
Autonomous Codebase Maturity Roadmap
A Practical Guide to Building Autonomous Pull Request Systems

February 2026

Important Security Disclaimer

This document outlines a high-level roadmap for integrating automation and autonomy into the software development lifecycle. The

capabilities described—specifically those concerning automated code modification, approval, and merging—grant significant authority to

your systems. This authority introduces substantial risk if not managed with care and precision.

Before implementing any stage of this roadmap, ensure that foundational security practices are strictly enforced. This includes the principle of

least privilege for bot accounts, robust branch protection rules, comprehensive audit logging, and exhaustive test suites. All automation must

be auditable, observable, and include mechanisms for human override. Proceed with caution and ensure a thorough understanding of the

security implications at every stage.

Non-negotiable Guardrails

Restricted Permissions: Default workflow token permissions must be restricted; each job must declare explicit permissions: scopes.

Gated Automation: Any automation capable of writing, approving, or merging must be gated by labels, allowlists, or protected branches.

Supply Chain Security: Pin third-party Marketplace actions to specific commit SHAs and review their permission requirements.

Reversibility: Ensure all automated actions are reversible via automatic revert PRs or a global "disable" switch.

Introduction

Target Audience

This document is intended for engineering teams seeking to operate repositories with increasing levels of autonomy. It addresses
teams currently utilizing pull requests, CI systems, and branch protection rules, who now intend to formalize automation across
review, remediation, approval, and merge workflows.

Small teams aiming to minimize repetitive review overhead.

Platform teams standardizing governance across distributed repositories.

Organizations implementing policy enforcement at scale.

Engineering leaders seeking to accelerate merge velocity while mitigating risk.

This guide provides a structured roadmap for introducing autonomy in a controlled and disciplined manner. The stages are
foundational; while experimentation with later stages is possible, full autonomy requires stable implementation of preceding phases.

The Necessity of a Maturity Model

A repository achieves autonomy when it can autonomously detect issues, execute corrective actions, satisfy review criteria, and
finalize merges while maintaining an auditable trace. Each capability introduces authority and subsequent risk, necessitating robust
control mechanisms. This roadmap structures the Autonomous Codebase Project into five distinct stages: Auto-Audit, Auto-Resolve,
Auto-Fix, Auto-Approve, and Auto-Merge. Each stage incrementally increases system control over the change lifecycle.

•

•

•

•

•

•

•

•

Autonomous Codebase Maturity Roadmap Baz Technologies Inc.

Page 1 of 5 Copyright 2026, Baz Technologies Inc. All rights reserved.

Stage 1: Auto-Audit

Establish visibility before authority. Every automated action must be logged in a structured, tamper-evident manner. In this phase,
the repository remains human-driven; the automation layer exclusively records behavior to establish trust and observability.

Actions to complete

☐ ☐ Record audit entries in Check Runs / Job Summaries (or an external log).

☐ ☐ Optionally mirror a human-readable summary as a PR comment.

☐ Ensure the bot identity is clearly distinguishable from human users.

☐ Define a strict, machine-parseable format for all audit entries.

Implementation Notes

PR comments are mutable and can be modified or deleted via the GitHub REST API. To ensure a reliable audit trail, teams must
utilize Check Runs or Job Summaries for structured logs, or external storage (SIEM) keyed by PR number. At minimum, record
cryptographic hashes of audit entries to make tampering detectable.

Inspiration: Refer to PR comment automation like PR Helper for patterns on managing PR metadata and state changes.

1. https://docs.github.com/en/rest/issues/comments

2. https://github.com/marketplace/actions/pr-helper

Stage 2: Auto-Resolve

Minimize manual friction by resolving deterministic review threads. This stage automates the resolution of review conversations
once objective conditions are satisfied, eliminating repetitive human intervention for verified changes.

Actions to complete

☐ Grant the bot permission to modify PR review threads via the GitHub GraphQL API.

☐ Implement logic to detect unresolved threads.

☐ Classify threads into categories (e.g., Lint issues, Formatting issues, Architectural discussions).

☐ Prohibit auto-resolution of any thread not initiated by automation or a matching machine signature.

☐ Only resolve threads after a successful CI run following a corrective commit.

☐ Ensure threads concerning security or design disagreements are never resolved automatically.

Implementation Notes

Resolution logic must remain conservative. Patterns like AI Code & PR Review illustrate automated inline analysis, but your logic
must strictly enforce that threads are only resolved once the corresponding check run passes. Validate required permissions in a
sandbox repository, as GraphQL mutation scopes can be non-obvious.

3. https://docs.github.com/en/graphql/reference/mutations#resolvereviewthread

4. https://github.com/marketplace/actions/ai-code-pr-review

Stage 3: Auto-Fix

Commit code changes automatically for deterministic violations. This stage introduces mutation of the source branch. Auto-fix
capabilities must be restricted to reproducible transformations such as formatting or linter-driven corrections.

1

1

2

3

4

Autonomous Codebase Maturity Roadmap Baz Technologies Inc.

Page 2 of 5 Copyright 2026, Baz Technologies Inc. All rights reserved.

Actions to complete

☐ Grant the bot write access to repository contents.

☐ Restrict auto-fix scope to deterministic changes (e.g., formatting, regenerated artifacts).

☐ Ensure fixes are atomic (one commit per tool per category) and reproducible locally.

☐ Gating: Restrict auto-fix to trusted actors or branches; require maintainer labels for fork PRs.

☐ Log an audit entry including the commit SHA and the rationale for the change.

☐ Verify branch protection settings, specifically "dismiss stale approvals."

CI Re-run Limitation: Commits pushed using the default GITHUB_TOKEN will not trigger subsequent workflow runs to prevent
infinite recursion. To ensure CI execution following an auto-fix, utilize a GitHub App installation token or a tightly scoped PAT.

Implementation Notes

Utilizing the createCommitOnBranch mutation in the GitHub GraphQL API constrains authorship to the credential owner.
Patterns like Git Auto Commit provide a proven "commit-and-push" building block for these automated corrections.

5. https://docs.github.com/en/rest/repos/contents

6. https://docs.github.com/en/graphql/reference/mutations#createcommitonbranch

7. https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches

Stage 4: Auto-Approve

Submit approval reviews based on objective, measurable criteria. Approval transitions from a subjective evaluation to a
verification of rule compliance (e.g., all checks passing, no unresolved threads).

If you’re using a GitHub App installation token, this repository setting is not the control point; if you’re using GITHUB_TOKEN, you
must enable it.

Actions to complete

☐ Grant the bot permission to generate PR reviews.

☐ Enable Repository Setting:"Allow GitHub Actions to create and approve pull requests."

☐ Implement a "two-actor" pattern: one bot for fixes, a separate bot for approval.

☐ Validate that the bot is not the most recent pusher if rules prohibit self-approval.

☐ Submit approval reviews via the GitHub REST API endpoint.

☐ Log an audit comment detailing the specific conditions satisfied for approval.

Implementation Notes

Required approvals must originate from accounts with write or admin permissions. Community actions like hmarr/auto-approve-
action illustrate patterns for approving PRs on behalf of configured identities.

9. https://docs.github.com/en/rest/pulls/reviews

10. https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-settings-for-github-actions-in-your-repository

11. https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/about-protected-branches

5, 6

7

8

6

8

9

10

11

9

11

12

Autonomous Codebase Maturity Roadmap Baz Technologies Inc.

Page 3 of 5 Copyright 2026, Baz Technologies Inc. All rights reserved.

Stage 5: Auto-Merge

Finalize the change lifecycle with automated merging. This stage eliminates the final manual gate for changes that have satisfied
all required checks and approvals, maximizing velocity for trusted changes.

Actions to complete

☐ Grant the bot permission to merge PRs.
This typically requires:

☐ For GitHub
Apps:

Pull
requests:
write

(and
often

Contents:
write

depending on
implementation).

☐ For GitHub
Actions:

pull-
requests:
write

in workflow
permissions (and often

contents:
write

).

☐ Ensure the bot can only merge if all branch protection rules are satisfied.

☐ Leverage native merge-serialization features such as GitHub Merge Queue.

☐ Implement a "dry-run" mode to validate merge conditions.

☐ Establish an anti-bypass rule: never utilize admin-bypass tokens for autonomous merges.

☐ Log a final audit comment containing the merge commit SHA.

Implementation Notes

Auto-merge represents the highest level of authority. Actions like PR Automation demonstrate multi-purpose approaches that
merge only after all checks are satisfied. Ensure workflow permissions grant the token write access, as repository defaults can vary.

13. https://docs.github.com/en/rest/pulls/pulls#merge-a-pull-request

14. https://github.com/marketplace/actions/pr-automation

Conclusion

The transition toward the Autonomous Codebase Project is not intended to remove humans from the development cycle, but to
elevate their role. By automating the mechanical, repetitive, and deterministic aspects of the pull request lifecycle, engineering teams
can focus their cognitive resources on high-leverage architectural and design decisions.

This roadmap provides a disciplined path to establishing that trust. Begin with observability (Auto-Audit), transition to friction
reduction (Auto-Resolve), and subsequently introduce mutation (Auto-Fix) and authority (Auto-Approve, Auto-Merge). At every
stage, maintain the guardrails of least privilege, tamper-evident logging, and reversibility.

Call to Action

☐ Audit Today:Implement Stage 1 logging on a single repository to quantify the volume of manual mechanical actions.

☐ Review Permissions:Audit existing GitHub Action token scopes and transition to fine-grained permissions.

☐ Experiment Safely:Utilize a sandbox repository to test Auto-Fix and Auto-Approve workflows before production deployment.

13

14

10

Autonomous Codebase Maturity Roadmap Baz Technologies Inc.

Page 4 of 5 Copyright 2026, Baz Technologies Inc. All rights reserved.

References
1. https://docs.github.com/en/rest/issues/comments

2. https://github.com/marketplace/actions/pr-helper

3. https://docs.github.com/en/graphql/reference/mutations#resolvereviewthread

4. https://github.com/marketplace/actions/ai-code-pr-review

5. https://docs.github.com/en/rest/repos/contents

6. https://docs.github.com/en/graphql/reference/mutations#createcommitonbranch

7. https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches

8. https://github.com/GuillaumeFalourd/useful-actions

9. https://docs.github.com/en/rest/pulls/reviews

10. https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-settings-for-github-actions-in-
your-repository

11. https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/about-protected-branches

12. https://github.com/hmarr/auto-approve-action

13. https://docs.github.com/en/rest/pulls/pulls#merge-a-pull-request

14. https://github.com/marketplace/actions/pr-automation

15. https://wellarchitected.github.com/docs/security/identity-and-access-management/

Autonomous Codebase Maturity Roadmap Baz Technologies Inc.

Page 5 of 5 Copyright 2026, Baz Technologies Inc. All rights reserved.

	Autonomous Codebase Maturity Roadmap
	Important Security Disclaimer
	Non-negotiable Guardrails

	Introduction
	Target Audience
	The Necessity of a Maturity Model

	Stage 1: Auto-Audit
	Actions to complete
	Implementation Notes

	Stage 2: Auto-Resolve
	Actions to complete
	Implementation Notes

	Stage 3: Auto-Fix
	Actions to complete
	Implementation Notes

	Stage 4: Auto-Approve
	Actions to complete
	Implementation Notes

	Stage 5: Auto-Merge
	Actions to complete
	Implementation Notes

	Conclusion
	Call to Action

	References

