ContextEval: Evaluating LLM Agent Context Policies for
ML Experiment Design

Adrian Apsay Hikaru Isayama Raghavan Narasimhan
adapsayaucsd.edu hisayama@ucsd.edu naraghavangucsd.edu
Julia Jung Ryan Lingo
jmjungaucsd.edu ryan_lingo@honda-ri.com
Abstract

Large language model (LLM) agents can now plan, write code, call tools,
and manage files to automate end-to-end machine learning (ML) workflows.
However, most evaluations focus on final benchmark scores, leaving open how
to systematically evaluate an agent’s context policy—that is, how it configures
prompts, retrieval, tool calls, and history over an iterative experiment-design
loop.

We introduce ContextEval, a compact, reproducible framework for evaluat-
ing context-only self-improvement in offline ML environments: the datasets,
training code, and evaluation metrics are fixed, and only the context pre-
sented to a code-writing LLM agent is varied. In our setup, the agent iter-
atively proposes ML pipelines, observes (approximately) deterministic feed-
back in the form of validation metrics and errors, and continues updating its
behavior for a fixed number of iterations. Our logging infrastructure records
each run as a sequence of state—action events, along with per-iteration latency
and token usage, enabling us to quantify three dimensions of context policies:
outcome (validation error across iterations), efficiency (tokens and wall-clock
time per step), and behavior (clarifying questions and tool usage).

We instantiate ContextEval on tabular ML experiment-design tasks with a
particular focus on the NOMAD bandgap regression benchmark. There, we
compare a 2 x 2 grid of context policies and reasoning modes: ShortContext
vs. LongContext policies, crossed with an Agentic ReAct-style tool loop vs. a
Controller single-shot mode. Our experiments show that these context poli-
cies induce measurably different agent profiles: the short-context, agentic
setting achieves the lowest mean absolute error (MAE) while using a mod-
erate number of tokens; long-context, agentic runs pay a substantial latency
and token cost without major gains in MAE; and controller-style runs are
fastest but typically underperform the best agentic configuration. These re-
sults highlight that, even with a fixed base model and environment, context
policies can materially change both the reliability and efficiency of LLM agents
for ML experimentation.

AW N -

Code: https://github.com/juliamsjung/DSC180A-Q1Project

Introduction L e e e e e e e e e e e e e e e e 3
Methods e e 8
Results e e e e e e e e e e e e e e e 13
Conclusion i e e e e e e e e e e e e e e e e e e e 18

https://github.com/juliamsjung/DSC180A-Q1Project

1 Introduction

1.1 Context and Problem Statement

Large language model (LLM) agents equipped with tools can now perform substantive ML
engineering work: reading and writing files, invoking libraries, executing code, and iter-
ating on experiments. Recent benchmarks demonstrate that such agents can synthesize
reasonable pipelines end-to-end, but they also reveal high variance across tasks, seeds, and
seemingly minor prompt changes. This suggests that how we structure and adapt the agent’s
context (prompting, retrieval configuration, tool-access policies, and history exposure) can
matter as much as which base model we use.

In this work we focus on evaluating the context policy of a single, fixed LLM agent in
offline ML environments. The model parameters are frozen; the only thing that changes is
the context we present to the agent over an iterative experiment-design loop. At iteration
t, the system constructs a prompt p, from the current state s, (task description, dataset
schema, and interaction history), the agent produces a reasoning trace and an action a,
(e.g., anew pipeline configuration), the environment returns feedback o, (validation metrics
and errors), and we update the state to s,, ;. Between iterations, we vary prompt scaffolds,
retrieval budgets, and whether the agent is encouraged to ask clarifying questions, but the
underlying training code and datasets remain fixed. Our runs currently terminate after a
fixed number of iterations rather than an adaptive stopping rule.

To study these design choices systematically, we introduce a logging and evaluation frame-
work that records each run as a sequence of state-action events under different context
policies. In our main experiments, these policies are instantiated as ShortContext and Long-
Context configurations that differ in retrieval budget and clarifier guidance, and we cross
them with two reasoning modes: an Agentic multi-step tool loop and a Controller single-
shot mode. We then evaluate these combinations along three axes: outcome (MAE trajectory
across iterations), efficiency (tokens and wall-clock latency per iteration), and behavior (fre-
quency of clarifying questions and tool calls). Our central question is: given a fixed model
and environment, which context policies most reliably and efficiently lead to lower validation
error, and what cost/behavioral trade-offs do they induce?

ContextEval
Offline Environment Controller

rState (S‘)) Feedback (o,), metric (m,)

Task [——] .
Initial [(workspace + history) 1

— files/ .

description/ ey workspace J
data_description.txt test.csv ﬂ —_————
evaluations_details.txt

«/ (RunLogger |
train.py

[. N\ w
Context Policy __ | (USONL events) |
(specificity: detailed/vague, |- _>: (s, P, 0,m, a) :4_ _ LLM Agf:‘r.lt .
(scoring (deterministic metric) | C:T"ﬁC:;w“S: allowed/not I | (gpt-40-mini)
allowe
\\

A B y E
build N—— .I — J E
[Prompt (p) C ' |

task output

Figure 1: ContextEval architecture and evaluation setup. Left: an offline ML environ-
ment (e.g., a tabular benchmark) exposes a task workspace (data, code, and descriptions)
and a deterministic scoring function that evaluates task output to produce validation met-
rics and errors. Center: the ContextEval controller maintains the current state s, (workspace
+ history) and applies a context policy 7. (e.8., short vs. long history, detailed vs. vague
description, clarifications allowed or not) to build a prompt p,. Right: a fixed LLM agent
M receives p,, proposes an action a, (a new pipeline or configuration), and the environ-
ment scores the resulting submission to yield feedback o, and metric m,, which update s, .
Throughout the run, a RunLogger records JSONL events (s,, p,, a,,0,, m,), which we treat as
the primary dataset for analyzing different context policies.

1.2 Literature Review and Prior Work

Benchmarks for agentic ML (outcome and efficiency). A recent line of work builds envi-
ronments to test whether LLM-based agents can complete end-to-end ML tasks. MLE-Bench
mirrors real Kaggle competitions in an offline setting, providing fixed datasets, starter code,
and leaderboard-grounded metrics; it reports statistics such as “Any-Medal (%)” averaged
over multiple seeds and includes a Lite split to keep evaluation cost manageable (Chan
et al. 2025). MLAgentBench complements this with sandboxed, code-executing tasks that
expose a competence rule (e.g., improve performance by at least 10% over a starter) and
make efficiency (time, tokens) a first-class measurement (Huang et al. 2024). Both works
evaluate whether agents can solve ML tasks and at what cost, but largely treat the agent’s
internal context policy—how prompts, tools, and history are configured—as a fixed part
of each baseline. Our work instead holds the environment and model fixed and varies the
context policy itself, asking which context choices drive outcome, efficiency, and behavioral
differences.

Interaction and context policies (clarifications and behavior). Our second anchor is
PPP-Agent (Sun et al. 2025), which studies LLM agents that must operate under vague in-
structions and diverse user preferences. PPP-Agent introduces UserVille, an environment

4

that “vaguenizes” benchmark tasks and simulates preference-aware users, and proposes
a multi-objective RL framework that optimizes Productivity (task completion), Proactivity
(asking essential clarifying questions), and Personalization (adapting to user preferences).
Empirically, PPP-Agent shows that explicitly modeling when to ask clarifying questions and
how to adjust interaction style can substantially improve downstream performance. Con-
ceptually, this is close to our notion of a context policy: a procedure that decides what
information to surface (e.g., how much history, how specific the task description should
be, how aggressively to clarify). Unlike PPP-Agent, which learns new policies with RL, we
study fixed base models in offline ML environments and compare hand-designed context
policies such as short vs. long retrieval budgets paired with clarifier guidance.

Context-only self-improvement. A complementary body of work equips agents to self-
correct by adapting context rather than model weights. ReAct interleaves natural-language
reasoning with tool invocation to ground plans in intermediate evidence (Yao et al. 2023).
Reflexion appends natural-language critiques and episodic memory after each attempt to
avoid repeating mistakes across trials (Shinn et al. 2023), while Self-Refine has a single
model iteratively critique and revise its own outputs until quality criteria are met (Madaan
et al. 2023). These methods demonstrate that carefully designed feedback loops over
prompts, intermediate traces, and memory can substantially improve reliability without
any gradient updates. Our work adopts this “context-only” lens but applies it to ML experi-
ment design in deterministic offline environments, combining explicit state—action logging
with systematic comparisons of context policies (e.g., retrieval budgets and clarification
behavior) across many runs.

Methodological choices: deterministic scoring and process logging. Both MLE-Bench
and MLAgentBench emphasize deterministic, task-native scoring functions and explicit cost
accounting (Chan et al. 2025; Huang et al. 2024). We adopt the same stance. Each of our
tasks exposes a native metric (e.g., mean absolute error) and, where appropriate, a relative-
improvement target over a starter pipeline. Sources of stochasticity (e.g., data splits, model
seeds) are controlled as far as practical so that, conditional on a pipeline configuration,
feedback is approximately deterministic. In addition to outcome and efficiency metrics,
we log each run as a sequence of state—action events (context, proposed pipeline, feed-
back, and stop decisions), enabling process-level analyses that go beyond raw leaderboard
scores. This design lets us attribute differences in performance and cost directly to specific
context policies and reasoning modes, rather than conflating them with model changes or
environment stochasticity.

Our position. Building on these insights, we focus on a controllable feedback-loop agent
that keeps the model itself fixed and adapts its context—prompt scaffolds, retrieval pol-
icy, and memory write/read behavior—between iterations. Using MLAgentBench-style
lightweight tasks (vision, text, tabular) (Huang et al. 2024), we pair deterministic, task-
native success metrics with explicit efficiency and behavioral measurements, and we per-
form context ablations/factorials to attribute gains to specific knobs. This context-policy

S5

evaluation focuses on depth of loop diagnostics rather than leaderboard breadth, and sets
up our future-phase tests of robustness, agent reasoning, and reflection with additional ML
experimentation.

1.3 Data Description

Our primary dataset consists of interaction traces generated by a single LLM agent running
in fixed offline ML environments. For the NOMAD task, each run of the agent produces
a JSON Lines (. jsonl) file under traces/nomad/ (e.g., nomad_2025-12-04T.... jsonl),
which we treat as one episode. The toy benchmark currently uses a simpler legacy log
(traces/toy_bench) with the same event structure; conceptually we treat each execution
as a run. These trace files are the input to all analyses in Sections 2-3.

Units of data. We distinguish two granularities:

* Run. One end-to-end execution of the agent on a given task (e.g., a tabular prediction
benchmark), starting from an initial state and continuing for T iterations (or until
an unrecoverable error). Each NOMAD run corresponds to a single JSONL file.

* Event. A single structured record within a run, describing either a run-level bound-
ary (run.start, run.end), an operation (op.*), an agentic inner step (agent.iteration),
or a per-iteration summary (step.summary). Each line in a JSONL file is one event.

Top-level event schema. Every event shares a common top-level schema; only the details
payload varies by event type. Formally, each line in a run file is a JSON object with the fields
in Table 1.

Table 1: Top-level schema for all events in a run trace.

Field Description

run_id Unique identifier for the run (episode)

event_type Type of event, e.g., run.start, op.train, step.summary
step_idx Iteration index t (integer) or null for run-level events
timestamp UTC timestamp in ISO-8601 format

task_id Logical task name (e.g., "toy_tabular”, "nomad”)

dataset_id Dataset name; often matches task_id
agent_id Identifier for the LLM agent configuration (e.g., gpt-40-mini)
details Event-specific payload (see below)

Event types and payloads. We use a small vocabulary of event types. Table 2 summarizes
the main ones and the key fields in their details payloads; additional fields may be added
in a backwards-compatible way as the framework evolves.

Table 2: Core event types and illustrative fields in their details payloads.

Event type Level details fields (key examples)
run.start run config_hash, max_steps,
seed, notes, policy_type

(short_context / long_context),
reasoning_mode (controller /

agentic)

run.end run status (success/error/timeout),
final_metric, best_step_idx,
n_steps

op.config_proposal op model_type, hyperparams, source
(e.g., baseline vs. LLM), config_hash

op.train op config_hash, train_rows,
train_features, duration_s,
metrics (e.g., MAE, RMSE, accuracy)

op.eval op Metric-focused views derived from
op.train, when present (e.g.,
metric_name, metric_value,
split)

agent.iteration op Inner loop trace for agentic mode:

prompts, tool invocations, clarifier
questions/answers, termination rea-
son, and usage statistics (tokens, steps,
latency)

step.summary step metrics (e.g., current and best
validation metric so far), config
(model family and config hash),
decision (action taken, stop flag,
reason), context (policy type, his-
tory length, context tokens), and
aggregate usage statistics (e.g.,
total_tokens, latency_sec,
clarifying_questions)

This schema allows us to reconstruct each run as a sequence of state—action transitions and
to aggregate across runs by task, context policy, and reasoning mode in the analyses that
follow.

2 Methods

2.1 Problem Formulation (Q1 Scope)

We study an LLM-based agent that iteratively designs machine learning (ML) pipelines in
offline environments. Each environment

E= (@tram, D, Train, Score)

provides a fixed training/validation split, a training routine (e.g., scikit-learn models with
specified hyperparameters), and a deterministic scoring function (e.g., accuracy or mean
absolute error on %,,). The environment does not change across runs.

At iteration t, the system constructs a prompt p, describing the task and prior runs, the LLM
agent M outputs a configuration a, (e.g., model family and hyperparameters), the environ-
ment trains and evaluates that configuration to produce feedback o, (metrics, errors), and
we conceptually update the state s,,;. In all experiments, the agent:

* does not update its weights (model parameters of M are fixed),

 operates on fixed offline environments for two tasks: a synthetic toy tabular bench-
mark and the NOMAD tabular benchmark,

* is run for a fixed number of steps T without adaptive stopping rules,

e and isinstantiated under a chosen context policy (short_context or long_context)
and reasoning mode (controller or agentic).

Our primary technical contribution is a unified run loop and logging infrastructure that
treats each execution as an episode and records its behavior as a sequence of structured
events (Section 1.3). This infrastructure supports factorial comparisons of context policies
and reasoning modes, and exposes per-iteration metrics for downstream analysis.

2.2 Environments

We instantiate E for two tabular tasks:

* ToyTabularEnv. A small synthetic classification task with a fixed train/validation
splitand a train.py script that reads a configuration file, trains a scikit-learn model,
and writes metrics to results.json in the toy_bench workspace. The primary
metric is validation accuracy. This environment is primarily used for rapid iteration
on the run loop and logging.

* NomadEnv. A benchmark that wraps a prepared NOMAD workspace built from the
raw Kaggle CSVs. A one-time preprocessing step (scripts/prepare_nomad.py)
validates train.csv, materializes features.npy and targets.npy, and writes
metadata files (dataset_context.json, prepared_meta.json) plusabase config. json
under benchmarks/nomad/workspace/. The NomadEnv class (in benchmarks/nomad/env.py)
manages this workspace by reading and updating a mutable run_config. json, ex-
posing the dataset context to the agent, and invoking train.py as a subprocess. The

training script loads the prepared arrays, fits a HistGradientBoostingRegressor
pipeline according to run_config. json, computes validation metrics (MAE, RMSE,
R?), and writes them to results.json, which the environment returns to the run
loop.

In both cases, the environment is responsible for reading a configuration file, running train-
ing and evaluation, and returning metrics in a machine-readable form. All randomness in-
side the environment (e.g., train/validation splits, model seeds) is fixed by configuration
so that feedback is approximately deterministic given a configuration.

2.3 ContextEval Run Loop (Q1 Implementation)

We implement a standard agent—environment interaction loop, which we refer to as Con-
textEval. For the toy and NOMAD tasks, the loop follows the same structure: run a baseline
configuration once, then iteratively query the model for improved configurations and re-
train.

We currently run each configuration for the same fixed horizon T; future work may incor-
porate target-based or no-improvement stopping rules.

2.4 Context Handling in Q1

A context policy . specifies how the current state s, is summarized into a prompt p, and
how aggressively the agent is encouraged to retrieve additional information or ask clarifying
questions.

ToyTabularEnv. For the toy task, we include a full history summary in each prompt. At
iteration t, the prompt contains:

* a fixed task description (input features, label, and metric),
* the baseline configuration and its accuracy,
* and a line-by-line summary of all previous steps:

step i : accuracy = m;, model parameters=a;, i=1,...,t—1.

This corresponds to an implicit FullHistory policy for the toy environment and serves pri-
marily to validate that the agent can interpret and use long histories.

NomadEnv. For NOMAD, we expose two explicit context policies implemented in context_policies.f
and selected via a policy_type flag:

* short_context. The ShortContextPolicy provides a small retrieval budget (e.g., k =
3 documents with shorter chunks) and a system prompt that emphasizes frugality
with tokens and aggressive ambiguity detection. The agent is encouraged to ask

Algorithm 1: ContextEval run loop (Q1 implementation)

1.

Inputs: offline environment E, LLM agent M, maximum steps T, seed s, task
identifier (toy_tabular or nomad), context policy type (short_context or
long_context), reasoning mode (controller or agentic).

Initialize random seed s and initial state s, (task description, dataset metadata,
empty history).

Initialize run logger L with metadata (E, M, T,s,policy_type,reasoning_mode).

. Run a baseline configuration: read a starter config, call Train once, record baseline

metric, and log an initial op.train + step.summary event.

. Fort=1,2,...,T:

(@) Build a prompt p, from the current state using the active context policy
(Section 2.4).

(b) Query the model under the chosen reasoning mode to obtain a proposed
configuration:

a, < ProposeConfig(M, p,, reasoning_mode),

where ProposeConfig either makes a single LLM call (controller) or runs
an inner agent loop with tools (agentic).
(©) Apply a, in the environment:

o, < TrainAndScore(E, a,),

where o, contains the new metrics parsed from results. json.

(d) Update the implicit history with (a,, 0,).

(e) Log run-, step-, and operation-level events for iteration t via L (e.g.,
op.config_proposal, op.train, agent.iteration in agentic mode, and
step.summary).

. After T iterations (or if training fails irrecoverably), log a run.end event with

summary statistics (best metric, number of steps, and aggregate usage such as total
tokens and wall-clock time) and close logger L.
Output: trajectory 7, and summary metrics for this run.

10

clarifying questions when instructions or dataset descriptions are underspecified.
The policy metadata tags this setting as precision-oriented with a low token budget.
* long_context. The LongContextPolicy uses a larger retrieval budget (e.g., k = 12
documents with longer chunk and summary limits) and a system prompt that en-
courages reasoning over rich context. Clarifying questions are discouraged unless
necessary, favoring broader recall over precision. The policy metadata tags this set-
ting as recall-oriented with a high token budget. Like the short-context policy, its ac-

tion schema includes retrieve_docs, summarize_chunks, ask_clarifying_question,

and final_answer, but with more conservative clarifier guidance.

Both policies return a ContextPayload containing a policy-specific system prompt, action-
schema hints, retrieval limits, clarifier guidance, and metadata used by the agentic runner.
In the NOMAD environment, these policies govern how much dataset context, prior iteration
history, and documentation are exposed to the model at each step.

2.5 Reasoning Modes in Q1

We support two reasoning modes, selected via a reasoning_mode flag:

Controller. A single LLM call per iteration that directly outputs a JSON configuration given
the prompt p,. The completion is parsed into a, and sent to the environment; no
explicit chain-of-thought is logged beyond the configuration itself. This mode repre-
sents a minimal, non-agentic baseline.

Agentic. A ReAct-style inner loop in which the agent can retrieve context, summarize doc-
uments, and ask clarifying questions about the dataset or metric before emitting a
final configuration. The sequence of tool calls, questions, and intermediate thoughts
within an iteration is logged as an agent.iteration event and as Phoenix spans
(e.g., agent.runner.step).

In our NOMAD experiments, we run all four combinations in the 2 x 2 grid: {short_context,
long_context} x {controller, agentic}. This allows us to factor out the effects of
richer context vs. more agentic reasoning on both outcome (MAE) and efficiency (latency
and tokens).

2.6 Logging and Trace Data

All runs are logged using a shared RunLogger utility. For NOMAD, each run writes one
JSON Lines (.jsonl) file under traces/nomad/ (Section 1.3); the toy benchmark cur-
rently logs to alegacy traces/run. jsonl file with the same schema. Phoenix is configured
to mirror these events into spans for interactive inspection, but all quantitative analyses in
this paper are performed from the JSONL traces.

In the current experiments, the main event types actually emitted are:

* run.start: run-level metadata (task ID, agent ID, seed, maximum steps, policy_type,

reasoning_mode).

11

* op.config_proposal: configurations proposed by the model (model family and
hyperparameter settings, configuration hash).
* op.train: calls to the environment’s training script (configuration hash, training
duration, and metric dictionary).
* agent.iteration: detailed inner-loop traces for agentic mode (prompts, tool calls,
clarifier questions/answers, and usage statistics such as tokens and latency).
* step.summary: per-iteration roll-ups containing the current metric, best-so-far met-
ric, decisions, and aggregate usage fields (e.g., total_tokens, latency_sec, clarifying_quest
* run.end: summary of the run (best metric, number of steps, and status).

These events provide the raw material for the aggregated dataframe used in the analysis
notebook, which computes MAE trajectories, latency distributions, and token—MAE rela-
tionships for each context-policy/ reasoning-mode combination.

2.7 Evaluation Metrics (Q1)

The current codebase produces the raw data needed for outcome, efficiency, and behavioral
analyses. For each run, we record:

* the baseline metric (accuracy for the toy task, MAE and related metrics for NOMAD),

 the metric at each iteration t logged in step.summary,

 per-step training duration and end-to-end latency (wall-clock time from issuing the
LLM call to receiving metrics),

* per-step token usage where available, and

 counts of clarifying questions for agentic runs.

In this report, we focus on three views:

* MAE trajectories: MAE over iterations for each setting in the 2 x 2 grid, highlighting
which context-policy/ reasoning-mode combination leads to the lowest error and
how stable each trajectory is.

* Latency distributions: per-iteration latency for each setting, summarized as box-
plots to compare efficiency across context policies and reasoning modes.

* MAE vs. token usage: scatter plots relating total tokens per iteration to MAE, to
probe whether more context actually buys lower error or simply higher cost.

These metrics instantiate the outcome and efficiency dimensions of our framework; a fuller
treatment of stability across seeds and controlled perturbations is left to future work.

2.8 Planned Extensions Beyond Q1

The Methods above describe the behavior implemented in the current repository. In sub-
sequent phases, we plan to extend this framework along several axes:

* Richer context policies. Generalize beyond short_context and long_context to
include policies such as Vague / Vague+Clarify, unify context handling across tasks,
and parameterize history selection more explicitly.

12

* Chain-of-thought prompting. Introduce CoT-style prompts in which the model first
explains its reasoning before emitting a configuration, and compare these to the
existing controller and agentic modes using the same logging infrastructure.

» Stopping policies. Implement target-based and no-improvement stopping rules
(e.g., stop when improvement < e for K steps or when a relative-improvement
threshold is reached) instead of a fixed iteration cap.

 Full outcome/efficiency/stability analysis. Run larger sweeps over seeds and per-
turbations to compute stability metrics (variance across runs, sensitivity to prompt
variants) on top of the outcome and efficiency metrics already captured.

These planned extensions build directly on the current logging and environment infrastruc-
ture.

3 Results

In this section we report results from applying the ContextEval run loop and logging in-
frastructure to two offline ML environments: the toy tabular benchmark and the NOMAD
task. The toy benchmark serves as a sanity check for our run loop and logging; the NOMAD
benchmark is used to study how context policies and reasoning modes interact. Our goals
are to (i) verify that the framework behaves as intended end-to-end, (ii) inspect the result-
ing traces for completeness and interpretability, and (iii) obtain quantitative evidence that
different context policies induce distinct outcome—efficiency trade-offs.

3.1 Trace Sanity and Coverage

For NOMAD, each run produces a single JSONL trace file under traces/nomad/ (e.g.,
nomad_2025-12-04T.... jsonl); the toy benchmark currently logs to alegacy traces/run. jsonl
file with the same schema. Across runs we verified that:

* Every run contains exactly one run.start and one run.end event.

* Each baseline and iterative training call is recorded as an op.train event with the
associated configuration hash, training duration, and metric values.

* Each iteration t beyond the baseline has a corresponding step.summary event that
records the current metric, best-so-far metric, configuration, and usage statistics
(latency, tokens when available).

* In agentic mode, every inner loop step is captured in an agent.iteration event,
including prompts, tool calls, clarifier usage, and usage statistics.

* There are no orphaned events: every op.config_proposal and op.train appears
at a unique (run_id, step_idx) pair, and all events can be grouped cleanly by run
identifier.

Simple aggregation scripts (pandas.read_json over traces/x/x.jsonl) confirm that
the schema described in Section 1.3 holds across runs and that all information needed to
reconstruct trajectories and compute basic metrics (e.g., best-achieved validation score per

13

run, number of iterations, per-step durations, and token counts) is present.

3.2 Toy Tabular Benchmark

On the toy tabular classification task, we use ContextEval primarily as an integration and
logging sanity check rather than as a target for detailed quantitative evaluation. We run the
loop for a fixed number of steps T beyond a baseline configuration, using the implicit Full-
History context policy and the controller reasoning mode. At each step, the agent receives
a prompt that includes the full history of past configurations and accuracies (Section 2.4),
and the environment returns a validation accuracy for the proposed configuration.

We inspected a small number of toy runs to confirm that:

* the agent produces well-formed configuration JSON that the environment can train
without errors,

* the logged events correctly capture baseline and iterative training calls, including
per-step metrics and configuration hashes,

e and the full-history prompt does not break the run loop or logging, even as the
number of iterations increases.

Because this environment is primarily used for debugging and the resulting improvements
over the baseline are small relative to NOMAD, we do not report quantitative curves or
figures for the toy task. All subsequent results focus on the NOMAD benchmark, where the
outcome—efficiency trade-offs between context policies are more substantial and easier to
visualize.

3.3 NOMAD Benchmark and Context Policy

For the NOMAD task, we use the environment described in Section 2, which exposes dataset
context (via dataset_context.json), a baseline configuration, and two explicit con-
text policies (short_context and long_context) crossed with two reasoning modes
(controller and agentic). Each run starts from the same baseline configuration and
then proceeds for 10 iterations under one of the four settings:

short_context_agentic, short_context_controller, long_context_agentic,
long_context_controller.

Outcome: MAE trajectories. Figure 2 shows the MAE over iterations for a representa-

tive run in each of the four settings. All runs start from a common baseline at step 1, and the

curves track how validation error evolves as the agent proposes new HistGradientBoostingRegressor
configurations.

Across these runs we observe three consistent patterns:

» Short-context, agentic runs achieve the lowest MAE. The short_context_agentic
trajectory typically dominates the others, reaching the lowest MAE over the 10-step

14

MAE by iteration

Run / setting
0.136 —&— short context agentic
short context controller
—8— long context agentic
—&— long context controller
0.134
0.132

MAE (lower is better)

0.130 \
N

0.128

2 4 6 8 10
lteration

Figure 2: MAE by iteration on NOMAD. Validation MAE across 10 iterations for each
combination of context policy and reasoning mode.

horizon while maintaining relatively smooth, stable improvements.

* Controller runs perform competitively but slightly worse. short_context_controller
usually trails the agentic short-context run by a small margin, suggesting that richer
inner-loop reasoning helps the agent exploit the same compact context more effec-
tively.

* Long-context runs underperform despite more information. Both long_context_agentic
and long_context_controller achieve higher MAE on average, indicating that
simply exposing more historical and dataset context does not automatically trans-
late into better hyperparameter proposals.

Efficiency: latency across settings. Figure 3 summarizes the per-iteration latency for
each setting over the 10 iterations. Latency is measured from the moment the agent is
invoked for a step to the time when the environment returns metrics.

The boxplots highlight a clear efficiency ranking:

* Long-context, agentic is the slowest. Combining a large retrieval budget with an
inner tool loop yields the highest latency, with several iterations noticeably slower
than any other setting.
* Long-context, controller is the fastest. Removing the inner loop while retaining a
long context window yields the lowest median latency, roughly matching intuition
that single-shot completions over a fixed prompt are cheap.
* Short-context runs sit in the middle. Both short_context_agenticand short_context_cont

15

Latency of Each Context Setting (10 lterations)

Latency (sec)
[43]

\ el JGC et
e ol , 8987 et
f\'ﬂej‘ - ‘-\167‘"“

\oﬂg.— \Oﬁg" é‘\oﬁ-’ gf\cﬁ .

=
o{\\a'f:‘—‘

Setting

Figure 3: Latency of each context setting. Distribution of per-iteration wall-clock latency
for the four context-policy/ reasoning-mode combinations on NOMAD. (Placeholder: re-
place with latency boxplot from the analysis notebook.)

have intermediate latency distributions: more expensive than long_context_controller,
but cheaper than long_context_agentic.

Together with the MAE trajectories, these results suggest that the short_context_agentic
setting offers a favorable outcome—efficiency trade-off: it achieves the best MAE while in-
curring only moderate latency.

Outcome vs. cost: MAE vs. tokens. Finally, Figure 4 plots MAE against total tokens per
iteration for all settings, using points colored by context policy and shaped by reasoning
mode.

The scatter plot reveals no simple monotone relationship between tokens and MAE:

* More tokens do not guarantee better performance. Long-context, agentic iter-
ations often sit in a high-token regime without achieving lower MAE than cheaper
short-context runs.

* Short-context, agentic points cluster at good MAE with moderate tokens. Many
of the lowest-MAE iterations arise from the short_context_agentic configura-
tion, which uses fewer tokens than the long-context, agentic counterpart.

* Controller runs span a range of costs with middling MAE. The short_context_controller
and long_context_controller settings occupy a broad band of token usage but
rarely reach the best MAE obtained by short_context_agentic.

Taken together, these analyses support the claim that context policies introduce meaningful
outcome—efficiency trade-offs: the short-context, agentic configuration appears to make

16

MAE vs tokens (per iteration)

0.136
0.134 A . .
. L]
< 0132 = ‘
g) setting L X x X
® long_context_agentic)l Xy
long_context_controller . N
0.130 ® short_context_agentic ‘ %
short_context_controller x. .
reasoning_mode
. []
0.128 ® agentic
controller ®
1500 1750 2000 2250 2500 2750 3000 3250

Total tokens

Figure 4: MAE vs. token usage. Relationship between per-iteration token usage and MAE
for the four settings on NOMAD.

better use of a limited token budget, while long-context, agentic runs pay substantial cost
without clear MAE gains.

3.4 Summary of Q1 Findings

Overall, our findings can be summarized as follows:

* The ContextEval run loop and logging utilities operate correctly on two tabular en-
vironments, producing JSONL traces with a consistent schema, usage statistics (la-
tency and tokens), and no missing critical events.

* On the toy benchmark, the agent successfully interacts with the environment and
logging stack, but improvements over the baseline are small and primarily useful for
debugging; we therefore center our quantitative analysis on the NOMAD benchmark.

* On the NOMAD benchmark, different context policies and reasoning modes induce
distinct behaviors and trade-offs: short_context_agentic achieves the best MAE
with moderate latency and token use; long_context_agentic is the most ex-
pensive and underperforms in MAE; and controller modes are fastest but typically
slightly worse in MAE than the best agentic configuration.

* There is no evidence that simply increasing context length or token usage monoton-
ically improves performance; instead, the combination of a compact context and an
agentic inner loop appears more effective for this ML experiment-design task.

These results demonstrate that even for a single model and environment, hand-designed
context policies can significantly affect outcome, efficiency, and behavior.

17

4 Conclusion

We presented ContextEval, a framework for evaluating context policies of LLM agents acting
as ML experiment designers in offline environments. By fixing datasets, training code, and
scoring functions, and varying only the agent’s context policy and reasoning mode, we were
able to isolate how short vs. long context and agentic vs. controller reasoning shape outcome
(MAE trajectories), efficiency (latency and tokens), and behavior.

Our experiments on the NOMAD bandgap regression task show that a short-context, agentic
configuration achieves the best outcome-efficiency trade-off among the settings we tested,
while long-context, agentic runs incur substantial additional cost without improving MAE.
These findings suggest that careful design of retrieval budgets and clarifier guidance can
be as important as scaling context length or model size for ML experiment-design agents.

Looking forward, we plan to extend ContextEval with richer context policies (including
vague instructions and learned clarifier strategies), chain-of-thought prompting, and sta-
bility analyses across seeds and controlled task perturbations. We hope that this line of
work contributes to a more systematic understanding of how context policies shape the
reliability and efficiency of LLM-based ML agents.

References

Chan, Jun Shern, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan
Mays, Giulio Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and
Aleksander Madry. 2025. “MLE-bench: Evaluating Machine Learning Agents on Machine
Learning Engineering.” arXiv preprint arXiv:2410.07095. [Link]

Huang, Qian, Jian Vora, Percy Liang, and Jure Leskovec. 2024. “MLAgentBench:
Evaluating Language Agents on Machine Learning Experimentation.” arXiv preprint
arXiv:2310.03302. [Link]

Madaan, Aman, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank
Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir
Yazdanbakhsh, and Peter Clark. 2023. “Self-Refine: Iterative Refinement with Self-
Feedback.” arXiv preprint arXiv:2303.17651. [Link]

Shinn, Noah, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. 2023. “Reflexion: Language Agents with Verbal Rein-
forcement Learning.” arXiv preprint arXiv:2303.11366. [Link]

Sun, Weiwei, Xuhui Zhou, Weihua Du, Xingyao Wang, Sean Welleck, Graham Neu-
big, Maarten Sap, and Yiming Yang. 2025. “Training Proactive and Personalized LLM
Agents.” arXiv preprint arXiv:2511.02208. [Link]

Yao, Shunyu, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. 2023. “ReAct: Synergizing Reasoning and Acting in Language Models.” arXiv
preprint arXiv:2210.03629. [Link]

18

https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2511.02208
https://arxiv.org/abs/2210.03629

	1 Introduction
	2 Methods
	3 Results
	4 Conclusion

