

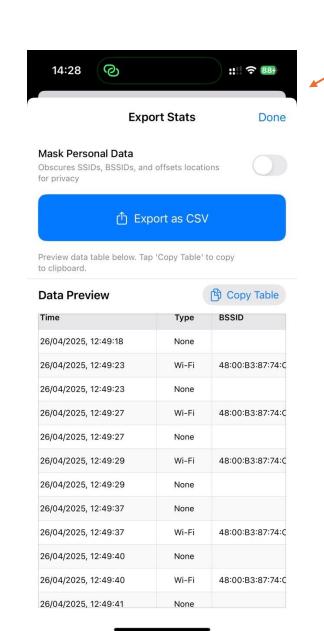
How can we monitor & understand Wi-Fi connectivity?

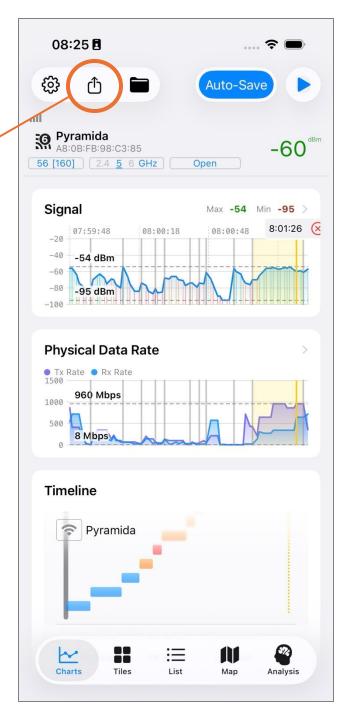
nOversight Update

Join the public beta

- Use nOversight for free during this next development phase
- Test your devices
- Understand connectivity
- Feedback

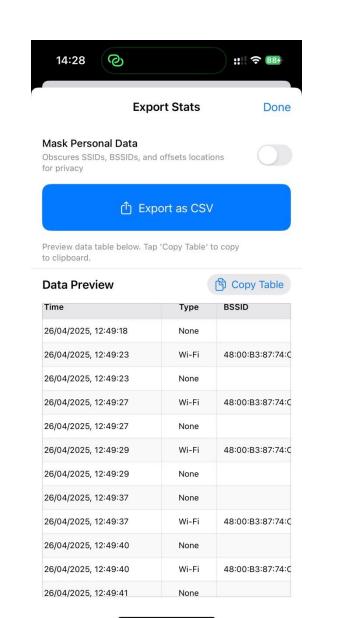
https://testflight.apple.com/join/Ekcmr5Jq

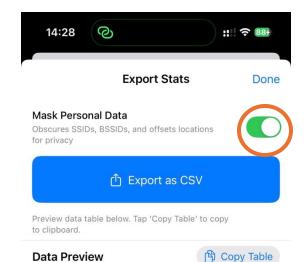




Let's Embrace Al

You can export your data for analysis





Let's Embrace Al

BEWARE OF SHARING PRIVATE DATA

BSSID

BSSID 4

BSSID 4

BSSID 4

BSSID 4

BSSID 4

Type

None

Wi-Fi

None

Wi-Fi

None

Wi-Fi

None

None

Wi-Fi

None

Wi-Fi

None

Time

26/04/2025, 12:49:18

26/04/2025, 12:49:23

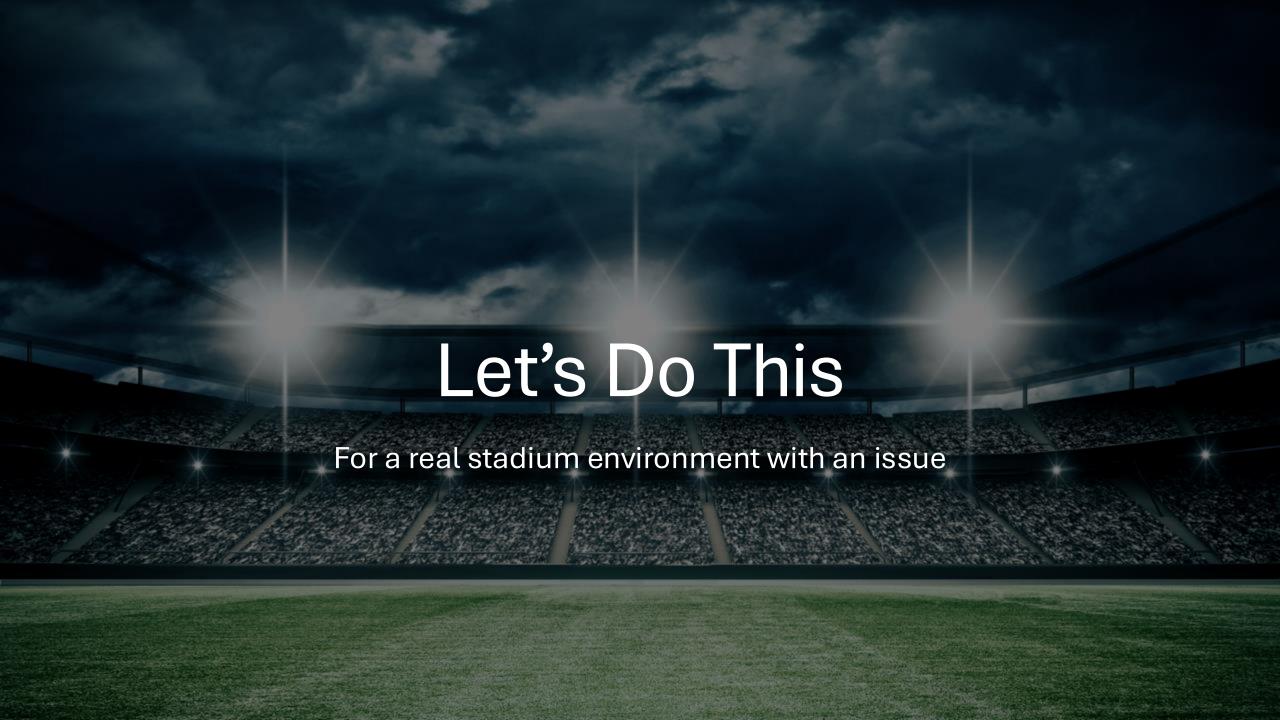
26/04/2025, 12:49:23

26/04/2025, 12:49:27

26/04/2025, 12:49:27

26/04/2025, 12:49:29

26/04/2025, 12:49:29


26/04/2025, 12:49:37

26/04/2025, 12:49:37

26/04/2025, 12:49:40

26/04/2025, 12:49:40

26/04/2025, 12:49:41

Is the data enough for useful insight?

- This is a csv file containing interval measurements of a Wi-Fi installation in a packed stadium.
- Can you analyse this file and determine if there are any concerns with the Wi-Fi.
- Provide a summary of the overall performance in a way which can be understood by a network owner with no Wi-Fi knowledge.
- Secondary, provide information which is helpful to a professional.
- Provide remedy steps to any issues which can be taken by the network owner. They need to be fairly simple.
- Also help them understand how to measure benefits after any changes
- Provide investigation, logging and potential technical concern details for the professional.

Suggests it might be worth spending more time

Overall Performance

Signal strength:

Average Wi-Fi signal (RSSI) was **-73 dBm**, which is **adequate but on the weak side** for reliable high-capacity use. Around **30**% of the measurements were weaker than -75 dBm — this often means the user's device is on the edge of the coverage cell.

Data speeds:

The average download (Rx) rate was 61 Mbps, but it fluctuated a lot — some measurements dropped as low as 8 Mbps, while others peaked at 286 Mbps.

This inconsistency suggests congestion or uneven signal quality in parts of the stadium.

Noise and interference:

The average **signal-to-noise margin** (RSSI–Noise) was around **15 dB**, which is **borderline**. Ideally, it should stay above **20 dB** for good throughput in crowded environments.

Plain-English View

- Wi-Fi mostly works, but signal strength and quality vary too much for a dense crowd scenario.
- In some parts of the stadium, people may experience slow connections or drop—outs, especially
 when it's full and devices compete for air time.
- The system performs well when close to the access point, but coverage or capacity limits show up further away.

Useful Wi-Fi 101 for the customer. No real solution here

Simple Remedies You Can Request

1. Ask for coverage verification:

Have the installer perform a "heat map" check on a match day to ensure consistent coverage across seating areas.

2. Check AP power balance:

APs may need power level tuning so that strong cells don't drown out weaker ones.

3. Increase capacity where crowds are densest:

If possible, add more APs or split channels between sectors.

4. Review channel plan:

Avoid overlapping channels and ensure 5 GHz and 6 GHz radios are used effectively.

5. After improvements:

Measure signal strength and download speed again during an event — you should see:

- Average RSSI closer to –65 dBm
- Fewer speed drops below 50 Mbps
- More stable connections (less variation)

More value for the professional. Something to try out?

Interpretation

- The PHY rate potential (TxRate) is high radios support fast modulation but application
 throughput (RxRate) is limited, likely by medium contention or interference.
- The SNR trend and RSSI spread imply clients frequently operate at the edge of cell coverage or experience overlapping cells (cell breathing in dense load).
- Noisy floor (~-88 dBm typical noise from RSSI-Noise) suggests adjacent channel interference rather than external sources.
- Geographic data (lat/long) could be used to plot weak-signal zones likely higher rows or oblique seating under structures.

Remediation Focus

- Optimize power and channel allocation per sector.
- Validate client distribution too many clients on one AP will cause airtime collapse; load balancing and band-steering should be reviewed.
- Use DFS/6 GHz channels where allowed to reduce contention.
- Confirm downlink airtime fairness and WMM configuration on the controller.
- Validate minimum RSSI thresholds raising them to disconnect distant clients can improve throughput for the remaining ones.

Device logs have many more details than we can easily consume & Understand

Connection Timeline with link metrics:

Signal & Performance

We have just seen these

Not too hard to understand and draw some conclusion from

Chipset / System Metrics

What actually happened in the device

Detailed Wi-Fi Tx/Rx chain readouts

Harder to understand and draw conclusion from (unless you really know the chipset architecture)

Chipset / System Data

- rxCrsGlitch=13 rxBphyCrsGlitch=0 rxStart=245 rxBadPLCP=0 rxBphyBadPLCP=0 rxBadFCS=9 rxFifo0Ovfl=0 rxFifo1Ovfl=0 rx_nobuf=0 rxAnyErr=2 rxResponseTimeout=0 rxNoDelim=2 rxFrmTooLong=0 rxFrmTooShort=0
- txRTSFrm=17 txRTSFail=0 rxCTSUcast=17 rxRTSUcast=4 txCTSFrm=4 txAMPDU=19 rxBACK=19 txPhyError=0 txAllFrm=59 txMPDU=0 txUcast=19 rxACKUcast=0 OfdmDesense=2 dB 04/26/2025
- rxBeaconMbss=10 rxBeaconObss=50 rxDataUcastMbss=32 rxMgmtUcastMbss=0 rxCNTRLUcast=40 txACKFrm=0 txBACK=19 ctxFifoFull=0 ctxFifo2Full=0 rxDataMcast=0 rxMgmtMcast=64
- RX AMPDU (HighBand) rxAmpdu=23 txBACK(Ucode)=19 rxMpduInAmpdu=36 rxholes=0 rxdup=0 rxstuck=0 rxoow=0 rxoos=0 rxaddbareq=0 txaddbaresp=0 rxbar=0 txdelba=0 rxdelba=0 rxQueued=0 rxRetryNoBA=0
- WME RX MPDUs (rxPER 0 %) in tids 0:42, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0
- rxToss=0 rxLastTossRsn=0 rxNoFrag=0 rxNoCmplId=0 rxNoHaddr=0 rxMulti=0 rxUndec=0
- TX(20:CC:27:7D:18:8C) AC<SU MS NB NRS NA CM EX TF FFP MRET FLE> BE<95 0 0 0 0 0 0 0 0 0 0 0 (4999ms)
- TX(20:CC:27:7D:18:8C) AC<SU MS NB NRS NA CM EX TF FFP MRET FLE> BK<0 0 0 0 0 0 0 0 0 0 0 0 (4999ms)
- TX(20:CC:27:7D:18:8C) AC<SU MS NB NRS NA CM EX TF FFP MRET FLE> VI<000000000000(4999ms)
- TX(20:CC:27:7D:18:8C) AC<SU MS NB NRS NA CM EX TF FFP MRET FLE> VO<0 0 0 0 0 0 0 0 0 0 0 0 (4999ms)
- L3 Control VO TX(20:CC:27:7D:18:8C) Success=0 NoACK=0 Expired=0 OtherErr=0 04/26/2025
- WeightAvgLQM rssi=-61 snr=28 txRate=286760 rxRate=206470

Definitions

RX Path (Reception-related

Term

len.	Meaning	
tultTSFirm / tultTSFail	RTS hames sent / falled (Request to Send), other-used in congested or hidden node environments.	el
reCTSUcant/reRTSUcant/ teCTSFrm	Curitol hams reception/hamenission counts (CTS o Clear to Send).	١t
NAMPOU / HEACK / NEACK	Aggregate MPDJ packets sent / Block ACKs received and transmitted — part of BIO Triplicias efficiency features.	
tullty@mer	Transmission failed at PHY layer $-$ possibly due to MF issues or fact rate selection.	N
tubblem / tubbleQ/ telocant	At Names / MAC Protocol Data Units / Unicast Names transmitted.	
nuACKUtast	Number of ADIs received for uniquel transmissions.	
OttomDeserose	OFOM deservitication — measure of signal degradation due to interference (in.g., Bustooth or adjacent channel).	

TX Path (Transmission-related Counters)

Reacon & Management Counters

TXPNY

* Deacurs & management Coun	1013		
Term	Meaning		
ndescontrass	Septons received from the connected (MBSS) network,		
nsBeaconOtes	Seatons from other overlapping BISSes — indicator of channel contention.		
reDetalloastMbss	Unicast data frames received from our 855.		
religent/contribus	Unicast management frames (hare).		
n/CNTRuicant	Unicast control frames (e.g., ACXI, RTS(CTS).		
tsACKFrm	ACKs sert.		
coffidal j cofficial	TX FPO overfices — transmit buffers filled before being sent (congestion or driver issue).		
rsDataMoast / reNigentMoast	Multicast data/ management frames received.		

ı	RX Path (Reception-relate	ed Counters)
	Term	Meaning
	rxCrsGlitch	Number of Clear Channel Assessment (CCA) glitches — indicates possible RF noise or false detection of activity on the medium.
1	rxBphyCrsGlitch	Same as above, but specific to 802.71b PHY.
	nstart	Number of received packets that passed the initial PHY check.
	rxBadPLCP	Packets with corrupt PLCP headers (PHY header, pre-MAC). Usually due to RF issues.
ı	n/8phy8adPLCP	Same as above, but for 802.11b packets.
	rxBadFCS	Frames that failed the Frame Check Sequence (CRC error), Indicates RF noise, interference, or collisions.
	rxFifeDOvff / rxFife10vfl	FIFO overflows on receive buffers — the radio couldn't process packets fact enough, May indicate CPU or driver limitations.
	rx_robut	Frames dropped due to no buffer being available (system resource exhaustion).
	rxAnyErr	Aggregate counter for any type of RX error.
	rxitesponseTimeout	Timeout waiting for a response (e.g., ACK). May indicate link issues or hidden node problems.
	rxNoDelim	Packet received without proper delimiter — usually malformed or partially corrupted packets.
	n/FrmTooLong / n/FrmTooShort	Frames that were unexpectedly long or short (likely malformed or corrupted).

	AMPDU (Aggregated MPDU) Metrics					
	Term	Meaning				
ba	rxAmpdu	Number of received AMPDU aggregates.				
	txBACK(Ucode)	Block ACKs transmitted by uCode (firmware).				
	rxMpdulnAmpdu	MPDUs (individual frames) within AMPDU.				
	rxholes / rxdup	Gaps (lost packets) / duplicate packets in AMPOU.				
	rxstuck / rxsow / rxsos	Frames stuck / out-of-window / out-of-sequence — could indicate reordering or timing issues.				
	rxaddbareq / txaddbaresp / rxbar / txdelba / rxdelba	Add/Del Block ACK session negotiation.				
	nxQueued / nxRetryNoBA	RX frames gueued / retries that occurred without BA support.				

N Primary Trend: Increasing Frame Errors

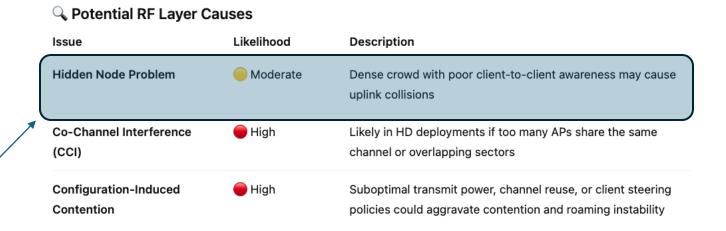
As Rx rate drops, the following metrics climb sharply:

- •A massive increase in frame errors (rxBadFCS, rxBadPLCP).
- •Short or malformed frames (rxFrmTooShort, rxNoDelim) suggest PHY or MAC-level corruption.
- High rxCrsGlitch values indicate RF interference (carrier signal glitches due to noise or cochannel interference).

☐ Primary Trend: Increasing Frame Errors

As Rx rate drops, the following metrics climb sharply:

Time	Rx Rate (bps)	rxBadFCS	rxBadPLCP	rxFrmTooShort	rxNoDelim	rxCrsGlitch
12:49:32.019	206,470	0	1	0	0	7
12:49:40.187	61,290	211	41	71	89	46
12:49:45.336	34,410	982	149	504	397	357
12:50:00.705	25,800	383	67	201	251	107


• This was a high-density environment with overhead transmission from highly directional APs.

 Here's a clear and concise summary of your scenario and the likely contributing factors, along with actionable configuration areas to review:

- Helpful areas to dig deeper into
 - Hidden Node could well be an issue

- AND WE, THE PROFESSIONALS, KNOW HOW THE DIRECTIONALITY OF THE APS WOULD MEAN OTHER CLIENTS HEAR THIS BUT NOT THE APS
 - THIS MIGHT BE A GOOD EXPLANATION OF THE RX CORRUPTION
 - Which is less impactful on the Tx from device to AP

