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ABSTRACT

Humans and animals show remarkable learning efficiency, adapting to new envi-
ronments with minimal experience. This capability is not well captured by stan-
dard reinforcement learning algorithms that rely on incremental value updates.
Rapid adaptation likely depends on episodic memory—the ability to retrieve spe-
cific past experiences to guide decisions in novel contexts. Transformers provide a
useful setting for studying these questions because of their ability to learn rapidly
in-context and because their key-value architecture resembles episodic memory
systems in the brain. We train a transformer to in-context reinforcement learn in
a distribution of planning tasks inspired by rodent behavior. We then character-
ize the learning algorithms that emerge in the model. We first find that repre-
sentation learning is supported by in-context structure learning and cross-context
alignment, where representations are aligned across environments with different
sensory stimuli. We next demonstrate that the reinforcement learning strategies
developed by the model are not interpretable as standard model-free or model-
based planning. Instead, we show that in-context reinforcement learning is sup-
ported by caching intermediate computations within the model’s memory tokens,
which are then accessed at decision time. Overall, we find that memory may
serve as a computational resource, storing both raw experience and cached com-
putations to support flexible behavior. Furthermore, the representations developed
in the model resemble computations associated with the hippocampal-entorhinal
system in the brain, suggesting that our findings may be relevant for natural cog-
nition. Taken together, our work offers a mechanistic hypothesis for the rapid
adaptation that underlies in-context learning in artificial and natural settings.

1 INTRODUCTION

Animals can learn efficiently and rapidly adapt to new environments with minimal experience. For
example, humans can infer underlying structure or learn new concepts from just a handful of exam-
ples and mice in maze tasks can identify optimal paths after only a few successful trials (Meister,
2022). Standard reinforcement learning (RL) algorithms, which typically rely on incremental value
updates to shape decision-making, does not capture this rapid learning behavior well (Eckstein et al.,
2024). One explanation is that biological agents possess useful priors shaped by evolution and ex-
perience, allowing them to generalize quickly in naturalistic settings. They also rely on episodic
memory, the ability to recall specific past experiences to guide decisions in novel situations.

Here, we ask how episodic memory operates not just as storage, but as a computational substrate
for rapid learning and decision-making. We train a transformer model to perform in-context rein-
forcement learning (Lee et al., 2023)) on navigation tasks inspired by rodent behavior. In each new
environment, the model receives exploratory trajectories as context and infers a goal-directed policy.
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Figure 1: A transformer is trained to in-context reinforcement learn in diverse planning tasks.
A. Diagram of meta-learning setup. For each task, the model is trained via supervision to predict
the optimal action from a query state Squery, given memories of RL transition tuples sampled in-
context. B. Illustration of three training tasks (orange) and one test task (gray) from the gridworld
distribution. In each task, the underlying graph structure is fixed, but the reward location (red star)
can vary. Each state is encoded as a random Gaussian vector (bottom). Importantly, test task state
encodings are novel. C. As in (B), but for the tree maze distribution. The training set graph structures
are drawn from probabilistically branching trees, while the test set structure is a full binary tree.

Transformers are especially relevant not only because of their established capabilities for rapid and
flexible in-context learning (Dong et al, 2022} [Brown et al., 2020} [Lampinen et al., [2024)), but also
because their key—value memory architecture has been linked to models of episodic memory in the
brain (Krotov & Hopfield, 2020; [Tyulmankov et al.| 2021} [Fang et all, 2025). Understanding the
reinforcement learning strategy that emerges in these models can provide new hypotheses for how
memory-based computations might support flexible decision-making in new environments.

We focus on two task suites: spatially regular gridworlds and hierarchically structured tree mazes
(Fig[TBC). While both require memory to support goal-directed behavior, they differ sharply in ge-
ometry: gridworlds are Euclidean and spatially continuous, whereas tree mazes are non-Euclidean
and branch-structured. This contrast allows us to evaluate how learned in-context strategies gen-
eralize across structural regimes known to challenge standard sequence models— for instance, lan-
guage models are known to struggle with symbolic reasoning and hierarchical generalization in
tree-structured domains (Bogin & Berant, 2022} Ruiz & Nachum) 2021}, [Keysers et al.| [2020).

In this paper, we make the following contributions:

* We show that transformers trained to in-context reinforcement learn develop consistent
representation learning strategies: structure learning within contexts, and alignment of rep-
resentations across contexts with shared regularities.

* We demonstrate that the model learns computations found in natural cognition. Representa-
tion learning strategies are consistent with suggested roles for hippocampus and entorhinal
cortex, and memory recall patterns at decision time are consistent with hippocampal replay.

* We give descriptions for the in-context RL algorithms that emerge. We show with mecha-
nistic analysis that the model does not use standard model-free or model-based RL meth-
ods. Instead, strategies tend to rely on intermediate computations cached in memory tokens,
demonstrating how episodic memory can be used as a computational workspace.

Related works In meta-RL settings, the outer learning loop shapes the weights of the network to
learn an algorithm that can be deployed in-context. The in-context learning within each task occurs
via activation dynamics— through memory and internal state— rather than parameter updates

et al} 2023}, [Sandbrink & Summerfield) 2024} [Lampinen et al} [2024). Early examples of this ap-

proach include RL?, which meta-trains a recurrent neural network using RL in the outer loop, such




that an in-context RL strategy emerges in the inner loop (Wang et al., 2016} Duan et al.,2016)). Sub-
sequent work extended this approach to include explicit episodic memory mechanisms, combining
RNNs with key—value memory architectures (Ritter et al., |2018} [2020; [Team et al., [2023). More
recently, Lee et al.| (2023) proposed decision-pretrained transformers (DPTs), which use supervised
training in the outer loop to induce in-context RL behavior in the inner loop. We adopt DPTs in
this work both for practical reasons—their scalability and ease of training—and for scientific ones:
the transformer architecture allows us to probe how memory-based computation supports in-context
learning. This latter motivation is inspired by recent findings suggest that key—value architectures,
like the transformer, offer a useful computational analogy for episodic memory (Krotov & Hopfield,
2020; Ramsauer et al., [2020; [Tyulmankov et al., 2021} Whittington et al., 2021} [Fang et al., 2025
Chandra et al.,|2025). See App. [A|for a more thorough discussion of related work.

2 EXPERIMENTAL METHODS

Meta-learning procedure We adopt the decision-pretraining framework from [Lee et al.| (2023)
(Fig.[TA), training models via supervision to learn optimal policies from in-context experience. Each
task is a Markov Decision Process defined by state encoding function S, action space A, transition
function 7, reward function R. For each task, the model receives an in- context dataset D of RL
transition tuples (s, a, s’,r) gathered from an exploratory policy, plus a query state Squery € S.
The model is meta-trained to predict the action from an oracle policy. At test time, the model
generalizes to held-out tasks with novel sensory observations using only in-context information,
demonstrating in-context reinforcement learning. We focus on offline settings where D comes from
random exploration, and more details can be found in App. [B]

Structure of task suites Our first task distribution is a 5 x 5 gridworld in which the reward loca-
tion is fixed but hidden from the agent. This setting is loosely inspired by the Morris water maze, a
behavioral task used to study how animals use memory to navigate unknown environments (Vorhees
& Williams), [2006). Across tasks, 7 is fixed, while S and R vary (Fig. ). At test time, the model
is deployed in a gridworld with novel sensory observations and a new reward location. Our second
task distribution consists of tree-structured mazes, which introduce hierarchical state transitions and
sparse rewards. These are settings where rodents have been shown to display rapid learning (Rosen-
berg et al) 2021). The meta-training set consists of binary trees generated with some branching
probability so that 7 varies across tasks (Fig.[I[C). S and R also vary across tasks. The action space
consists of four options: stay, move to the parent node, or move to either child node. At test time,
the model is evaluated on a full 7-layer binary tree, consistent with Rosenberg et al.| (2021)), again
using novel state encodings not seen during training.

In both tasks, states are represented by 10-dimensional random vectors. Full task details are in App.
Together, these two tasks allow us to analyze model behavior in spatially regular environments
and branching tree structures (which may be a relevant analogy for language generation tasks).

Model architecture and selection Our base architecture is a causal, GPT2-style transformer with
3 layers and 512-dimensional embeddings. We provide the context memory D before the query
token Sgyery. This ordering supports an interpretation in which previous experiences are stored as
cached key—value memories that are retrieved at query, or decision-making, time. Additional details
on architecture and training are in App.[C] We also test alternative modeling choices in App. D]

3 RESULTS

3.1 TRANSFORMERS LEARN A RL STRATEGY TO RAPIDLY SOLVE PLANNING TASKS.

We first evaluate the agent’s performance in new environments with novel sensory observations.

Gridworld In held-out gridworld environments, we test the agent with query states that were
observed in-context and located at least 6 steps from the goal. We plot return as a function of context
length (Fig.[2]A; App.[E). The meta-learned agent often navigates directly to the reward after a single
exposure, mirroring one-shot learning reported in rodents navigating water mazes (Steele & Morris,
1999). To summarize test environment performance, we plot return as a function of the number
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Figure 2: Transformers can rapidly learn and plan in new tasks. A. Average max-normalized
return in two held-out gridworld environments as a function of context length. For each context
length, 20 query states are sampled with test horizon 15. B. As in (A), but return is plotted against
the number of rewards experienced in-context and averaged over 50 held-out environments. Blue:
meta-learned transformer; Green: tabular Q-learning; Pink: DQN. C. Example of shortcut behavior
in a held-out gridworld. The model experiences a circuitous trajectory (orange), but can infer a more
efficient path (blue). D., E. As in (A, B), but for tree mazes and test horizon 100. F. As in (D,E), but
shown only for context length 800 and subdivided by query type: states seen before reward (Pre-x),
after reward (Post-x), or never seen in context (Novel; not used in E). Error bars show 95% C.I.

of rewards experienced in-context (Fig. 2B, blue). As expected from Fig. [2JA, the agent achieves
near-maximal performance after just one exposure, with only minor improvements thereafter.

We next compare the meta-learned model to standard reinforcement learning methods. Specifically,
we train a tabular Q-learning agent and a deep Q-network (DQN) on each test environment. Each
Q-learning agent is trained using a replay buffer containing the same in-context dataset D provided
to the meta-learned model (App.[F). We again summarize performance in Fig. 2B. The performance
gap between both Q-learning agents and the meta-learned model is substantial but expected, reflect-
ing the utility of meta-learned priors. The advantage of the tabular agent over DQN demonstrates
that representation learning adds additional difficulty in novel environments. Overall, describing the
learning efficiency seen in animals may require moving beyond single-task RL frameworks.

Finally, we observe that the meta-learned agent discovers shortcut paths to reward. Even when the
agent only observes a circuitous path in-context, it infers a policy that selects the shortest route to
reward—often through previously unseen states (Fig. [2|C). Quantitatively, the model selects shortcut
paths in over 60% of test simulations (App. [E). This suggests that the agent has internalized the
Euclidean geometry of the environment, a feature that we analyze more deeply in later sections.

Tree Mazes We next evaluate the meta-learned agent in test tree mazes, where the agent rapidly
learns the task after only a few reward exposures (Fig. ZDE; App. [E). As before, the meta-learned
agent captures rapid learning more effectively than Q-learning baselines (Fig.[2E). The tabular agent
again outperforms the DQN, confirming that representation learning remains a core challenge.

To gain insight into the priors acquired through meta-learning, we evaluate all models at a long
context length (800 timesteps). We stratify performance by the type of query state (Fig. [2F). When
the query state had already been seen prior to any reward, the tabular agent performed comparably
to the meta-learned model. However, when the query state was seen only after the final reward,
the tabular agent underperforms. In standard Q-learning, states encountered only along paths away
from reward do not receive value propagation. This suggests that the meta-learned model acquires
a useful prior: the ability to infer inverse actions. Finally, we evaluate performance when the query
state was never encountered during context. In this setting, the meta-learned agent performs better
than both Q-learning baselines, likely due to a learned prior over action selection.
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Figure 3: Model representations are shaped by in-context structure learning. A. An example
test gridworld. Query token representations are visualized for each state after projection onto the
first two principal components, for layer 1 (left), layer 2 (middle), and layer 3 (right). Context length
is 1. Points are colored by graph location; gray lines indicate true connectivity. Reward is marked
with a red star. B. As in (A), but with context length 250. C. Kernel alignment between model
representations and latent graph structure as a function of context length, across 100 environments.
Shading shows 95% C.1.; colors denote model layer. Dashed line shows baseline from raw inputs.
D. As in (C), but for context length 250, with reward ablation (shaded bars). E, F. As in (A, B), but
for test tree mazes. Points are colored by maze depth. G, H. As in (C, D), but for test tree mazes.

3.2 RL STRATEGY SHAPES REPRESENTATIONS VIA IN-CONTEXT STRUCTURE LEARNING.

The behavioral results in Fig. 2B,E highlight that representation learning poses a key computational
challenge in these tasks. How does the model organize state representations—and does a structured
representation learning strategy emerge during in-context processing?

Gridworld We begin by visualizing low-dimensional embeddings of model activity across grid-
world states. Because the query token represents the agent’s current state, we extract its activity as
the basis for representation analysis. We project the 512-dimensional query representations into a 2D
PCA space at each model layer, for both short and long context lengths (Fig. 3B]A-B; App.[G). With
limited context, the model’s representations are disorganized and show no spatial structure (Fig.[3A).
As in-context experience increases, the representations become more structured and reflect the latent
geometry of the gridworld (Fig. [3B). This structure resembles predictive representation learning, but
crucially, no such objective was imposed during training.

To quantify this, we compute the kernel alignment between model representations and the latent en-
vironment structure across held-out tasks (Fig.[3[C; App.[H). Kernel alignment increases with context
length, with layer 2 consistently exhibiting the strongest correspondence to latent structure. Surpris-
ingly, representation structure is largely unaffected by the presence of reward (Fig. BD; App. |G} H).
Overall, we find that in-context experience induces geometry-aligned state representations.

Tree Mazes Does in-context representation learning also emerge in agents trained on the tree maze
task? We repeat the PCA projection analysis on query token representations in tree mazes (Fig. BE—
F; App.[G). As context increases, representations organize into a bifurcating structure that roughly
mirrors the maze’s hierarchical layout (Fig. [3F), which suggests that the model learns coarse, high-
level structure rather than fine-grained spatial layout. Consistent with this intuition, kernel alignment
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Figure 4: As context grows, representations across environments with similar structure are
aligned. A. Diagram of cross-environment alignment (Whittington et al. 2020). Although sen-
sory inputs differ, environments share latent structure, and representations of matching latent states
should be similar. B. Average pairwise Pearson correlation coefficient of node representations across
100 gridworld environments, as a function of context length. Solid lines: same-node comparisons.
Dashed lines: different-node comparisons. Shading shows 95% C.I.. Line color denotes model
layer. C. PCA visualization of representations pooled from 15 randomly selected visualizations. D.
As in (B), but for 50 tree mazes. E. As in (C), but for tree mazes. F. Summary of (D) at context
length 1600, averaged across layers. X-axis denotes the maze-layer of the comparison node.

also increases with context length in tree mazes (Fig. [3|G), but remains lower than in the gridworld
task. Representations in the tree maze are more strongly modulated by reward (Fig. BH; App. |Gl [H).

Taken together, these results indicate that the model meta-learns in-context representation strategies
that vary in granularity across task domains. This provides normative support for the hypothe-
sis that structure learning facilitates efficient decision-making, and in fact in-context structure
learning has also been found in the representations of large language models (Park et al.,[2024). This
observation parallels predictive map formation in the hippocampus (Stachenfeld et al.,|2017)—long
hypothesized as a computational scaffold for memory—and suggests that similar principles can
emerge in artificial agents through meta-learning.

3.3 REPRESENTATIONS ARE REUSED ACROSS ENVIRONMENTS WITH SHARED STRUCTURE.

In neuroscience, the hippocampal—entorhinal circuit is thought to support structure learning across
contexts (Buckmaster et al., 2004; Kumaran et al.,2009;|Whittington et al., 2020). A leading hypoth-
esis holds that the hippocampus encodes context-specific experiences, while the entorhinal cortex
abstracts shared structure across environments (Whittington et al.| [2020). Do similar cross-context
alignment strategies emerge in meta-learned agents?

Gridworld A key signature of cross-context structure learning is the alignment of internal repre-
sentations across environments with shared topology: even when sensory observations differ across
environments, states occupying the same grid location should be encoded more similarly than states
from different locations (Fig. A). To test this, we compute pairwise correlations between model
representations of the same graph node across different test environments (Fig. @B). We separate
correlation scores by whether the compared states occupy the same or different graph nodes. With
limited context, representations appear collapsed—showing high correlation across all states re-
gardless of node identity. As context length increases, this gap widens: states from the same node
become more aligned than those from different nodes (Fig. @B; solid vs. dashed).

This alignment is also visually apparent when directly inspecting the model’s internal representa-
tions. We aggregate representations from 50 test environments and project them into a shared 2D
PCA space (Fig. fC). In layers 2 and 3, representations from corresponding graph nodes cluster
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across environments, reflecting shared latent structure. Notably, representations of goal states also
align across environments, despite the reward location being randomized.

Tree Mazes We repeat the same analyses in tree mazes and find similar alignment strategies
emerge (Fig. @DE). We further analyze the correlation scores by the node position within the tree
(Fig. BF). Cross-context alignment is strongest for states near the root or leaves of the tree. This
is consistent with where the representations capture coarse structure over precise positional
detail in tree mazes. Importantly, neither in-context nor cross-context representation alignment was
explicitly trained—these strategies emerge opportunistically as a byproduct of meta-learning.

3.4 RL STRATEGY IS NEITHER VALUE-BASED LEARNING NOR MODEL-BASED PLANNING.

Thus far, we have shown that meta-learned agents replicate the rapid learning dynamics observed
in animal behavior. A key component of this success is the emergence of structured representations
from contextual input. We now turn to characterizing the mechanisms of the underlying RL strategy.
We begin by testing whether the model exhibits hallmarks of standard model-free reinforcement
learning. We test whether value information can be linearly decoded from model representations,
but overall did not find evidence for this (Apps. [K]and [L)).

Next, we test whether the model exhibits hallmarks of standard model-based RL, which typically
requires path planning from query to goal. Planning need not follow a strictly forward rollout, and
transformers in particular can implement diverse state-tracking strategies (Li et al.}[2025). Critically,
however, all such strategies depend on retrieving intermediate states along the path from query to
goal during decision time. To evaluate this, we assess which context-memory tokens influence the
model’s decision at a given query state. Using integrated gradients, we measure attribution strength
for memory tokens along the query—goal path (Fig.[5} App.[M). In both tasks, only tokens near the
query and goal states show high attribution. As a further test, we also conduct attention ablations
and find similar results (App. [M). Both results are inconsistent with path planning, which requires
attending to transitions along the full route at decision time.

In summary, we find that the agent does not use value gradients or path planning to make decisions.
We suggest that the learned in-context strategy lies outside the standard taxonomy of model-free
and model-based reinforcement learning. Our analyses also reveal an additional neural prediction:
memory retrieval at decision time should be biased toward experiences near the agent’s current
location and its goal. Such replay patterns have been observed in the hippocampus during spatial
decision-making tasks (Jackson et al., | 2006; |Pfeiffer & Foster, 2013; Mattar & Dawl 2018)).

3.5 MODELS LEARN STRATEGY WHERE INTERMEDIATE COMPUTATIONS ARE STORED IN
CONTEXT-MEMORY TOKENS.

We now aim to describe the algorithms used by the model to plan in each task. To do so, we first
review the roles of query and memory tokens. The query token encodes the agent’s current state,
while memory tokens represent previously observed transitions. During inference, the query token
attends to memory tokens to integrate past experience into its policy computation. Across layers,
both query and memory tokens are updated with newly computed features, allowing memory to
serve as an active computational substrate. To reveal how computation unfolds, we will focus on
understanding which tokens are critical in each layer and what information is contained in tokens.

Gridworld In gridworld tasks, we suggest that the following strategy is used by the model:
1. Use in-context experience to align representations to Euclidean space.
2. Given a query state, calculate the angle in Euclidean space between query and goal state.
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Figure 6: Gridworld tasks are solved by aligning internal representations to Euclidean space.
A. Overview of analysis steps. B. Total XY decoding error across 60 test environments, plotted
by true XY position of the query state, given query token embeddings from layer 1 (left) and layer
(right). Context length = 250. C. As in (B), but for decoded vs. true angle from query state to
the goal. D. Change in cross-entropy loss after ablating context tokens along the query—goal path,
plotted by ablated token position. Line color indicates layer of intervention. E. Average attention
score between context-memory tokens as a function of spatial distance between tokens, for layers 1
and 2. (D,E) show mean over 50 environments, with shading for 95% C.I.

3. Use the calculated angle to select an action in that direction.

We arrived at this hypothesis by first identifying the task-relevant variables that can be linearly
decoded from the query token at each layer (Fig. [6A). We train a linear decoder to predict the
underlying XY position of the query state from its embedding (App. [K) and evaluate accuracy on
held-out environments with novel sensory observations. Decoding accuracy improves across layers,
with spatial position becoming reliably recoverable by layer 2 (error < 1; Fig.[6B). Building on this
spatial structure, we next decode the angle from the query state to the goal— again, this information
can be accurately decoded by layer 2 (Fig. [[C). Interestingly, both XY position and angle-to-goal
can be decoded from the embeddings of the context-memory transitions (s, a, s, ) as well.

To localize where angle-to-goal information may be computed, we test which context-memory to-
kens are necessary for correct decisions. Using attention ablations, we show that model performance
relies on attending to tokens near the query and goal states in layer 2 (Fig. [6D, App. [N). We pro-
pose that layer 2 extracts the internal XY coordinates from query and goal state tokens to compute
the relative angle between them. To understand how XY information arises, we examine how state
representations evolve through context-to-context attention.

We show that, across layers, attention patterns between context memory tokens shift from localized
to distributed (Fig. [BE, App. [N), suggesting that the model first stitches transitions locally before
constructing global structure. Overall, we suggest that the model organizes memory to reflect Eu-
clidean structure and use that geometry to guide action selection. This explains the model’s ability
to take unseen shortcuts (Fig. 2(C).

Tree Mazes In tree mazes, a useful strategy can be to identify when the agent is on a critical path
to reward and to default to the parent-node action otherwise. This is because there are only 6 states
in the maze (of 127) where the optimal action is to transition to the left child or right child (Fig[7B).
These are the states on the path from root to reward, which we will call the left-right (L-R) path.
Indeed, the model has a strong action bias to take parent-node transitions (App. [0). Overall, we find
evidence that the model exploits this structure and learns the following strategy:

1. Use in-context experience to stitch transitions backwards from the goal to root, and tag
context-memory tokens that are on the L-R path.
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Figure 7: Tree mazes are solved by tagging context-memory tokens on a critical path to reward.
A. Overview of analysis steps. B. We focus on the path from root to goal (L-R path). C. Change
in cross-entropy loss when attention is fixed to context-memory tokens at specific points on the L-R
path. In all tests, the query state is the root. Line color indicates layer of intervention. Mean across
50 environments, shading shows 95% C.1. D. Given embeddings of context-memory transitions, the
balanced accuracy of decoding their presence on the L-R path and the inverse action. Decoding the
inverse action is only non-trivial for parent-node transitions so we test only on those. Embeddings
are taken from the input tokens to each model layer (line color). Mean across 60 environments, error
bars show 95% C.I. Dashed line is chance. E. L-R Path decoding accuracy from (D), but separated
by how far each context-memory transition is from goal. F. As in Fig[6[E but for tree mazes.

2. Given a query state, check if there are context-memory tokens that contain the query state
and are on the L-R path. If not, default to taking the parent-node transition.

3. Otherwise, extract the optimal action information from the tagged context-memory tokens.

We arrive at this hypothesis by asking how the model takes correct actions when it is on the L-R path.
Again, we work backwards and analyze which context-memory tokens are sufficient to influence the
output from the final model layer (Fig[7C, App. [O). Surprisingly, we find that the model output is
unaffected if the query token of the last layer attends only to context-memory tokens involving the
query state. These tokens contain sufficient information for the model to make its decision.

With this in mind, our next question was to understand what information is contained in the context-
memory tokens entering the last model layer. We repeat our linear decoding analyses on the context-
memory tokens. Two variables are well-decoded. First, the inverse action for the transition repre-
sented in a context-memory token can be decoded with high accuracy (Fig [7D). The other well-
decoded variable is whether the context-memory token is a transition on the L-R path (Fig [ID),
regardless of direction (i.e., towards or away from goal). Possibly, at decision time the model tests
if there are context-memory tokens that contain the query state and are tagged as being on the L-R
path. If so, then the correct left/right action can be inferred from the same tagged tokens (in particu-
lar since inverse actions are also encoded). We find further evidence for this strategy by re-doing our
sufficiency analysis from Fig[7|C with additional restrictions on the selected tokens (see App. [O).

Finally, we ask how this information becomes present in the context-memory tokens. We plot the
L-R path decoding accuracy from Fig [7D by the distance from the context-memory token to goal
(Fig [7E). Across model layers, we see that the accuracy first improves for tokens closest to or
farthest from the goal. Later, the accuracy improves for tokens at an intermediate distance from the
goal, where more transition information must be integrated to know if the token is on the L-R path.
Furthermore, attention patterns between context memory tokens shift from localized to distributed
across model layers (Fig[7F). Taken together, we suggest that path stitching occurs between context-
memory tokens such that L-R path tokens are tagged expanding backwards from the goal.
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4 CONCLUSION

We have shown that rapid adaptation of agents in tasks relevant to natural cognition can be ex-
plained by RL strategies that lie outside traditional model-free or model-based frameworks. Despite
this, our meta-learned model also displays phenomena expected from neural activity: learning of
environment structure, alignment of representations across environments, and biased memory recall
patterns at decision-time. Taken together, this suggests that understanding the cognitive processes
that support rapid learning may require theorists to consider a broader space of planning strategies.

Finally, our analysis of the RL strategies that emerge in transformers suggest a novel use of episodic
memory— each memory is not only a record of the original experience, but also stores additional
computation useful for decision making (Dasgupta & Gershman, 2021).

REPRODUCIBILITY

Code will be publicly available in a Github link in the final paper (after de-anonymization).
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A RELATED WORKS

Meta-learning to discover in-context reinforcement learning algorithms In order to develop a
model that can in-context reinforcement learn, we use a recently introduced meta-learning frame-
work (Lee et al.,2023). Meta-learning is concerned with “learning-to-learn”, using prior knowledge
learned from previous tasks to support rapid adaptation to new ones (Beck et al.l2023)). That is, the
goal is to learn an algorithm f that can be deployed in new tasks. The learning of f is called the
outer-loop while f itself is referred to as the inner-loop (Beck et al.,[2023). In many settings where
f is aRL algorithm (meta-RL), the outer loop shapes the weights of the network, but learning within
each task occurs via activation dynamics— through memory and internal state— rather than parame-
ter updates (Beck et al.|, |2023; |[Lampinen et al., 2024). The resultant f is considered an in-context
learning algorithm (Beck et al., [2023; [Sandbrink & Summerfield, [2024; Lampinen et al., 2024).

Early examples of this approach include RL?, which meta-trains a recurrent neural network using
reinforcement learning in the outer loop, such that an in-context RL strategy emerges in the inner
loop (Wang et al., 2016} |Duan et al.,|2016)). Subsequent work extended this approach to include ex-
plicit episodic memory mechanisms, combining RNNs with key—value memory architectures (Ritter
et al.| [2018;2020; Team et al., 2023)). More recently, [Lee et al.|(2023)) proposed decision-pretrained
transformers (DPTs), which use supervised training in the outer loop to induce in-context RL be-
havior in the inner loop. We adopt DPTs in this work both for practical reasons—their scalability
and ease of training—and for scientific ones: the transformer architecture allows us to probe how
memory-based computation supports in-context learning.

Meta-learning to describe cognition and neural activity Meta-learning has been proposed as a
framework to model both cognitive flexibility and structured learning in neuroscience and psychol-
ogy (Binz et al.| 2024). In human cognitive tasks, meta-learned models have been used to replicate
observed heuristics in decision-making and to account for few-shot generalization (Dasgupta et al.,
2020; Binz et al., [2022; |Lake & Baroni, 2023). Meta-RL, in particular, has been used to generate
hypotheses about how neural systems implement learning across tasks. Previous studies have used
the RL2 framework to show how the outer and inner learning loops can model different areas of the
brain, with the prefrontal cortex often playing a key role (Wang et al.| [2018; Hattori et al., |2023}
Zheng et al.l 2025). Despite these advances, many computational models in neuroscience rely on
single-task RL, training agents independently on each task without leveraging prior experience. In
contrast, we use meta-RL as a tool for developing flexible in-context learning, without attempting to
localize the outer loop to any specific brain region. Our focus is on the computational content of the
learned representations and decision-making strategies.

Transformers and episodic memory systems Transformer models process sequences by com-
puting self-attention over key—value pairs, enabling flexible access to information across long con-
texts (Vaswani et al., 2017)). This key—value structure has led to interpretations of transformers as
memory systems (Geva et al.,[2020), aligning them with a broader class of models that incorporate
explicit memory mechanisms (Graves et al.,[2014} Sukhbaatar et al.,2015; |Graves et al., 2016; Ban-
ino et al.,[2020). These systems separate memory addressing (keys) from memory content (values),
enabling high-fidelity storage and targeted retrieval. This architectural separation bears many sim-
ilarities to theoretical accounts of episodic memory in the brain (Teyler & DiScenna, [1986; [Teyler,
& Rudy, 2007 |Gershman et al. [2025). For example, recent work has formalized connections be-
tween key—value architectures and Hopfield networks, a classic model of associative memory in the
brain (Krotov & Hopfield, [2020; [Ramsauer et al., |2020). Related approaches such as fast-weight
models (Ba et al.| 2016; [Munkhdalai & Yul[2017) offer alternative mechanisms for temporary mem-
ory storage and in-context computation, often drawing from Hebbian or synaptic dynamics. Other
studies have proposed biologically grounded implementations of key—value attention mechanisms,
further linking transformer-like architectures to neural computation (Bricken & Pehlevan, 2021}
Tyulmankov et al., [2021; [Whittington et al., 2021} [Kozachkov et al., 2023; [Fang et al., [2025; |Chan-
dra et al.,[2025). Several of these models take direct inspiration from the hippocampus, a brain region
widely implicated in episodic memory (Whittington et al., |2021; [Fang et al., [2025; |Chandra et al.,
2025)). Recent experimental work has also identified key—value—like coding patterns in hippocampal
activity during episodic memory tasks (Chettih et al., 2024). Together, these findings suggest that
key—value architectures offer a useful computational analogy for episodic memory. In this work, we
analyze a meta-trained transformer to examine what kinds of memory-supported strategies emerge
when such an architecture is optimized for rapid adaptation.
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B TASK CONSTRUCTION

B.1 GRIDWORLD

We use a 5 x5 2D gridworld environment. Thus, there are N = 5x 5 = 25 states in the environment,
each of which corresponds to an underlying (z, y) location. Actions are one-hot encoded and consist
of: up, right, down, left, stay. If the agent chooses to take an action that hits the environment
boundaries, this manifests as a ”’stay” transition. The transition structure in this environment 7 (that
is, how actions transition the agent from one (z,y) state to another) is fixed across all tasks. Each
task is defined by the sensory encoding S, the reward location R, and the in-context exploration
trajectory D.

Each state in a gridworld task corresponds is encoded by a 10-dimensional vector. For each task,
we describe the set of these IV encoding vectors as S. The following describes how we generate
the encoding vectors comprising S. We first define a random expansion matrix £ € RY*¥  where
E;; € N(0,1). We next construct a distance correlation matrix D € RY*Y by exponentiating
the negative Euclidean distances between all pairs of grid positions: D; ; = oUliyi)=(5.95)l12) for
states ¢ and j and their corresponding (z,y) locations. Here, o € [0, 1] is a correlation parameter
that controls how strongly nearby positions are correlated in the encoding space. Thus, the encoding

of state ¢ is computed as % and S = {%}ﬁo

The reward state R is chosen from the [V states in the environment. The in-context exploration tra-
jectory is generated from a random walk with a randomly chosen initial state, plus some reasonable
heuristics. Specifically, we make the probability of selecting the “stay” action half as likely as the
other actions. In addition, if the agent takes an action that causes it to not transition to a new state,
the probability of taking that action again is downweighted to 0 until the agent transitions to a new
state (preventing the agent from getting stuck at boundaries). Running this biased random walk for

T steps gives us C = (s, a, s}, rt)tTZO, a set of standard RL transitions.

Our dataset is generated offline before training. We now describe how we construct the
train/evaluation/test sets. For a desired dataset size of M, we partition the N states of the grid-
world environment into three sets of sizes M * Dyrqin, M * Devals M * prest- Specifically, we divide
the dataset with ratios: pirain = 0.8, Pevai = 0.1, prest = 0.1. To generate the training dataset, we
construct M * py,qqrn tasks, where we sample R from the corresponding training partition of states.
We then sample S and D as described above. We repeat this for the evaluation and test datasets. The
training dataset is used for pretraining. The evaluation dataset is used for validation during pretrain-
ing and selecting models. The test dataset is used for any analyses conducted after model training
and selection.

B.2 TREE MAZES

We use binary tree environments with 7 tree layers (that is, a minimum of 6 actions is needed to
navigate from root to leaf). Actions are one-hot encoded and consist of: right child, left child,
parent, stay. If the agent tries to transition to a node that does not exist (e.g. trying to go to ’parent”
from the root), this manifests as a “’stay” transition. The transition structure 7 can vary across tasks.
This is because in each task the underlying tree is generated with branching probability 0.9. Thus,
there is a maximum of 127 states in each task. Each task is defined by the transition structure 7,
sensory encoding S, the reward location R, and the in-context exploration dataset D.

The sensory encodings are generated as in gridworld, except D is defined via the geodesic distances
between any two tree states. The reward state R is chosen only from leaf nodes. The in-context
exploration trajectory D is generated from a random walk from the root node, with reasonable
heuristics. We use the same heuristics as in gridworld. We also add heuristics described inRosenberg
et al.|(2021) of mice in similar mazes. That is, the agent is more likely to alternate between left and
right transitions when transitioning through child nodes. In addition, the agent is less likely to
backtrack.

As before, our dataset is generated offline before training. For a desired dataset size of M, we
construct three sets of sizes M * Dirain, M * Pevais M * prest, With Dirgin = 0.8, Peyar = 0.1,
Prest = 0.1. To generate the training dataset, we construct M * py,.qipn tasks, where we sample T
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from binary trees with branching probability 0.9. We use only trees with at least one leaf node in the
seventh layer and, for the training dataset, exclude the full 7-layer tree. We sample R from one of the
leaf nodes. We then sample S and D as described above. We repeat this for the evaluation dataset,
ensuring distinct 7 from the training dataset. The test dataset comprises only of 7 corresponding
to a full binary tree, with R, S, S sampled as above. As b before, the training dataset is used for
pretraining. The evaluation dataset is used for validation during pretraining and selecting models.
The test dataset is used for any analyses conducted after model training and selection.

C MODEL AND TRAINING PARAMETERS

We largely follow the same architecture as that of |[Lee et al.|(2023)), a GPT-2 style model with causal
attention and without positional embeddings. Our default model has 4 heads, 3 layers, and em-
bedding dimension of 512. Context memory tokens consist of the (s, a, s, 7¢) tuple concatenated
together into one vector. Thus, tokens are 26-dimensional in gridworld and 25-dimensional in tree
maze. The query token consists of (s, 6) for query state s, where 0 provides 0-padding to reach
the desired vector size. These tokens are projected into model embedding space through a learnable
linear layer. The model samples greedily in the gridworld environment and with softmax sampling
in the tree maze environment (both settings were empirically determined).

In contrast to [Lee et al.| (2023)), we provide the query token at the end of the context memory. This
is to allow a clearer interpretation in which context memory tokens represent previous experiences
in the maze that are stored in episodic memory. The query token is only provided at decision time,
and the agent must use previous memories to guide its present decision.

To allow for query tokens at the end of an input sequence sequence and to preserve efficient
pretraining, we make modifications to the pretraining procedure of [Lee et al,| (2023), which we
describe here. Let’s say we have a pretraining task with context memory tokens D and query
state s,. To encourage length generalization, we would like to train the model on many se-
quence lengths— let’s say every tg, timesteps of D. To do so from one forward pass, we
first construct a sequence Dyrqsn Where s4 is interleaved every i, timesteps of D: Dipgin =
[D1,D2, ..., Dt Sqs Dtorept1s - - - Dast ey Sqs Dostorept1s - - - » D1, 5] We then construct an at-
tention mask Apask = Acqusal + Aquery, Where Acqysqi is the standard causal attention mask with
—o0 values in the upper-triangular and 0 elsewhere. Agyery ensures that query tokens are not pro-
cessed by context memory tokens by masking columns corresponding to the query token:

—00, if Dyginlj] = sqand i # j

Aquery[ivj] = {0 (l)

otherwise
Thus, we use A, 45k during training and cross-entropy loss is only calculated over the outputs cor-
responding to s,. In gridworld, the maximum context length in training is 7" = 200. In tree maze,
the maximum context length in training is 7" = 800.

We use Adam optimizer with weight decay 1 x 107°. We use a batch size of 1024 for gridworld
and a batch size of 512 for tree mazes. We train the model for 25 epochs in gridworld and 50 epochs
in tree mazes. We use a learning rate of 1 x 10~* which we linearly decrease to 1 x 10~° over the
course of training (we found that this empirically worked well). For each training run, we use two
NVIDIA H100 GPUs. This results in around 1 hour of training time for gridworld and 1.5 hours of
training time for tree mazes. For each task, we train models from 5 random initializations, for both
a dropout of 0 and 0.2. We then select the best model via validation performance for each task. This
selected model is the model we analyze for each task.

We did not find much improvement by trying other tweaks to the pretraining setup or model size.
We show validation and training results for various different parameters in figure[§]and [0
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Figure 8: Effect of training parameters. A. Default training settings for Darkroom task, showing
validation loss, validation accuracy, training loss, and training accuracy over training epochs. Colors
indicate random seeds and line style indicates dropout amount. We note that 100% accuracy is not
possible due to the training procedure (see task construction details). B. As in (A), but for tree
mazes. C. As in (B), but for %0 of the default learning rate. We don’t use a learning rate scheduler
here. D. Seed 0 of (B), but we let the training run for 250 epochs. E. As in (B) but pretraining dataset

is doubled in size.
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A. Uncorrelated Stimuli
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Figure 9: Effect of model and dataset parameters on training. A. As in Fig[8B, but state encoding is
fully uncorrelated. B. As in Fig[8B, but model encoding dimension is doubled to 1024. C. As in Fig

, but model encoding dimension is doubled to 1024, and number of model layers is increased to
4. D. As in Fig[8B, but number of model layers is doubled to 6.

D RESULTS SENSITIVITY TO TASK/MODEL PARAMETERS

We repeat some of the analyses in the main figures here for alternative parameterizations of task and
model. We focus mostly on testing the tree maze environment, for simplicity.

We first test the model where stimuli do not have spatial correlation (Fig[I0). We find similar coarse
in-context representation structure emerges, where representations from the first layer roughly sep-
arate out the two main branches of the maze (Fig[I0AB). However, the bifurcating structure is less
clear than it is when some spatial correlation is introduced (Fig [3] and FigI6). The cross-context
structure results seem similar to that of the correlated stimuli (Fig [I0C, compare to (Fig @F). The
bias of attribution scores to the query and goal at decision time also mirrors that seen in environments
with correlated stimuli (Fig[IODE, compare to (Fig[5BC).
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Figure 10: Sensitivity of results to state encoding correlation. A. As in Fig[3E, but for two random
example environments (left and right). Additionally, the model was pretrained and tested on envi-
ronments with uncorrelated stimuli. B. As in Fig[BIC, but for uncorrelated stimuli. C. As in Fig[F,
but for uncorrelated stimuli. D., E As in Fig E]BC, but for uncorrelated stimuli.

We next test a larger version of the model with 6 layers (Fig[IT)). Like before, the in-context repre-
sentation structure emerges as a bifurcating structure in the middle layers of the model (Fig[TTAB).
With more layers, though, the representations of the first layer now appear disorganized. As before,
the last layer of the model is also organized in a less interpretable structure. The cross-context struc-
ture results again reflect greater latent structure alignment in the early and late layers of the model
(Fig[TTIC, compare to (Fig [dJF). The bias of attribution scores to the query and goal at decision time
also mirrors that seen in environments with correlated stimuli (Fig[TTDE, compare to (Fig[5BC).
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Figure 11: Sensitivity of results to model size. A. As in Fig [BE, but for two random example
environments (left and right). Additionally, the model has twice the number of layers (6). B. As in
Fig BIC, but for 6-layer model. C. As in Fig @, but for 6-layer model. D., E As in Fig[5BC, but for
6-layer model.

E ADDITIONAL BEHAVIORAL RESULTS IN GRIDWORLD AND TREE MAZES

Here, we show additional learning results for both the gridworld task and tree mazes. We first show
additional in-context learning curves for gridworld (Fig[I2Z). As in the main results, performance is
evaluated from query states that were seen in-context and at least 6 steps away from the goal. If no
eligible query states meet the selection criteria, return is recorded as zero. We note that in-context
learning can still be unstable at times. In part, this may be because the model is sometimes tested
on states it has not experienced. Thus, it is more difficult to navigate into previously experienced
territory to find the goal. We also suspect that improvements in the training procedure or architecture
that we have not explored could also produce a more performant model.

A few more behavioral results are shown for gridworld. We reproduce the analysis of Fig [2F for
the meta-learned gridworld model (Fig ). We further subdivide the query states, however. This
is because we were curious if the agent would perform differently for states seen only before any
reward experience or states seen only after all reward experience. This turns out not to be the case,
and the agent does equally well in both cases (Fig [I3]A). This information is useful for forming
hypotheses of how the model solves the task. Due to its causal structure, this means that the model
probably doesn’t (solely) rely on a strategy where experiences of reward alter the processing of
subsequent context memory tokens. Otherwise, the model should do poorly on states that were only
seen before any reward experiences. We also give further details of the shortcut paths experiments

(Fig[T3BC).

Finally, we show additional in-context learning examples for tree mazes (Fig[I4). Learning is much
more stable in this environment, perhaps because there are useful heuristics the agent can use if at a
novel state (transition towards parent node until arriving at a state that has already been experienced).
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Figure 12: Additional in-context learning curves for gridworld task. A. As in Fig[2A, but for 24
additional test environments. We skipped environments where reward was never seen in-context.
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Figure 13: Additional learning results in gridworld task. A. As in Fig2F, but for gridworld task. We
also further divide the query states into states seen only before any reward experience (Pre-1¥), states
seen only after all reward experiences (Post-1¢), states seen before and after reward experiences
(Pre & Post), and states that were never seen in-context (novel). B. Depictions of the two tests for
shortcut paths we use (left and right). Each test set has a fixed start location, goal location, and
in-context experienced path (yellow dashed line). For each test set, we simulate 100 environments
with different sensory encodings. Blue line shows an example successful shortcut path taken by the
model. See methods description for more details. C. Success rate of taking the optimal, shortcut
path for the two test sets in (B), across 100 sample environments. Error bars show 95% confidence
interval. Note that chance level in both tests is 0.02 (generously excluding the stay transition from
consideration).
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Figure 14: Additional in-context learning curves for tree maze task. A. As in Fig 2D, but for 24
additional test environments. We skipped environments where reward was never seen in-context.
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F Q-LEARNING SIMULATIONS

To make comparisons to RL algorithms without learned priors, we simulate two Q-learning models.
We use a tabular Q-learning model where we abstract away the problem of representation learning
and allow the model to use a lookup table. We also use a deep Q network (DQN) parameterized as
a MLP with 4 hidden layers of dimensions [256, 128, 64, 16].

To make as fair a comparison as possible, we give our Q-learners a full replay buffer and let models
train to convergence on the memories of the buffer. For instance, given a task with context memory
D if we wish to evaluate the model at context length ¢ we define a replay buffer comprising D14, .
We then let the Q-learning model train on several epochs over the full dataset of the replay buffer,
until the temporal difference error has converged. We find that 1000 epochs for the tabular model
and 1500 epochs for the DQN is more than sufficient to ensure this. For the tabular model, we train
with batch sige 512 and learning rate 0.1. For the DQN, we train with batch size 1024 and learning
rate 1 x 107°.

There are also a few additional training details for the DQN. We randomly reinitialize the network
weights at each context length before we run the training procedure. This is because we find that
resetting the weights works empirically better than initializing with the weights from the previous
context length the model was trained on (this is reasonable, as the latter induces a continual learning
problem). To maintain as many parallels to standard methods as possible, we also adopt a double
deep Q learning framework (Van Hasselt et al., 2016). We use a target network that is updated every
10 epochs. We don’t think this detail is critical (and empirically the use of a target network here
doesn’t seem to impact performance) as the learning problem in our setting is fully stationary.

For both models, at test time we also allow for action sampling with some temperature. We empir-
ically select the temperature that results in the best performance after a grid search over the values
[0.005,0.01,0.05,0.1,0.2,0.5,10.0]. We also selected a value of + in the TD loss function that
worked well in practice after a grid search over the values [0.7,0.8,0.9]: v = 0.8 for the tabular
model, v = 0.9 for DQN.
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G ADDITIONAL IN-CONTEXT REPRESENTATION LEARNING RESULTS

Here, we show additional in-context representation learning examples for more randomly sampled
environments (Fig [I5] for gridworld, Fig [I6] for tree maze). In addition, we show the results of
reward ablation on representation learning. Comparing the model with and without reward ablation,
it appears that reward information sometimes results in the reward state being pushed farther away

from non-rewarding states.
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Figure 15: Additional in-context representation learning examples in gridworld task. As in Fig[3A,
but for four more additional random seeds. Additionally, the third row of each plot shows the PCA
embedding plots at context length 250 if reward was ablated ( = 0 in all transitions).
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Figure 16: As in Fig[3E, but for four more additional random seeds. Additionally, the third row of
each plot shows the PCA embedding plots at context length 800 if reward was ablated (r = 0 in all
transitions). We skipped seeds where rewards was already never seen during in-context exploration.
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H KERNEL ALIGNMENT

To quantify how well learned model representations capture the structure of the latent environment,
we employed centered kernel alignment (CKA) to compare the similarity between the true envi-
ronment structure and the model’s internal representations. We first constructed a ground truth
kernel matrix by computing the environment distance matrix D where D;; indicates the number of
actions needed to navigate from state ¢ to state j. We then applied an exponential transformation
Kinpu = ~P where D is the distance matrix and -y controls the spatial scale of environment structure
captured by the kernel.

For each network layer, we extracted hidden state representations corresponding to each environment
state, using the final token representation as the state embedding. We collect this in the matrix X and
construct representation kernel Kyens = (X — X)(X — X)T. We then compute the CKA between
Kinpu[ and Klalents-

In Fig [[7AC, we show how the kernel alignment score changes for different values of ~. For the
analyses in the main text, we select a value of + that maximizes overall kernel alignment: 0.8 for
gridworld, and 0.6 for tree mazes.

We note that the kernel alignment measure is likely still imperfect for what we want to quantify,
especially in tree mazes. For instance, the bifurcating structure of representations in tree mazes is
an interesting phenomena we would like to understand better. However, it is a coarse structure that
likely does not align well to the ground truth kernel that we defined. For instance, in Fig [T7BD,
we see how reward ablations affect kernel alignment. In the tree maze task, there appears to be
a significant difference in kernel alignment that is induced by reward ablations. In contrast, the
PCA plots from Fig |16|show that the branching structure of the representations is well-preserved
even when rewards are ablated. Thus, we think additional metrics may be more useful to interpret
representation organization in tree mazes.
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Figure 17: Additional kernel alignment details. A. Kernel alignment for different values of ~, the
spatial kernel used to define the environment structure. Line colors indicate model layer where
representations are extracted. B. As in Fig3|C, but showing additional lines (dashed) where reward
was ablated (» = 0 in all transitions). C, D As in (A, B), but for the tree maze task.
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I ANALYZING CROSS-CONTEXT LEARNING IN GRIDWORLD
Layer 1 Layer 2 Layer 3
o 0.158 0.114 0.109 0.114 0.428 0.399 0.319 0.307 0.364 0.385 0.390 [0.264 0.334 0.512
(V] (V] (0]
4{-5' — 0.063 0.053 0.034 [ 4(-5' 0.376 10.233 fuh¥XxS 0.236 | 0.362 4‘-0‘ (VR0 vy kN 0.128 0.167
£ £ £
T« 0.083 0.110 [} ° 0.186 0.181 0.165 (VLN ° EEVA( 7524 0.119 0.143 [}
o (o] o
[o] [e] o
U om 0.040 0.064 [(BEE] = 0.340 |0.241 (KT} 0.237| 0.337 o
> > >
< 0.136 0.131 0.145 0.111 0.331 0.309 0.348 0.354 0.292 0.283 fu¥dos8 0.351
0o 1 2 3 4 0o 1 2 3 4 0 1 2 3 4
X coordinate X coordinate X coordinate
| — | — ! —
0.00 0.08 0.16 0.000 0.215 0.430 0.000 0.255 0.510

Figure 18: Additional results for cross-context representations in the gridworld task, for each of the
three layers of the model. Each plot shows the difference between same-node and different-node
correlations at context length 250 (that is, the difference between solid and dashed lines in Fig[@B).
Values are separated by the same-node identity, i.e. the underlying XY latent state.

Here, we show additional results for cross-context representation learning in gridworld. We plot
the difference between same-node and different-node correlations and separate these values by the
underlying XY latent state. Potentially, representations are better aligned across contexts at the
edges of the environment (see “Layer 1” and “Layer 2” of Fig[I8). Overall, though, the cross-
context similarity is fairly similar across the entire gridworld structure.
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J  LINEAR DECODER SETUP

We will first describe how we linearly probe the representations of query state tokens. In gridworld,
we randomly select 600 tasks from the original train set and partition these tasks into a new train/test
set for our linear decoder, with a 90/10 split. In gridworld, we use the original train set because
there’s more unique XY goal locations (21) than in the original eval and test sets (2 each). In tree
maze, we randomly select 600 from the original test set and make the same 90/10 train/test split for
our linear decoder. We skip over tasks where reward is never seen during the in-context exploration
phase.

The regressors for our decoder will be model representations at some layer. To collect them, in
each environment we first identify the set of states that had been seen in-context. For each state s’
that was seen, we let query state s, = s and present the in-context exploration trajectory and s, as
inputs to the model. For each model layer [, we collect the model representations for the s, token,
7(sq,1) € R512. The decoding task is to predict some value v given 7(s,, 1), where v is typically
some kind of information pertaining to s,. We tried a variety of values v and in the main text only
discuss the variables for which test decoding accuracy was high.

To fit a linear decoder, we use ridge regression. We standardize features to 0 mean and unit variance.
The regularization strength o was selected through 5-fold cross-validation using a grid search over
regularization strengths from [10°,10%], with 10 logarithmically-spaced values. Cross-validation
was performed with shuffled splits. For each o, we computed the mean R2 score across all validation
folds and selected the o that maximized this cross-validation performance. The final decoder for
each layer was fit on the complete training set using the « found previously. Model performance
was evaluated on the held-out test set.

For circular variables such as angles, we cannot directly apply standard regression since the circular
nature of the data violates the assumptions of linear models (e.g., an angle of 7 and —m represent the
same direction but appear numerically distant). Instead, we decompose each target angle 6 into its
sine and cosine components: sin(6) and cos(#). We then fit two separate ridge regressors to predict
these components independently, using the same cross-validation procedure described above. To
obtain the final angle prediction, we convert the predicted sine and cosine values back to angles

using the arctangent function: = arctan2(sin(6), cos(0)).

For classification tasks, we do the same but with logistic regression and report balanced accuracy
scores.

To probe representations for context memory tokens, we follow a similar procedure as that for query
state tokens. In each environment, we pass the entire in-context dataset D to the model. We then
iterate through t = [T, T —2, ..., 1] and collect representations from the model in response to token
D: = (8¢, at, Sy, 7) if the transition (s¢, a, s;, r) has not already been collected for this environment.
We work backwards under the assumption that model representations are more rich as in-context
experience increases, and thus more likely to contain task-relevant variables. For each token that
produces a regressor, we define variables of interest relative to s; (e.g., value function for state s;).
We did not see a difference when we defined the variables we tested relative to s} instead.

K GRADIENT ATTRIBUTION METHOD

To get gradient attributions, we use integrated gradients (Sundararajan et al.|2017)). As a reminder,
the model output is a vector defining weights over actions. We calculate the gradient of the model’s
output for the optimal action with respect to input tokens. We define the baseline inputs as the
original context memory dataset D but with actions ablated (that is, a = 0). We integrate over 20
steps.
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L TESTS FOR MODEL-FREE REASONING
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Figure 19: Tests for model-free reasoning in gridworld. A. Absolute error in test set for decoders
fit on V'* (Grid Distance, blue) and V, (Euclid. Distance, orange) across different values of . B.
Predicted value vs actual value in test set, for VV* and v = 0.4. B. Predicted value vs actual value in
test set, for V, and v = 0.8.

As a probe for model-free reasoning, we tested whether or not value information could be decoded
from model representations. Specifically, we test whether, at decision time, the model utilizes value
information of the query state to drive decisions.

Specifically, we assess whether the model encodes value estimates V™*(s) =
B [> ooV Rip1 | So = s for its current state s under an optimal policy. We trained linear
decoders on query token representations to predict V'(s), but overall did not find evidence that a
value gradient could be extracted from model representations (see Apps. [K]and [[. In gridworld,
V' (s) can be decoded with high accuracy (Appendix . However, decoding is more accurate when
V(s) is defined in terms of Euclidean distance to the goal, rather than over the true 4-dimensional
action space (Appendix [[). This suggests that the model encodes spatial structure rather than true
value gradients—its apparent V' (s) reflects geometric regularities, not action-contingent reward
prediction. In tree mazes, decoded value estimates are localized: V (s) is only reliable within 2-3
steps of the reward (Appendix [[)). This narrow value gradient is insufficient to guide behavior over
the full task horizon.

We start with fitting linear decoders in gridworld. Let s be a query state and s,,; be the reward state.
The variable we predict from the model representations is V*(s) = E >~ v Rit1 | So = ] for
state s, taking an optimal policy. Equivalently, V*(s) = ~y%(*:5s0et) where d(s, s') describes the
number of actions needed to navigate from s to s’. Thus, V* describes an exponentially decaying
value gradient in terms of action distance. To evaluate the decoder, we plot the test error against
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the value function ~ (Fig[T9]A). We note that, although the lowest error is achieved at v = 0.4 (Fig
[T9B), this is not actually a useful parameterization for a value function as the value gradient decays
quickly for states more than 2 steps away from reward. However, the test error at v = 0.8 is as low

as 0.04 in the final model layer.

Given that model representations capture the environment structure well, we suspect that the high
decoding accuracy for V* may result from the spatial organization of representations. That is, if
XY location information is contained in representations, a linear decoder could also do fairly well
at predicting V*. As a control, we define V, = % (5:%90a1) where d,(s, s') describes the Euclidean
distance from s to s’. We find decoding error is lower for V, than for V*. However, V, does not
reflect the actual action affordances in gridworld (since action space is only up/right/left/down).
Thus, we conclude that the strategy used by the model may have more to do with learning the latent
Euclidean structure of the environment than learning a value function across action space (as would
be expected in standard model-free algorithms).

We repeat this analysis in the tree maze task. We define V* as before and plot the test error against
the value function ~ (Fig[20]A). We find that decoding error increases with y. We plot predicted V*
vs actual V* for the lowest and highest ~ values (Fig[20BC). We find that at v = 0.4, V* is well fit,
however the value gradient is only meaningful for states that are 1-2 steps away from reward. Thus,
this is likely not useful as a model-free RL signal. Conversely, at v = 0.8, the decoding does not

perform well, and at most reaches r2 = 0.53.
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Figure 20: Tests for model-free reasoning in tree mazes. A. Absolute error in test set for decoders fit
on V* across different values of . B. Predicted value vs actual value in test set, for V* and v = 0.4.
B. Predicted value vs actual value in test set, for V* and v = 0.8.
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M TESTS FOR MODEL-BASED REASONING
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Figure 21: Tests of model-based reasoning. A. As in Fig[3JA, but for four example gridworld en-
vironments. B., C. As in Fig[5BC, but for gridworld tasks. D. Measurement of necessity for each
context memory token on the path from the query state to the goal state. We measure the change
in cross—entropy loss when the token is ablated, and we plot this against the location of the token.
Tokens are ablated by masking the query-to-token attention at the desired model layer. In all tests,
the query state remains the same. Line color indicates which layer of the model the intervention
was conducted in. We show average value across 50 environments, with 95% confidence interval
shading. Since there are multiple possible paths from query token to goal in gridworld, we define the
path as the sequence of states the agent would have taken had we allowed it to navigate to reward.
We include only cases where the model successfully navigates to goal. E. As in Fig (BC, but for
four more tree maze examples. F. As in (D) but for the tree maze task.

We next probe for signatures of model-based reasoning. That is, we look for evidence that the
model utilizes path planning to choose the correct action from the query state. This is connected
to questions of state tracking 2025) and understanding how models simulate successive
transitions between states. [Li et al.| (2025) propose different ways that transformer models can do this
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path planning, from forward rollouts to more sophisticated, mergesort-like algorithms. Each of these
algorithms require simulating transitions through intermediate states between query and goal. Thus,
to test for the presence of path planning, we look for evidence that information about intermediate
states are utilized at decision time. Specifically, we isolate decision time as computations conducted
in the query token stream.

We first begin with gridworld and analyze the gradient attributions over the input context tokens
(which are themselves transitions). We plot individual examples of these attribution maps and sum-
mary statistics in Fig[2TJA-C. Taken together, it does not appear that the model relies on path planning
from the current state to the goal. We further test with ablations of states on the path from query to
goal. Specifically, at each model layer we conduct a necessity test where we mask attention from the
query token to context tokens containing the ablated state. We then measure how attention ablations
impact the original cross-entropy loss (Fig [2I]D). We find that ablating intermediate states does not
impact cross-entropy loss.

We conduct the same analyses in tree maze (Fig 2TEF) and find similar results. We conclude that
path planning as done in typical model-based reasoning is not a strategy that the model is relying on
to solve either tasks.

Our conclusion contrasts with prior work that analyzed the behavior of meta-learned RL agents and
suggested that they implement a form of model-based planning (Wang et al.| 2016 Ritter et al.,
2018)). It is possible that meta-learning can discover more typical model-based strategies in other
settings, and these discrepancies demonstrate that the mechanistic perspective taken here can provide
insights into understanding meta-learned algorithms.
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N GRIDWORLD MECHANISMS
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Figure 22: Additional decoding plots for gridworld task. A., B. As in Fig[6BC, but for model layer
3. C. As in Fig[6B, but decoding analysis is run on the context memory tokens that enter each layer
of the model. D. As in Fig[6[C, but decoding analysis is run on the context memory tokens that enter
each layer of the model.

In Figure[22] we show additional decoding results for gridworld. In the main text, we discussed how
XY location and angle to goal can be decoded clearly from the query token stream of the model. We
also find that these variables can be decoded from the context tokens. We find this interesting as it
connects to our findings in tree mazes where memory tokens contain not just information about the
original event (i.e., transition), but also additionally computed features.

In results section [3.5}Gridworld, we gave brief descriptions of a few analyses we ran. Here we will
give more details on these analysis. First, we discussed how we showed that model performance
relies on attending to tokens near the query and goal states in layer 2 (Fig.[6D). We do this by mask-
ing attention from the query token to individual context tokens, following the ablation procedure
described in Section[3.4] We find that layers 1 and 3 are robust to these ablations, but performance
degrades in layer 2 when attention to tokens near the query or goal is removed (Fig.[6D).

We also discussed how the attention patterns between context memory tokens shift from localized
to distributed across model layers (Fig.[6), suggesting that the model first stitches transitions locally
before constructing global structure. To arrive at this conclusion, we analyze the spatial locality
of attention between context-memory tokens to test whether transitions are integrated locally or
globally. Specifically, we plot attention strength as a function of spatial distance between token
pairs (Fig. [6E). We restrict this analysis to the first two layers, since context-to-context attention in
the final layer does not influence the policy output.
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O TREE MAZE MECHANISMS
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Figure 23: Additional analyses for tree maze task. A. Across 50 environments where reward infor-
mation is ablated from the context, the proportion of each action taken by the model when at the
root state. B. As in (A), but for non-root states. C. As in Fig , but we further restrict the context
memory tokens to be on the L-R path and transitioning in the direction towards goal. D. As in (C),
but transitioning in the direction away from goal. E. As in (C), but for context memory tokens that
are non the L-R Path. That is, for the state indicated on the x-axis, we select context memory tokens
that involve that state but are not on the L-R path. There are no transitions involving the goal that
are not on the L-R path, and thus no data at that point. F. As in (C), but we restrict context memory
tokens to be on the L-R path and do not further restrict by their directionality to or from the goal.

In Figure we show additional results for our tree maze analysis. In the tree maze task, the
optimal action is often to transition to the parent node (specifically, this is true in all but the 6 states
that comprise the L-R path). This bias is reflected in the model. Without reward information, the
model defaults to transition towards the parent node unless it is at the root node (Fig[23]AB). Thus,
we believe the model takes its default action unless it accumulates enough evidence through its layer
computations to do otherwise. As discussed in the main text, we think this is done by tagging context
tokens on the L-R path.

We also give more information here about analyses that we briefly described in results section 3.5}
Tree Maze. We discussed a hypothesis where, at decision time, the model tests if there are context-
memory tokens that contain the query state and are tagged as being on the L-R path. If so, then
the correct left/right action can be inferred from the same tagged tokens (in particular since inverse
actions are also encoded).

We find further evidence for this strategy by re-doing our sufficiency analysis from Fig with
three additional restrictions: (1) tokens must be on the L-R path in the direction to the goal, (2)
tokens must be on the L-R path in the direction away from the goal, or (3) tokens are not on the L-R
path at all. We find that in the first two cases the model output is unaffected, but in the third case the
output is negatively impacted ((Fig[23IC-F)). As long as the query token in the last layer can attend to
context tokens that (1) themselves contain the query token and (2) are on the L-R path going towards
or away from goal, the model output is unaffected (Fig[23|C-F). The results of these perturbations are
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consistent with our hypothesis that decision-making in the model relies on identifying if the query
state is on the L-R path via intermediate computations stored in context-memory tokens.
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