST may explain the correlation between the

seconds. (D-G) Representative averaged trace centered around interaction bout for the 4 groups stated above. (E) Two-way repeated-measures ANOVA row
factor F3,14 = 1.401; pre- vs. post-CNO Fy 14 = 0.8179; subject F14,14 = 1.195; row X Sl test 1/Sl test 2, F5 44 = 9.343, *p < .01. Sidak’s post hoc test,
susceptible vs. resilient, p = .137 vs. *p = .05, respectively (n = 4 mice/group). (H) hM4Di vs. hM3Dq, p = .3069 vs. *p < .05, respectively (n = 4-5 mice/group).
(I) Sl test 1 social interaction test. One-way ANOVA F3 15 = 0.291, p = .8308 (n = 5 mice/group). Sl test 2 social interaction test, one-way ANOVA F3 16 = 17.83,
***p < ,0001; Tukey’s post hoc test, susceptible vs. resilient, ***p < .0001; susceptible vs. hM3Dq, **p < .001; susceptible vs. hM4Di, p = .0762; resilient vs.
hM3Dq, p = .8506; resilient vs. HM4Di, **p < .01; hM3Dq vs. hM4Di, *p < .05 (n = 5 mice/group). (J) Correlation of the Sl ratio and z-score delta F/F upon
social entry, simple linear regression pre-CNO F1 15 = 0.7674, p = .3948; Sl test 2 F; 17 = 7.268, *p < .05. Intersection of lines, F4 3, = 6.896, o < .05 (0 = 18
mice). (K) Number of social interaction bouts, one-way ANOVA F3 16 = 1.346, p = .2949 (n = 5 mice/group). All data represent mean = SEM. *p < .05, *p <
.01, **p < .001, ***p < .0001. ANOVA, analysis of variance; BNSTov, oval nucleus of the bed nucleus of the stria terminalis; CNO, clozapine N-oxide; ns, not
significant; RSDS, repeated social defeat stress; SDE, social defeat episode; Sl, social interaction; SP, sucrose preference.
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activation of this type of neuron and resilience, while previous
results have shown that activation of BNSTRF neurons re-
duces effortful motivation behaviors of mice (66). Our current
study supports that accumulation of stress (SDE) to 7 days
upregulates the activity of BNSTov CRF" neurons and de-
velops a resilience phenotype. It suggests that resilience is not
a completely preexisting phenotype. It develops during
accumulation of chronic stress and depends on stress expe-
rience. This is highly consistent with previous demonstrations
that resilience is a status achieved by active regulation of
genes and ion channel functions in this group more than in
susceptible animals (18,19,67-72). CRF neurons have been
observed to influence the salience of stressful contexts ac-
cording to stress exposure (22,25,63,69,73). We observed
Crfr1 mRNA expression in CRF (and not neighboring CRF™)
neurons, suggesting that stress works as a proresilient agent
based on stress history. This is contrary to what has been
observed, namely that CRFR1 has been found largely on non-
CRF neurons in the BNST (73,74).

CRFR1 is selectively activated in the context of ongoing
stress, serving as a coincidence detector (75). Chronic stress
has been shown to shift the connectivity of local CRF™ neu-
rons from CRF*-CRF™ to a larger percentage of CRF*-CRF™
cells (76). Studies using prolonged overactivation (over weeks
to months) of CRF activity have yielded antidepressant and
anxiolytic results (27,32,33). By optogenetically activating
BNSTov®"F neurons, we observed an increase in CRFR1
expression. Although correlative, this exquisite regulation of
CRFR1 according to stress history and at times demonstrating
an opposing effect on depressive-like behavior may underlie
why clinical trials of CRFR1 antagonists for MDD have been
met with variable success (62,77-79). Additionally, given that
the BNST is a sexually dimorphic region, exploration of sex
differences is warranted. While not used in this study, there
have been additional female SDS models that have shown
modest effects regarding susceptible/resilient phenotypes
(36,80). Further studies are warranted to select the best
alternate female SDS model to adequately compare results
from the models.

Conclusions

Stress-sensitive regions such as the BNST have been found
to be of critical importance in stress coping and reactivity
(81-83). Stress resilience has long been considered a
response separate from or in the absence of stimuli that
gives rise to stress susceptibility, mediated by parallel cir-
cuits or cell types in a particular brain region (12,13,84).
Here, we observed that activity dynamics of CRF neurons

Stress Promotes Resilience via CRF Neurons

can shape and influence resiliency to stress, potentially
through (auto)regulation of Crfri mRNA. Previous work has
shown that resiliency is influenced by dopaminergic VTA
neurons in the nucleus accumbens (NAc) (27), in part
through the actions of brain-derived neurotrophic factor
(BDNF) (19,44,85). CRF peptide has been important for
BDNF release in the NAc as a stress-coincidence sensor
(18), but the sources of CRF important for altering stress
effect on social and hedonic behavior have not been
extensively characterized. While long-range GABAergic
(gamma-aminobutyric acidergic) BNST neurons projecting
to the VTA have been shown to influence reward and
anxiety-like behavior (51,86-89), the extent to which these
neurons constitute the BNSTov population remains unclear.
The BNST also sends projections to the dorsal raphe, lateral
and paraventricular hypothalamus, and ventrolateral peri-
aqueductal gray (25,29-31,41,81,90-92), among others,
modulation of which has been linked to stress on affect and
social motivation. In this way, the BNST acts as a node for
integrating information regarding stress history and deter-
mining socio-affective outcomes according, possibly due to
CRFR1 receptor dynamics occurring on CRF neurons of the
oval nucleus, thereby shaping the long-lasting outcome of
resiliency. Our study highlights a previously unknown
mechanism by which the BNST encodes cumulative social
stress and effectuates susceptible or resilient outcomes.
Importantly, there are currently no Food and Drug
Administration-approved drugs aimed at preventing a
depressive episode from occurring. By targeting mecha-
nisms involved in establishing resiliency, the possibility may
exist to therapeutically leverage windows of plasticity to
effectuate resilience and evade the development of MDD.
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