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ABSTRACT
BACKGROUND: Cumulative stress is a major risk factor for developing major depressive disorder (MDD), but not 
everyone experiencing chronic stress develops MDD. In those who do not, it is unclear at what point or by what 
mechanism a trajectory of stable resiliency emerges.
METHODS: Utilizing a 10-day repeated social defeat stress (RSDS) model for MDD, we observed that a critical 
period between 7 and 10 daily defeats marks the phenotypical divergence of resilient from susceptible male 
mice. Cell-type selective electrophysiology, chemogenetics, optogenetics, and RNA quantification were used to 
investigate the nature of stress effects on neuroadaptation in the oval nucleus of the bed nucleus of the stria 
terminalis (BNSTov) required to determine resilience.
RESULTS: In response to ongoing stress, corticotropin-releasing factor (CRF 1 , but not CRF 2 ) neurons of the 
BNSTov displayed a sustained increased firing rate in resilient but not susceptible mice. This neurophysiological 
adaptation was self-sustaining, but only after 7 critical stress exposures, indicating that the process of 
developing resilience is dependent on stress history.
CONCLUSIONS: Our study reveals a novel process by which individuals may persist in the face of adversity by way 
of stress-provoked activation, not inhibition of a key CRF limbic region that establishes a pathway to resilience.

https://doi.org/10.1016/j.bpsgos.2025.100656

Major depressive disorder (MDD) is a crippling, heterogeneous 
neuropsychiatric condition with high morbidity and lifetime 
prevalence (1,2). Major life stressors are key precipitants in the 
onset of an episode (3,4). Cumulative stress causes numerous 
psychological insults that predispose people to neuropsychiatric 
conditions (5–7). Many studies have explored individual differ-
ences in stress susceptibility or resiliency, but the process critical 
to driving the divergence in phenotypes remain elusive. With the 
odds of treatment failure increasing with subsequent depressive 
episodes (2,8,9) and increased depression risk associated with 
cumulative stress, a potentially more effective strategy would be 
to target the mechanisms mediating resilience, thereby 
enhancing the ability to cope with cumulative stress. 
Resiliency is defined as the “process of adapting well in the 

face of adversity, threats, or significant sources of stress” (10– 
12). Repeated social defeat stress (RSDS) induces robust 
depression-like behavioral phenotypes in approximately two-
thirds of mice (7,13). The standard 10-day RSDS protocol 
has been widely used to identify and study neurobiological 
features of susceptible and resilient subpopulations (13–21). 
Studies on stress vulnerability often test hypotheses after 
establishing vulnerable subgroups, making the processes that 
led to such phenotypic diversification unclear.

The bed nucleus of the stria terminalis (BNST) is well posi-
tioned in the social salience network to integrate external cues 
with internal states to influence the outcome and context of 
social interactions (22–25). The oval nucleus of the BNST 
(BNSTov) is a stress-sensitive subregion that is a key candidate 
region for encoding stress modulation of social behavior 
through its projections to areas such as the ventral tegmental 
area (VTA) (26–29) and dorsal raphe (30,31). Corticotrophin-
releasing factor (CRF) neurons of the BNSTov (BNSTov CRF ) 
are a significant output of this region and can influence affective 
states (32–35). CRF receptor type 1 (CRFR1) has been 
confirmed to be distributed on BNSTov CRF neurons, and 
CRFR1-mediated hyperexcitation of these BNSTov CRF neurons 
has been shown to encode female-biased susceptibility to 
anxiety (36). Since BNSTov CRF neurons are thought to promote 
arousal and adaptive responding according to stress-related 
changes in internal state (22,23,25,37–43), we hypothesized 
that they may play a role in establishing resiliency to repeated 
social stress.
With the 10-day RSDS paradigm, we used cell-type–selective 

ex vivo electrophysiology, chemogenetics, optogenetics, and 
in vivo fiber photometry to interrogate the BNSTov CRF system to 
explore its role in the divergence of susceptible and resilient
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phenotypes. Unexpectedly, we observed that resiliency entails 
cumulative stress history–dependent neuroadaptive changes, 
whereas susceptibility emerges in the absence of similar adap-
tations. Activation of BNSTov CRF neurons using DREADDs 
(designer receptors exclusively activated by designer drugs) 
during social defeat led to a resilient phenotype while inhibition 
caused susceptibility. Finally, using RNAScope and opto-
genetics, we provided intriguing evidence for a potential role of 
Crfr1 in BNSTov CRF neurons in mediating resilience.

METHODS AND MATERIALS 

Mice

The study used male, wild-type, Crf-ires-Cre (Jackson Labs: 
011087), ai14 (Cre-responsive tdTomato reporter mouse; 
Jackson Labs: 007915), ai32 (Cre-responsive ChR2 
[channelrhodopsin-2]/fused with eYFP [enhanced yellow fluo-
rescent protein]; Jackson Labs: 012569) mice on C57BL/6J 
background that were bred at the Icahn School of Medicine at 
Mount Sinai (ISMMS) and were used between 6 and 7 weeks at 
the start of experimental manipulations. All experiments were 
approved by the Institutional Animal Care and Use Committee 
and comply with institutional guidelines for the Animal Care and 
Use Committee set forth by ISMMS.

RSDS Paradigm

The RSDS paradigm was performed according to published 
protocols (6,19,21,44–47). Briefly, CD1 aggressors were singly 
housed in cages (26.7 cm width 3 48.3 cm depth 3 15.2 cm 
height; Allentown Inc.) at least 24 hours before the start of the 
experiment on one side with a clear perforated Plexiglas 
divider. Social stress consists of physical and sensory stress 
components.

Viral Constructs

For DREADD experiments in CRF neuronal populations, 
CRF-ires-Cre animals were injected with AAV5-hSyn-DIO-
hM4D(Gi)-mCherry (Addgene: 44362-AAV5) ($7 trillion), 
AAV5-hSyn-DIO-hM3D(Gq)-mCherry (Addgene: 44361-
AAV5) ($7 trillion), and AAV5-hSyn-DIO-mCherry (Addg-
ene: 50459). For fiber photometric recordings, CRF-ires-Cre 
animals were injected with AAV9-syn-FLEX-jGCaMP7f-
WPRE (Addgene: 104492-AAV9) (.1 trillion). All viruses 
were purchased from Addgene.

Clozapine N-Oxide Drinking Water Construct

Clozapine N-oxide (CNO) was obtained from Hello Bio (cat. # 
HB6149). The dry chemical was dissolved in drinking water 
obtained from the vivarium and diluted such that each mouse 
received 5 mg/kg/day based on previous studies. CNO was 
made fresh each day for the 3 days it was administered. CNO 
solutions were protected from light throughout the experimental 
procedure. On average, mice consumed approximately 4 to 5 
mL of water per day. Water bottles and mice were weighed daily. 
Please see the Supplemental Methods for further details.

Statistical Analysis

Animals were randomly assigned to control and experimental 
groups, and all experimenters were blinded. Mice were

excluded if viral infection was off target. No data were 
excluded for other reasons. Two-tailed Student’s t tests were 
used for comparisons of 2 experimental groups. For para-
metric datasets, comparisons among 3 or more groups were 
performed using one or two-way ANOVAs followed by Tukey’s 
or Bonferroni post hoc tests. For all tests, p , .05 was the 
cutoff for significance. Statistical analyses were performed 
using GraphPad Prism version 9.3.1 software. For data not 
normally distributed, nonparametric analyses were performed.

RESULTS

Susceptible Versus Resilience Phenotypes Emerge 
Between 7 and 10 Daily Episodes of SDS

RSDS produces divergent and enduring resilient/susceptible 
phenotypes following 10 episodes of SDS (6,19) and enables 
the investigation of the consequences of stress accumulation 
(5,7). To examine the temporal divergences of resilient and 
susceptible phenotypes in mice, a modified RSDS protocol 
was used in which mice were subjected to discrete numbers 
of social defeat episodes (SDEs) interspersed with social 
interaction (SI) and sucrose preference (SP) tests administered 
after 1, 4, 7, and 10 SDEs (Figure 1A–D). The SI ratio is a 
behavioral score of the SI test and measures the time spent in 
the area proximal to the enclosure of a novel social target (SI 
zone) (19).
Surprisingly, we found that the susceptible phenotype 

emerged discretely between 7 and 10 SDEs (Figure 1E and 
Figure S1A) (SI ratio: 2.062 6 0.226 after 7 SDEs to 0.559 6 
0.093, p , .0001, n = 11 for susceptible and 1.967 6 0.188 [7 
SDEs] to 1.554 6 0.163 [10 SDEs], p = .2929, n = 11 for resil-
ient). There were no significant differences in SI ratios after 7 
SDEs between mice that went on to become susceptible versus 
resilient after 10 SDEs (mean: 2.062 6 0.226 vs. 1.967 6 0.188, 
two-tailed t test, p = .7483, n = 11/group) (Figure S1B, C). This 
effect was not due to repeated SI tests (Figure S2D–F). Resilient 
mice had an indistinguishable SI ratio from all mice after 7 SDEs, 
while susceptible (10 SDEs) mice had an SI ratio significantly 
lower than both groups (Figure 1F, G). Previous studies reported 
that RSDS produces susceptible and resilient phenotypes after 
10 SDEs in a bimodal distribution (19). Here, we observed a 
unimodal distribution of social interaction toward a novel 
conspecific in 7-SDE mice but a bimodal distribution in 10-SDE 
mice, consistent with the emergence of distinct resilience 
and susceptible phenotypes (Kolmogorov-Smirnov, p , 
.0001) (Figure 1H–J). The time spent interacting with a novel 
conspecific was significantly less in susceptible 10-SDE mice 
compared with the 7-SDE and 10-SDE resilient mice, which 
were indistinguishable (Figure 1K). The phenotypic diver-
gence was dependent on the number of SDEs rather than the 
passage of time and dependent upon the anterior dorsal 
BNST (Figures 1G and 2A–E).

Divergence in BNSTov CRF Neuronal Firing Rate 
Tracks the Emergence of Resilient and Susceptible 
Phenotypes

CRF neurons of the BNST are a major output source of the 
BNSTov that are sensitive to chronic stressors (25,48–50). 
Thus, we hypothesized that chronic stress would alter
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Figure 1. Susceptible and resilient subgroups emerge between 7 and 10 daily episodes of SDS. (A) Experimental design for RSDS. (B) Experimental 
timeline of SDS and behavioral tests: SI and SP. (C) SI test schema involving target and no-target trials. (D) SP test schematic. (E) Effect of cumulative SDS on 
social interaction measured as SI ratios after 1, 4, 7, and 10 SDEs (n = 11–18 mice/group), two-way ANOVA interaction F 6,134 = 5.783, ****p , .0001, row factor 
F 3,134 = 12.11, ****p , .0001, column factor F 2,134 = 4.086, *p , .05; Tukey’s post hoc test susceptible vs. resilient ****p , .0001, susceptible vs. control **p , 

.01, resilient vs. control p = .2751. SI test susceptible (SI test stressed 37 vs. stressed 310) ****p , .0001. (F) Aggregated data on SI test across experiments. 
One-way ANOVA treatment F 3,109 = 14.61, ****p , .0001. Tukey’s post hoc test control vs. stressed 37 *p , .05, control vs. susceptible **p , .01, 
stressed 37 vs. susceptible ****p , .0001, susceptible vs. resilient ****p , .0001 (n = 25–37 mice). (G) SP test. One-way ANOVA treatment F 3,93 = 24.06, ****p
, .0001. Tukey’s post hoc test control vs. stressed 37 p = .77, control vs. susceptible ****p , .0001, control vs. resilient p = .9387, stressed 37 vs. sus-
ceptible ****p , .0001, stressed 37 vs. resilient p = .984, susceptible vs. resilient ****p , .0001 (n = 23–25 mice). (H) Distribution of stressed mice that 
underwent 7 SDEs. (I) Distribution of mice that underwent 10 SDEs sorted into susceptible and resilient mice. (J) Cumulative distribution of all stressed mice. 
Kolmogorov-Smirnov (distance) 0.2054, susceptible vs. resilient ****p , .0001. (K) Time spent interacting socially with a novel conspecific. One-way ANOVA 
F 2,201 = 76.63, ****p , .0001. Tukey’s post hoc susceptible vs. resilient ***p , .001, susceptible vs. stressed 37 ****p , .0001, stressed vs. resilient p = .4984 
(n = 72 susceptible, 64 resilient mice). All data represent mean 6 SEM. *p , .05, **p , .01, ***p , .001, ****p , .0001. ANOVA, analysis of variance; ns, not 
significant; RSDS, repeated social defeat stress; SDE, social defeat episode; SI, social interaction; SP, sucrose preference.
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BNSTov CRF neuronal activity, coinciding with the divergence 
in resilient and susceptible behavioral phenotypes. To test this 
hypothesis, Crf-ires-Cre;ai14 (tdTomato) mice (28,51–54) were 
subjected to either 7 or 10 daily SDEs, and cell-attached

ex vivo electrophysiological recordings were conducted in 
the BNSTov (Figure 2A, B). CRF 1 , but not CRF 2 , BNSTov 
neurons of 7-SDE mice had significantly increased firing rates 
compared with stress-naïve control mice. CRF 2 neuronal
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Figure 2. Firing rate alterations in BNSTovCRF neurons occur as adaptation to social stress, persisting in resilient but not susceptible mice. (A) Mouse 
genotype and timeline of cell-attached electrophysiology experiments. (B) Fluorescence-guided cell-attached electrophysiology setup, brain slice of the 
BNST (CRF cells, tdTomato) and DIC image of CRF neurons; scale bar 0.63 mm. (C) Representative trace of BNSTovCRF-positive and negative neurons of
control, stressed (SDEs 3 7), susceptible, and resilience mice. (D) Firing rate of CRF 1 neurons (n = 9–31 cells/group), ****p , .0001, one-way ANOVA, Tukey’s
multiple comparison’s test, control vs. stressed (SDEs 3 7) **p , .01, susceptible vs. resilient **p , .01, susceptible vs. stressed (SDEs 3 7) ****p , .0001.
Firing rate of CRF 2 neurons (n = 7–15 cells per 4–6 mice/group), one-way ANOVA, F 3,45 = 3.113, *p , .05, Tukey’s multiple comparison’s test, control vs.
stressed 37 p = .9192, control vs. susceptible p = .0769, control vs. resilient p = .1742, stressed (SDEs 3 7) vs. susceptible p = .1370, stressed 37 vs.
resilient p = .3219, susceptible vs. resilient p = .9673. (E) Correlation of firing rate with social interaction ratio: CRF 1, R 2 = 0.5726, *p , .05; CRF 2 , R 2 = 0.0609,
p = .5219. (F) Representative sample of burst firing. (G) Representative sample of tonic firing. (H) Percentage of bursting cells per animal group. (I) Percentage 
of spikes within burst. (J) Number of spikes per burst. (K) Number of bursts per cell. (n = 10–52 cells per 4–6 mice/group). All data represent mean 6 SEM. 
*p , .05, **p , .01, ***p , 0.001, ****p , .0001. ANOVA, analysis of variance; BNSTov, oval nucleus of the bed nucleus of the stria terminalis; CRF, 
corticotropin-releasing factor; DIC, differential interference contrast; ns, not significant; SDE, social defeat episode.
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firing did not differ between groups (Figure 2C, D). Moreover, 
there was a strong correlation between firing rate and the SI
ratio in CRF 1 but not CRF 2 neurons in 10-SDE mice (CRF 1 ,
R 2 = 0.5725, *p = .0113; CRF 2 R 2 = 0.06096, p = .5219) 
(Figure 2E). CRF neurons display both burst and nonburst 
firing patterns (39,55,56) (Figure 2F). Burst firing patterns were 
prominent in resilient and 7-SDE mice compared with sus-
ceptible and control mice (Figure 2H). Additionally, percentage 
spikes within burst were higher in 7-SDE and resilient mice 
compared with susceptible 10-SDE mice (one-way analysis of 
variance [ANOVA], p = .0004) (Figure 2I) but not susceptible or 
control mice. The number of spikes per burst and number of 
bursts per cell were not significantly different between the 
groups (Figure 2J, K). These data and correlation analysis 
suggest the possibility that there is a causal link between the 
neuronal activity of BNSTov CRF neurons and the divergence of 
behavioral phenotypes.

BNSTov CRF Neurons Bidirectionally Modulate the 
Emergence of Resiliency

To test the hypothesis that BNSTov CRF neurons regulate and 
maintain resilience over the last 3 episodes of RSDS, we 
injected Crf-ires-Cre mice with AAVs (adeno-associated vi-
ruses) encoding Cre-dependent excitatory (DIO-hM3Dq), 
inhibitory (DIO-hM4Di) DREADDs, or mCherry construct 
(control) into the BNSTov and administered CNO via drinking 
water (57–59) (Figure 3A, B). The mCherry control mice 
exhibited both susceptible and resilient phenotypes (SI ratio 
,1.0 and $1.0, respectively) in approximately a 60:40 ratio as 
expected (6,19) (Figure 3C, F). Interestingly, mice injected with 
inhibitory DIO-hM4Di displayed a robust susceptible pheno-
type, while DIO-hM3Dq mice displayed resilient phenotypes 
following CNO drinking water administration (Figure 3C). 
Moreover, none of the DIO-hM4Di 1 CNO mice went on to 
develop resilience (0/10, SI . 1.0), while 89% (8/9, SI $ 1.0) of 
the DIO-hM3Dq mice were resilient (Figure 3C, F). Notably, the 
social defeat experience was not affected by the DREADD 
manipulations (Figure 3A, B). The SP test—a test of hedonic 
behavior—revealed differences between mCherry-susceptible 
(mCherry [S]) and resilient (mCherry [R]) mice that were 
mirrored in DIO-hM4Di and hM3Dq mice, respectively. 
mCherry (S) and hM4Di mice displayed a significant decrease 
in SP relative to mCherry (R)- and hM3Dq-injected mice 
(Figure 3D). There were no significant differences in locomo-
tion (Figure 3E). The chemogenetic manipulation also pro-
duced bidirectional effects on anxiety-like behavior in elevated 
plus maze and open-field tests (Figure S4). Surprisingly, mice 
injected with hM3Dq DREADDs went on to become resilient 
(Figure 3C), although activation of Crf neurons of the BNST 
has previously been shown to produce depressive- and 
anxiogenic-like responses (25,32,38,49,52,60). Interestingly, 
resilience was established if BNSTov CRF chemogenetic

activation occurred between 7 and 10 SDEs; excitatory 
hM3Dq DREADD activation during episodes 4 to 7 or 10 to 13 
was not associated with resiliency (Figure 3G–I), suggesting 
that stress history plays a critical role in the behavioral out-
comes of CRF modulation. Modulating Crf neurons with 
inhibitory hM4Di or excitatory hM3Dq DREADDs between 8 
and 10 SDEs led to enduring susceptible or resilient pheno-
types, respectively, up to 6 weeks after CNO manipulation 
(Figure S6). These observations strongly support that the 
behavioral outcomes induced by the activation of BNSTov CRF 

neurons are stress history dependent.

Calcium Dynamics Underlying Stress Adaptation

To draw a link between neural changes and behavior in vivo, 
we combined fiber photometry (gCAMP7f) with excitatory or 
inhibitory DREADDs (Cre-dependent -hM4Di, -hM3Dq 
DREADDs, or mCherry viral vectors) to mimic the neuro-
adaptive changes in BNSTov CRF neurons and bidirectionally 
drive the development of resilience/susceptibility (Figure 4A, 
B). CNO was administered via drinking water over the last 3 
SDEs. We hypothesized that calcium-encoded neural activity 
may diverge in susceptible/resilient mice concomitant with the 
display of their respective behaviors on the SI test. When 
comparing changes in calcium-encoded neural dynamics 
between SI tests 1 and 2, mCherry (S) mice showed no dif-
ference, whereas mCherry (R) mice developed an increase 
concomitant with the display of resilience (Figure 4C–E), not 
observed in mice enduring only 7 SDEs. These findings sug-
gest that the persistence of neural activity across SDEs 8 to 10 
is associated with resiliency.
During SI test 1, similar to control mice, DREADDs-injected 

mice experienced a decrease in calcium-related neural activity 
upon initiating SI with a novel conspecific (Figure S7A), whose 
neural pattern was observed in both no-target and target trials 
(Figure S7B). In hM4Di-injected mice, there were no significant 
differences in neural activity during SI test 1 and 2 trials, 
similar to control mCherry (S) mice (Figure 4F–H and 
Figure S7A–C). As was observed in the resilient (mCherry 
[R]) mice, the hM3Dq-injected group showed an increase in 
calcium-encoded neural activity (Figure 4F–H). Mice injected 
with Cre-dependent hM4Di showed a significant decrease in 
calcium-related neural activity. In contrast, SI initiation led to 
increased activity in DIO-hM3Dq-injected mice (Figure 4F–H). 
There were no significant differences in the SI of mice sub-
jected to 7 SDEs, but differences emerged following 3 addi-
tional SDEs, with a subset of mice becoming susceptible and 
resilient (mCherry[R]/[S]) or activating/inhibiting DREADD 
promoting resiliency and susceptibility in the direction pre-
dicted (Figure 4I). We observed a strong correlation between 
the SI ratio and calcium activity only after 10 SDEs (Figure 4J). 
There were no significant differences observed in calcium-
based neuronal activity upon SI with a novel conspecific in

◀

F 1,16 = 0.07055, p = .6218 (n = 5–6 mice/group). (H) RSDS DREADDs manipulation (7–10 episodes of stress), two-way ANOVA treatment, F 1,22 = 8.675, **p , 

.01; SI test 1 vs. SI test 2, F 1,22 = 2.549, p = .1247; interaction F 1,22 = 2.549, p = .1247. Sidak’s post hoc test SI test 1 vs. SI test 2, control, p = .5533; DIO-
hM3Dq, *p , .05 (n = 6–7 mice/group). (I) RSDS DREADDs manipulation (10–13 episodes of stress), two-way ANOVA treatment, F 1,30 = 1.192, p = .2623. SI 
test 1 vs. SI test 2, F 1,30 = 0.3132, p = .2836. Interaction F 1,30 = 0.2623, p = .5799. All data represent mean 6 SEM. *p , .05, **p , .01, ***p , .001, ****p , 

.0001. ANOVA, analysis of variance; BNSTov, oval nucleus of the bed nucleus of the stria terminalis; CNO, clozapine N-oxide; DREADD, designer receptors 
exclusively activated by designer drugs; ns, not significant; RSDS, repeated social defeat stress; SI, social interaction; SP, sucrose preference.
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Figure 4. BNSTovCRF calcium-dynamics encode stress effect on social interaction. (A) Viral targeting of the the BNSTov. (B) Experimental design of 
multiplexed chemogenetics with drinking water-CNO delivery and fiber photometry. (C–F) Representative calcium recordings of mCherry susceptible (S), 
mCherry resilient (R), hM3Dq, and hM4Di groups, respectively. The vertical scale bar is equal to a z score of 1, and the horizontal scale bar is equal to 10
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mice subjected to 7 SDEs (Figure S7A, B) or in the absence of 
SI (Figure S7C). In contrast, after 10 SDEs, mCherry (R)- and 
DIO-hM3Dq-injected mice displayed significantly greater 
neuronal activation upon social contact relative to mCherry 
(S)- and DIO-hM4Di-injected mice (Figure S7D). Despite the 
difference in time spent interacting with a novel conspecific, 
the number of interaction zone entries was not significantly 
different nor were differences in distance traveled (Figure 4K 
and Figure S7E). These data suggest that BNSTov CRF 

neuronal dynamics are differentially altered by stress modu-
lation in accordance with phenotypical display resiliency/ 
susceptibility.

Crfr1 Expression in BNSTov CRF Neurons Mirrors 
the Behavioral Emergence of Resilience

We observed a stress-induced enhancement in firing rates of 
BNSTov CRF neurons in resilient mice. To explore the effect of 
this BNSTov CRF stress modulation on CRF receptor trans-
mission, we used RNAScope in situ hybridization to quantify 
Crfr1 and Crfr2 in accordance with stress history. Mice were 
subjected to either 7 or 10 daily SDEs, and the BNST and Crfr1 
and Crfr2 genes were assessed (Figure 5A–C) due to their 
reported role in mediating stress responses (28,61–63). The 
percentage of CRFR1-expressing neurons among CRF-
expressing neurons was higher in mice subjected to 7 SDEs 
than in susceptible mice but not significantly different than 
resilient mice (Figure 5D). In contrast, there were no significant 
differences in BNSTov neurons co-expressing Crfr2 and Crf 
messenger RNA (mRNA) across groups of mice (Figure 5E). 
The overlap between Crfr1 and Crf in the BNST was signifi-
cantly greater in the oval nucleus than in anterolateral, ante-
romedial, and ventral subregions of the anterior dorsal BNST 
(Figure 5C, F).
To explore the role of firing rate changes on gene expression 

and the development of resiliency, we optogenetically stimu-
lated BNSTov CRF neurons using transgenic Crf-Cre::ai32 mice, 
which express ChR2 in Crf-containing neurons (64) (Figure 5G). 
Stimulation frequency of 5 Hz was used to mirror the average 
firing rate observed in the spontaneous firing rate of resilient 
mice (Figure 2D). Mice received 15 minutes of 5-Hz photo-
stimulation of BNSTov CRF neurons following physical stress 
during SDEs 8 to 10. The compartment divides the aggressor 
cage in half by a clear plexiglass that allows for continuous 
sensory cues (Figure 5H, I). Photostimulation of Crf::ChR2 mice 
led to a significantly higher SI ratio and greater percentage 
resilient than Crf::tdTomato mice (89% vs. 33%) when stimu-
lated during SDEs 8 to 10 (Figure 5J). Surprisingly, Crf::ChR2 
mice that received photostimulation but were not subjected to 
SDEs 8 to 10 showed a significant decrease in the SI ratio and

100% of the mice, becoming susceptible (0/6, SI $ 1.0) 
(Figure 5J). Photostimulation paired with SDEs 8 to 10 
increased the percentage of cells co-expressing Crfr1 mRNA in 
CRF 1 neurons relative to mice that experienced photo-
stimulation in the absence of additional stress (Figure 5K, L). 
Additionally, we obtained slice preparation from the opto-
genetically induced resilient mice and performed cell-attached 
single-unit recordings from BNSTov ChR2-expressing CRF 
neurons (Figure S8A). Our recording data showed that opto-
genetic stimulation reliably induced 2.5, 5, and 10-Hz spike 
responses as expected (Figure S8B) and interestingly triggered 
burst firing after the 5-Hz optical stimulation (Figure S8C, D). 
Importantly, bath-applied CRFR1-selective antagonist NBI 
27914 significantly decreased the firing rate of tested BNSTov 
ChR2-expressing CRF neurons (Figure S8E). We have 
confirmed the correct placement of optical fibers for these 
experiments (Figure S8F). Optogenetic stimulation in Crf-
Cre::ai32 mice may activate both BNSTov- localized CRF 
neurons and CRF 1 afferent inputs from extra-BNSTov regions. 
However, results consistent with previous chemogenetic ex-
periments, together with specific optogenetic activation fre-
quency (5 Hz), support the conclusion that the observed effects 
are primarily mediated by BNSTov CRF neurons. In summary, 
these data show that maintenance of resiliency requires SDS. 
BNSTov CRF activation is correlated with the upregulation of 
Crfr1 expression in a stress history–dependent manner.

DISCUSSION

The RSDS paradigm was modified to observe the effects of 
cumulative stress on neuroplasticity in regions critical for 
mood regulation. Indeed, our work has uncovered a discrete 
window of neuronal and behavioral plasticity between 7 and 
10 SDEs during which susceptible and resilient phenotypes 
are established. By capturing behavioral, electrophysiological, 
and in vivo fiber photometric measures during the intra-SDS 
period, we uncovered the mechanisms underlying the estab-
lishment of resilience. We hypothesized that the region would 
be instrumental in processing contexts associated with social 
stress. Indeed, we observed that individual differences in 
stress effects on social behavior are encoded by BNSTov CRF 

neurons. Prior studies have implicated the overactivation of 
CRF neurons in the BNST as being prodepressive and anx-
iogenic (29,38,49,50,52). We observed that Cre-dependent 
hM3Dq action produced resilient mice only after a certain 
dose of daily stressors (7 SDEs), suggesting that the BNSTov 
may be tightly modulated based on stress history. In addition 
to the difference between cumulative stress and acute stress 
(65), the heterogeneity of CRF neurons in different subregions 
of the BNST may explain the correlation between the

◀

seconds. (D–G) Representative averaged trace centered around interaction bout for the 4 groups stated above. (E) Two-way repeated-measures ANOVA row 
factor F 3,14 = 1.401; pre- vs. post-CNO F 1,14 = 0.8179; subject F 14,14 = 1.195; row 3 SI test 1/SI test 2, F 3,14 = 9.343, **p , .01. Sidak’s post hoc test, 
susceptible vs. resilient, p = .137 vs. *p = .05, respectively (n = 4 mice/group). (H) hM4Di vs. hM3Dq, p = .3069 vs. *p , .05, respectively (n = 4–5 mice/group). 
(I) SI test 1 social interaction test. One-way ANOVA F 3,16 = 0.291, p = .8308 (n = 5 mice/group). SI test 2 social interaction test, one-way ANOVA F 3,16 = 17.83, 
****p , .0001; Tukey’s post hoc test, susceptible vs. resilient, ****p , .0001; susceptible vs. hM3Dq, ***p , .001; susceptible vs. hM4Di, p = .0762; resilient vs. 
hM3Dq, p = .8506; resilient vs. HM4Di, **p , .01; hM3Dq vs. hM4Di, *p , .05 (n = 5 mice/group). (J) Correlation of the SI ratio and z-score delta F/F upon 
social entry, simple linear regression pre-CNO F 1,15 = 0.7674, p = .3948; SI test 2 F 1,17 = 7.268, *p , .05. Intersection of lines, F 1,32 = 6.896, *p , .05 (n = 18 
mice). (K) Number of social interaction bouts, one-way ANOVA F 3,16 = 1.346, p = .2949 (n = 5 mice/group). All data represent mean 6 SEM. *p , .05, **p , 

.01, ***p , .001, ****p , .0001. ANOVA, analysis of variance; BNSTov, oval nucleus of the bed nucleus of the stria terminalis; CNO, clozapine N-oxide; ns, not 
significant; RSDS, repeated social defeat stress; SDE, social defeat episode; SI, social interaction; SP, sucrose preference.
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Figure 5. BNSTov Crfr1 is associated with the emergence of resiliency. (A) Experimental timeline of RNAScope in situ hybridization of mice that underwent 
social defeat stress. (B) Representative images of control, stressed 37, susceptible, and resilient. 203 magnification; scale bar 0.64 mm. (C) Schematic of
anterior dorsal BNST. (D) Crfr1 mRNA colocalization, 1-way ANOVA F 3,18 = 20.91, ****p , .0001; Tukey’s post hoc test, control vs. stressed 37, p = .0701;
control vs. susceptible, p = .3336; control vs. resilient, ****p , .0001; stressed 37 vs. susceptible, **p , .01; stressed 37 vs. resilient, *p , .05; susceptible vs.
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activation of this type of neuron and resilience, while previous 
results have shown that activation of BNST CRF neurons re-
duces effortful motivation behaviors of mice (66). Our current 
study supports that accumulation of stress (SDE) to 7 days 
upregulates the activity of BNSTov CRF 1 neurons and de-
velops a resilience phenotype. It suggests that resilience is not 
a completely preexisting phenotype. It develops during 
accumulation of chronic stress and depends on stress expe-
rience. This is highly consistent with previous demonstrations 
that resilience is a status achieved by active regulation of 
genes and ion channel functions in this group more than in 
susceptible animals (18,19,67–72). CRF neurons have been 
observed to influence the salience of stressful contexts ac-
cording to stress exposure (22,25,63,69,73). We observed 
Crfr1 mRNA expression in CRF (and not neighboring CRF 2 ) 
neurons, suggesting that stress works as a proresilient agent 
based on stress history. This is contrary to what has been 
observed, namely that CRFR1 has been found largely on non-
CRF neurons in the BNST (73,74).
CRFR1 is selectively activated in the context of ongoing 

stress, serving as a coincidence detector (75). Chronic stress 
has been shown to shift the connectivity of local CRF 1 neu-
rons from CRF 1 -CRF 2 to a larger percentage of CRF 1 -CRF 1 

cells (76). Studies using prolonged overactivation (over weeks 
to months) of CRF activity have yielded antidepressant and 
anxiolytic results (27,32,33). By optogenetically activating 
BNSTov CRF neurons, we observed an increase in CRFR1 
expression. Although correlative, this exquisite regulation of 
CRFR1 according to stress history and at times demonstrating 
an opposing effect on depressive-like behavior may underlie 
why clinical trials of CRFR1 antagonists for MDD have been 
met with variable success (62,77–79). Additionally, given that 
the BNST is a sexually dimorphic region, exploration of sex 
differences is warranted. While not used in this study, there 
have been additional female SDS models that have shown 
modest effects regarding susceptible/resilient phenotypes 
(36,80). Further studies are warranted to select the best 
alternate female SDS model to adequately compare results 
from the models.

Conclusions

Stress-sensitive regions such as the BNST have been found 
to be of critical importance in stress coping and reactivity 
(81–83). Stress resilience has long been considered a 
response separate from or in the absence of stimuli that 
gives rise to stress susceptibility, mediated by parallel cir-
cuits or cell types in a particular brain region (12,13,84). 
Here, we observed that activity dynamics of CRF neurons

can shape and influence resiliency to stress, potentially 
through (auto)regulation of Crfr1 mRNA. Previous work has 
shown that resiliency is influenced by dopaminergic VTA 
neurons in the nucleus accumbens (NAc) (27), in part 
through the actions of brain-derived neurotrophic factor 
(BDNF) (19,44,85). CRF peptide has been important for 
BDNF release in the NAc as a stress-coincidence sensor 
(18), but the sources of CRF important for altering stress 
effect on social and hedonic behavior have not been 
extensively characterized. While long-range GABAergic 
(gamma-aminobutyric acidergic) BNST neurons projecting 
to the VTA have been shown to influence reward and 
anxiety-like behavior (51,86–89), the extent to which these 
neurons constitute the BNSTov population remains unclear. 
The BNST also sends projections to the dorsal raphe, lateral 
and paraventricular hypothalamus, and ventrolateral peri-
aqueductal gray (25,29–31,41,81,90–92), among others, 
modulation of which has been linked to stress on affect and 
social motivation. In this way, the BNST acts as a node for 
integrating information regarding stress history and deter-
mining socio-affective outcomes according, possibly due to 
CRFR1 receptor dynamics occurring on CRF neurons of the 
oval nucleus, thereby shaping the long-lasting outcome of 
resiliency. Our study highlights a previously unknown 
mechanism by which the BNST encodes cumulative social 
stress and effectuates susceptible or resilient outcomes. 
Importantly, there are currently no Food and Drug 
Administration–approved drugs aimed at preventing a 
depressive episode from occurring. By targeting mecha-
nisms involved in establishing resiliency, the possibility may 
exist to therapeutically leverage windows of plasticity to 
effectuate resilience and evade the development of MDD.
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