', Enkrypt Al

Generative Al Security

The Shared Responsibility
Framework

’; Enkrypt Al Shared Responsibility Framework

Gen Al is everywhere—in Saas$, in your enterprise. And we get it: enterprises grapple with
new layers of complexity around safety, security, and compliance. Much like traditional
cloud computing, where responsibilities are divided between “cloud providers” and “cloud
customers,” Gen Al demands its own shared-responsibility model—one that accounts for
everything from the foundational pre-trained model all the way to production-ready Al
agents interacting with users. In this article, we'll unpack a multi-layered framework that
clarifies who “owns” which aspects of Al security and risk, from base-model alignment to
real-world deployment. As our CSO Merritt Baer would say, “If you can toggle it, you own it—
whether you realize it or not.”

Let's digin.

Why a Shared-Responsibility Model
Matters for Gen Al

In classic cloud environments, the division of labor is relatively straightforward:

+ Cloud Providers ensure the physical data centers, hypervisors, host operating systems, and
underlying network security are rock-solid.

+ Cloud Customers take it from there: they configure guest OS security, manage applications,
encrypt data, and set up identity-and-access controls.

But generative Al introduces new dimensions: large language models (LLMs) and agentic
systems can both generate and act on information in ways that traditional applications never
could. A misconfigured prompt or an agent that inadvertently calls an external API can lead to
reputational damage, compliance violations, or even regulatory penalties.

By mapping Gen Al responsibilities onto a layered structure—much like the classic cloud model
—we can clearly delineate which party handles each security, safety, and compliance task. This

alignment not only reduces risk but also helps get new Al capabilities into production faster,
with fewer surprises.

The Four Layers of Gen Al Responsibility

Al Providers Al Consumers
& End-User Go
verna,,Ce

peployme™

popication &AGENt Deveyg,

enkryptai.com © 2025 Enkrypt Al Page 1

') Enkrypt Al Shared Responsibility Framework

Below is a high-level breakdown of the four key layers in Gen Al, along with the corresponding
parties responsible for each.

Primary Actors Key Responsibilities

Curate and vet massive training datasets, ensuring illegal or
harmful content (e.g. hate speech, CSAM) is filtered out

Build base-model architecture with robustness against
Foundation Model Model Provider (e.g. OpenAl, | adversarial data poisoning

Development Anthropic, Mistral) Embed initial “alignment” techniques (e.g. RLHF) to reduce
overly toxic or undesirable outputs

Continuously monitor version updates, patch biases, and
resolve known vulnerabilities

Host inference endpoints on secure infrastructure
(network firewalls, DDoS protection, rate limiting)

API Provider (could be same

K X Provide baseline content filters to block disallowed queries
as Model Provider or a third

Model-as-a- (e.g. explicit content, know PII attacks)
) party, e.g. Amazon Bedrock,
Service (API) Layer Azure Model Catalog Maintain clear versioning, deprecation policies, and SLAs
Together Al) ’ for availability

Offer an API-level abuse-detection system to throttle or
block anomalous traffic patterns

Fine-tune or prompt-tune the base LLM on proprietary data-
ensuring no leakage of sensitive Pl or intellectual property

Implement domain-specific guardrails: input sanitization,
custom output filters, and red-teaming scenarios tailored to
the industry (e.g. finance, healthcare)

Application & App/Agent Developer Build “h in-the-loop” checkpoints for high-risk Al
R e omnion | (EneroiseDevops, Souon | S4ld eman helocycheckgosts o g
gent integration Teams) -9

Secure all third-party tool integrations (e.g. if an agent can
call and external CRM API, lock down APO keys and enforce
strict RBAC)
Instrument comprehensive logging and monitoring-for both
prompt/response pairs and any downstream tool call
Define acceptable-use policies for employees or customers
(e.g. No customer PII in free-form prompts)
Conduct regular user training on “prompt hygiene” phishing
risks, and how to escalate suspected Al misuse

Deployment & End- End-Organization (Security, Continuously monitor production outputs with automated

Compliance, Business classifiers (e.g. bias, toxicity, Pll leakage)
User Governance Teams)

Maintain audit trails and records of data flows (GDPR,
HIPAA, CCPA compliance)

Establish incident-response playbooks (e.g. “What if an
agent starts sending out SPAM"” or “What if the LLM leaks
protected health information?)

Key takeaways:
+ Layers 1 and 2 (Foundation Model + API) roughly correspond to the “provider side”"—
analogous to “physical infrastructure” in the cloud model.
+ Layers 3 and 4 (Application/Agent Integration + Deployment/Governance) align with the
“consumer side”—analogous to the “guest OS, applications, and data” in the cloud model.

enkryptai.com © 2025 Enkrypt Al Page 2

’) Enkrypt Al Shared Responsibility Framework

Provider-Side Responsibilities (Layers 1 & 2)

Even before an enterprise writes a single line of code, much of the heavy lifting around Al safety
and compliance falls on the model and API providers:

Foundation Model Development (Layer 1)

1. Training Data Curation: Filter out illicit or harmful sources (hate speech, extremist content,
CSAM). Vet for data poisoning attempts (malicious actors slipping adversarial examples into
the dataset).

2. Initial Alignment & Bias Mitigation: Use techniques such as Reinforcement Learning from
Human Feedback (RLHF) to minimize overtly disallowed outputs. Regularly retrain or fine-tune
base models to patch emergent biases or vulnerabilities discovered in the wild.

3. Model Hardening: Embed defense mechanisms against known adversarial attacks (e.qg.,
prompt injections, jailbreaking). Stress-test the model internally, simulating malicious queries
to identify blind spots.

Model-as-a-Service (API) Layer (Layer 2)

1. Infrastructure Security: Operate inference endpoints on hardened servers-firewalls, DDoS
protection, and network isolation. Implement rate limits and anomaly detection to block
abusive or high-volume query bursts.

2. Baseline Content Filtering: Provide a “first line of defense” that automatically blocks blatantly
disallowed prompts/outputs (e.g., explicit instructions to commit wrongdoing). Issue clear
error codes and logs when a query is rejected, so integrators can understand why.

3. Versioning & Patch Management: Publish changelogs whenever safety filters are updated or
a known vulnerability is patched. Communicate deprecation schedules years in advance,
giving customers time to migrate to newer, more secure model variants.

Why it matters: Even if you're building a highly specialized frontline application, your base model
(Layer 1) and API (Layer 2) must already be free from egregious security and safety gaps. If the
provider cuts corners on content filtering or ignores data hygiene, downstream integrations will
struggle to remain compliant.

Consumer-Side Responsibilities (Layers 3 & 4)

Once your organization obtains access to an LLM or agent framework, the baton passes to
application developers and business teams to ensure domain-specific safety and governance:

Application & Agent Integration (Layer 3)

1. Data & Prompt Hygiene: Scrub proprietary or regulated information from prompts. For
example, avoid sending raw customer PIl into the LLM without encryption or explicit masking.
Verify that any fine-tuning dataset has the necessary consent and contractual rights (e.g.,
GDPR or CCPA-compliant data processing).

enkryptai.com © 2025 Enkrypt Al Page 3

') Enkrypt Al Shared Responsibility Framework

2. Domain-Specific Guardrails: Implement filters that address your industry’s unique risks: ¢
Finance: Block unlicensed “financial advice,” suspicious transaction prompts, or regulatory
terms that could trigger an SEC audit. - Healthcare: Filter out direct “diagnosis” requests to
avoid violating HIPAA or medical-practice regulations. Conduct systematic red-teaming-
simulate worst-case prompt injections, reverse-prompting, or chain-of-thought leaks. Build
automated test suites that hammer these scenarios repeatedly.

3. Agent-Specific Security (if building agents): Every time an agent calls an external API (CRM,
payment gateway, email service), enforce strict APl-key management and role-based access
control (RBAC). Lock down intermediate reasoning: if your agent logs internal “thoughts” for
debugging, ensure these logs are encrypted and cannot be exfiltrated. Add explicit kill
switches or fallback conditions before irreversible actions (e.g., “If transaction > $10,000,
require human approval”).

4. Monitoring & Alerting: Instrument runtime logs that record prompt/response pairs (with
sensitive data masked). Build dashboards with automated classifiers to surface potential
policy violations-bias, toxicity, Pll leaks, or misuse of regulated terminology. Set up real-time
alerts to security and compliance teams if suspicious behavior is detected (e.g., a sudden
spike in disallowed-content triggers).

Deployment & End-User Governance (Layer 4)

1. Policy & Governance: Publish a clear “Responsible Al Use” policy for everyone: “Allowed:
internal report summarization. Not allowed: generating customer credit-scoring
predictions.”Define clear ownership for compliance audits: which teams will review logs, triage
incidents, and update guardrails.

J

2. Training & Awareness: Conduct regular training sessions. Teach employees “prompt hygiene’
best practices, how to spot phishing attempts that leverage Al, and how to report suspicious
Al outputs. Create quick-reference guides (intranet wikis or playbooks) that clarify do's and
don'ts for interacting with Al tools.

3. Regulatory Compliance: Maintain detailed audit trails. Store the input/output records for the
mandated retention period (e.g., 3—7 years, depending on jurisdiction). Ensure proper data-
subject consent when storing or processing personal data. If customers’ data is used in fine-
tuning, you may need documented opt-ins.

4. Incident Response & Continuous Improvement: Have a documented playbook: “Who to notify
if an Al agent sends an email to unintended recipients” or “What to do if an LLM starts
outputting disallowed content.”"Regularly review flagged incidents, update your domain-
specific filters, and feed learnings back to both your development team and, when applicable,
to the model provider.

Why it matters: Even if you trust that your LLM vendor has done everything right, a poorly
configured prompt or lack of domain-specific guardrails can still lead to serious issues a data
breach, reputational harm, or regulatory fines. By treating Layers 3 and 4 with the same rigor as
traditional application security, you get ahead of problems before they scale.

enkryptai.com © 2025 Enkrypt Al Page 4

¢) Enkrypt Al

Shared Responsibility Framework

Putting It All Together: A Simplified

Responsibility Matrix

Below is a concise mapping of who “owns” each core task, from data curation through

user training:

Responsibility

Training Data Curation

Model/API Provider

4 (filter out harmful content)

App/Agent developer

Org/Policy team

Base Model Alignment

/]

Inference Infrastructure Security

[(rate limits, firewalls)

Fine-Tuning & Prompt Tuning

[(ensure no PII/IP leaks)

Custom Input/Output Filtering

[(baseline filters)

[(domain specific filters)

Agent Tool-Call Authorization

[(secure APIs, RBAC)

Runtime Monitoring & Logging

i (instrument logs & alerts)

Compliance Policy

¥l (define policy, audit owners)

User Training & Awareness

I (train staff, enforce policy)

Incident Response Playbook

Il (document escalation procedures)

The Role of Agents: Extra Complexity,

Extra Care

Unlike a simple text-in/text-out LLM, agentic systems can take actions: calling external APIs,
interacting with databases, or even initiating transactions. This “agency” layer introduces

additional responsibilities:

1. Tool-Call Security: Every external API call must be authenticated and authorized. For example,
if an agent can issue a “funds transfer” request, you must enforce multi-factor checks or
human approval for transfers above a certain threshold.

2. Internal Reasoning Logs: Agents often keep a “chain of thought” to explain why they chose a
particular action. Those logs must be encrypted and access-controlled to prevent privileged
information from leaking.

3. Kill Switches & Fallbacks: Embed a “stop-gap” mechanism: if the agent encounters an
ambiguous or potentially harmful request (e.g., “Send unauthorized emails to customers”), it

should default to “Request human approval.”

4. Simulation & Sandbox Testing: Before deploying any agent capable of real-world actions, run
it in a sandbox environment that mimics production. Simulate malicious prompts (e.g., “Buy
Bitcoin with stolen credit card”) to ensure your guardrails hold.

Bottom line: Agents close the gap between “suggest” and “act.” That’s powerful, but it also raises
the stakes. If your agent can execute trades, send invoices, or provision new cloud resources,
then each of those actions needs its own security and compliance posture.

enkryptai.com

© 2025 Enkrypt Al

Page 5

’) Enkrypt Al Shared Responsibility Framework

Continuous Feedback Loops: Keeping
Everything Aligned

A true shared-responsibility model isn't static. As new vulnerabilities emerge—whether it's a
novel prompt injection technique or a regulatory change—you need a robust feedback
mechanism:

1. Provider L Developer: If your red team uncovers a new way to bypass the base model's
content filter, report it back to the LLM provider. They can update their safety layers, pushing
patches to all clients. Conversely, when providers release new safety enhancements, you
must test and integrate those updates into your application/agent pipelines.

2. Developer ki Organization: If your monitoring system flags an unusual spike in disallowed-
content requests, your security team needs to work with developers to immediately adjust
filters or temporarily shut down affected endpoints. When the compliance/legal team
updates policies (e.g., new GDPR guidance), developers must revise prompt-engineering
guidelines and update audit-logging configurations.

3. Organization L Users: Regularly gather user feedback-do employees feel confident that
their prompts won't leak sensitive data? Are customers noticing any inappropriate
outcomes? This input helps refine training programs and policy clarity.If a compliance audit
uncovers gaps (e.g., missing consent for data used in model training), update both policy
and developer practices to close those gaps.

Key Takeaways & Best Practices

1. Recognize the Multi-Layered Nature of Gen Al Risk: Unlike traditional cloud apps, Gen Al
requires distinct treatment at the foundation, API, application, and governance layers.

2. Divide and Conquer: Define Ownership Clearly: Model/API providers handle data-curation,
initial alignment, and infrastructure security.Application/agent developers focus on domain-
specific guardrails, fine-tuning hygiene, and securing downstream tool calls. Policy teams
set organizational rules, train end users, and maintain compliance auditable records.

3. Agents Demand Extra Rigor: Every action “move” your Al agent can make must be explicitly
authorized and monitored. Build kill switches, sandbox tests, and encrypted reasoning logs
as core requirements.

4. Adopt Continuous Monitoring & Feedback Loops: Set up real-time alerts for policy
violations. Conduct periodic red-team exercises. Feed findings back to both the LLM
provider and internal teams to iteratively strengthen defenses.

5. Stay Ahead of the Regulatory Curve: Keep an eye on evolving Al regulations (e.g., EU Al Act,
proposed U.S. guidelines). Design your audit logs, data-retention policies, and user training
programs so that you can pivot quickly when new requirements emerge.

enkryptai.com © 2025 Enkrypt Al Page 6

’; Enkrypt Al Shared Responsibility Framework

9 Questions Every CISO Should Ask Their
Al Vendors

1. Training Data & Alignment
How do you ensure datasets are free from bias, malicious poisoning, or sensitive PII?

2. Model Security

What defenses are in place against prompt injection, jailbreaking, and adversarial attacks?

3. API & Infrastructure
How do you secure inference endpoints against DDoS, misuse, and unauthorized access?

4. Versioning
How do you handle model patching, changelogs, and deprecation schedules?

5. Data Privacy

How do you prevent sensitive customer or enterprise data from persisting in training or
fine-tuning?

6. Guardrails

Can your model enforce domain-specific filters (e.g., financial advice, HIPAA compliance)?

7. Agent Security

If the Al has “agency,” what controls exist for API calls, transaction approvals, and kill switches?

8. Monitoring & Transparency

Do you provide logs, auditability, and alerting for policy violations or anomalies?

9. Regulatory Compliance

How does your platform support evolving requirements (e.g., EU Al Act, NIST Al RMF,
HIPAA, SEC rules)?

Case Studies

Manufacturing: Predictive Maintenance Al

When a global manufacturer rolled out Al to predict machine failures, the CIO expected efficiency
gains. But during testing, engineers discovered that with a cleverly worded prompt, the system
could be tricked into suggesting shutdown commands for an entire assembly line.

* Provider’s Role (Layers 1 & 2): The Al vendor had hardened its base model and secured
inference endpoints with DDoS protection. The “plumbing” was solid.

enkryptai.com © 2025 Enkrypt Al

’; Enkrypt Al Shared Responsibility Framework

« Enterprise’s Role (Layers 3 & 4): It was the manufacturer’s job to mask proprietary sensor
data, sandbox the Al before production, and add kill switches for high-risk outputs.

<~ Lesson: The provider delivered a resilient foundation, but the enterprise had to implement
domain-specific guardrails to ensure an Al experiment couldn’t disrupt production.

Financial Services: Automated Loan Underwriting

A bank piloted Al to score loan applications. Within weeks, compliance officers flagged
inconsistent approvals and opaque explanations. Customers demanded to know why they were
denied.

* Provider’s Role: The LLM vendor maintained bias-reduced training data and published
changelogs when updating alignment techniques.

 Enterprise’s Role: The bank’s CISO enforced encryption for PII, built dashboards to monitor for
unfair treatment, and mandated audit logs for every Al-driven decision to satisfy regulators.

<~ Lesson: Providers ensured bias minimization at the base, but it was the enterprise’s
responsibility to align Al outputs with regulatory and audit standards.

Healthcare: Clinical Decision Support
At a large hospital, doctors began using Al to summarize patient histories. During a red-team test,
a prompt coaxed the Al into suggesting a treatment plan. That crossed a regulatory line.
* Provider’s Role: The vendor had filtered training data and embedded safety blocks against
overt diagnostic claims.
 Enterprise’s Role: The hospital encrypted logs containing PHI, masked identifiers before

prompts, and made clear in governance policies that Al outputs were “reference only.”

<~ Lesson: Providers set baseline safety rules, but healthcare leaders had to enforce HIPAA
compliance and medical practice boundaries at the application layer.

Retail: Al Customer Service Chatbots

A retailer connected its Al chatbot to CRM and payments systems. During testing, a red-teamer
tricked the bot into approving a fake $5,000 refund.

* Provider’s Role: The Al vendor secured API endpoints and applied filters against obviously
disallowed financial instructions.

* Enterprise’s Role: The retailer's security team enforced RBAC, capped automated refunds at
$500, and required human approval above that threshold. They also masked loyalty account
data before sending prompts.

<~ Lesson: Providers gave secure infrastructure, but it was the retailer’'s duty to enforce
transaction-specific fraud controls.

enkryptai.com © 2025 Enkrypt Al Page 8

’; Enkrypt Al Shared Responsibility Framework

Energy & Utilities — Smart Grid Optimization

An energy company tested Al for balancing load across the power grid. Engineers discovered that
if the Al were misconfigured, it could theoretically redirect supply in unsafe ways.

* Provider’s Role: The vendor ensured hardened servers and baseline filtering for critical-
infrastructure prompts.

 Enterprise’s Role: The CIO required sandbox testing in simulated grids, limited Al to “advisory”
mode, and installed kill switches before any live system execution.

<~ Lesson: The provider built secure infrastructure, but the utility had to enforce operational
safety controls to protect critical systems.

Government — Citizen Services Al Portal

A government agency launched an Al portal to answer tax and benefits questions. Early trials
showed the bot could be manipulated into giving misleading filing instructions.

* Provider’s Role: The Al vendor blocked disallowed content and published patch notes for
safety updates.

 Enterprise’s Role: The agency applied policy filters aligned with IRS regulations, logged all
citizen interactions for FOIA compliance, and trained staff on escalation paths for risky
queries.

<~ Lesson: Providers supplied model integrity, but the government had to ensure policy-based
governance and public trust safeguards.

Conclusion

Generative Al unlocks unprecedented innovation but also multiplies security, compliance,
and safety challenges across multiple layers. By adopting a shared-responsibility model—
one that mirrors the spirit of traditional cloud but accounts for LLM alignment, domain-
specific guardrails, and agentic actions—enterprises can confidently accelerate Al adoption
while minimizing risk. Whether you’re a model vendor, an application developer, or part of
an organization’s compliance team, understanding your slice of the shared-responsibility
pie is the first step toward unlocking Al’s transformative potential—safely and responsibly.

enkryptai.com © 2025 Enkrypt Al

') Enkrypt Al Shared Responsibility Framework

Acknowledgements

Rajendra Gangavarapu
Chief Data & Al Officer | Artigen.Al

Amanda Hartle
Managing Director | FiddlersTech

Inderpreet Kambo
CEO | Improzo

Jagadeesh Kunda
Co-Founder/CPO | Oleria

Rock Lambros
CEO and Founder | RockCyber

Sunil Mallik
Head of CSAE | PayPal

Sekhar Sarukkai
Founder, CEO | Stealth Startup

Nishil Shah

Engineer | Notion

Tara Steele
Director | Safe Al for Children

Aditya Thadani
VP - Al Platforms | H&R Block

Abhishek Trigunait

Founder | Improzo

Dennis Xu
Research VP, Al & Cloud Security | Gartner

enkryptai.com © 2025 Enkrypt Al Page 10

The Shared Responsibility
Framework

,‘ Enkrypt Al
Ship Fast. Ship Safe. Stay Ahead.

www.enkryptai.com

