

Preamble

00. Table of Contents

01. Date of notification	11
02. Statement in accordance with 2.2. 6(3) or Regulation (EU) 2023/1114	11
03. Compliance statement accounting with Article 6(6) of Regulation (EU) 2023/11	
04. Statement in corda with Article 6(5), points (a), (b), (c), of Regulation (E	
05. Staten at in a grdance with Article 6(5), point (d), of Regulation (EU) 2023/1114	11
26. Some Mn accordance with Article 6(5), points (e) and (f), of Regulation (E	
nary	12
07. Warning in accordance with Article 6(7), second subparagraph, of Regulation (E	
08. Characteristics of the crypto-asset	12
09. Information about the quality and quantity of goods or services to which the util	-
10. Key information about the offer to the public or admission to trading	13
Part A – Information about the offeror or the person seeking admission to trading	14
A.1 Name	14
A.2 Legal form	14
A.3 Registered address	14
A.4 Head office	14
A.5 Registration date	14

A.6 Legal entity identifier	14
A.7 Another identifier required pursuant to apply role tional law	14
A.8 Contact telephone number	15
A.9 E-mail address	15
A.10 Response time (Days)	15
A.11 Parent company	15
A.12 Members of the mag at body	15
A.13 Business activity	15
A.14 Parent Language business activity	15
A 5 New, stablished	16
16 cial condition for the past three years	16
7 Financial condition since registration	16
art B – Information about the issuer, if different from the offeror or perso	n seeking
admission to trading	16
B.1 Issuer different from offeror or person seeking admission to trading	16
B.2 Name	16
B.3 Legal form	17
B4. Registered address	17
B.5 Head office	17
B.6 Registration date	17
B.7 Legal entity identifier	17
B.8 Another identifier required pursuant to applicable national law	17
B.9 Parent company	17
B.10 Members of the management body	18
B.11 Business activity	18

B.12 Parent company business activity	18
Part C – Information about the operator of the transplant form in	
	persons drawing the
crypto-asset white paper pursuant to Ar Ae , ,, second subpar	
(EU) 2023/1114	18
C.1 Name	18
C.2 Legal form	18
C.3 Registered a ress.	18
C.4 Head e	18
C.5 Recoration	18
C. gal e / identifier	18
Another identifier required pursuant to applicable national la	w19
Parent company	19
C.9 Reason for crypto-Asset white paper Preparation	19
C.10 Members of the Management body	19
C.11 Operator business activity	19
C.12 Parent company business activity	19
C.13 Other persons drawing up the crypto-asset white paper acc	cording to Article 6(1),
second subparagraph, of Regulation (EU) 2023/1114	19
C.14 Reason for drawing the white paper by persons referred to	in Article 6(1), second
subparagraph, of Regulation (EU) 2023/1114	19
Part D – Information about the crypto-asset project	19
D.1 Crypto-asset project name	19
D.2 Crypto-assets name	19
D.3. Abbreviation	20

D.4 Crypto-asset project description	20
D.5 Details of all natural or legal persons involve and applementation of the	
asset project	20
D.6 Utility Token Classification	21
D.7 Key Features of Goods/Serv for Ut. Joken Projectsken	21
D.8 Plans for the token	21
D.9 Resource alloca	21
D.10 Planned us of College d funds or crypto-Assets	
Part E – Info. Join about the offer to the public of crypto-assets or their admi	
rading	22
E. I blic itering or admission to trading	22
Reasons for public offer or admission to trading	22
.3 Fundraising target	22
E.4 Minimum subscription goals	22
E.5 Maximum subscription goals	22
E.6 Oversubscription acceptance	23
E.7 Oversubscription allocation	23
E.8 Issue price	23
E.9 Official currency or any other crypto-assets determining the issue price	23
E.10 Subscription fee	23
E.11 Offer price determination method	23
E.12 Total number of offered/traded crypto-assets	23
E.13 Targeted holders	23
E.14 Holder restrictions	24
E.15 Reimbursement notice	24

E.16 Refund mechanism	24
E.17 Refund timeline	24
E.18 Offer phases	24
E.19 Early purchase discount	24
E.20 Time-limited offer	24
E.21 Subscription period egir	24
E.22 Subscription policy lend	24
E.23 Safe warding arrang ments for offered funds/crypto- Assets	24
E.24 Prymer ethods for crypto-asset purchase	25
F 5 Value Insfer methods for reimbursement	25
261 of withdrawal	25
Transfer of purchased crypto-assets	25
E.28 Transfer time schedule	25
E.29 Purchaser's technical requirements	25
E.30 Crypto-asset service provider (CASP) name	25
E.31 CASP identifier	25
E.32 Placement form	25
E.33 Trading platforms name	26
E.34 Trading platforms Market identifier code (MIC)	26
E.35 Trading platforms access	26
E.36 Involved costs	26
E.37 Offer expenses	26
E.38 Conflicts of interest	26
E.39 Applicable law	26

E.40 Competent court	26
Part F – Information about the crypto-assets	27
F.1 Crypto-asset type	27
F.2 Crypto-asset functionality	27
F.3 Planned application of function ies	27
A description of the character of the crypto asset, including the	data necessary
for classification of crypt as et white paper in the register refer	red to in Article
109 of Regulatio (EU) 2 1114, as specified in accordance with par	agraph 8 of that
Article	28
F.4 Type of crypesset white paperset white paper	28
F. the typer submission	28
Crypto-asset characteristics	28
Commercial name or trading name	28
F.8 Website of the issuer	28
F.9 Starting date of offer to the public or admission to trading	28
F.10 Publication date	28
F.11 Any other services provided by the issuer	28
F.12 Language or languages of the crypto-asset white paper	29
F.13 Digital token identifier code used to uniquely identify the crypto-	asset or each of
the several crypto assets to which the white paper relates, where avail-	able29
F.14 Functionally fungible group digital token identifier, where available	2929
F.15 Voluntary data flag	29
F.16 Personal data flag	29
F.17 LEI eligibility	29
F.18 Home Member State	29

F.19 Host Member States	29
Part G – Information on the rights and obligations cache to the crypto-as	sets29
G.1 Purchaser rights and obligations	29
G.2 Exercise of rights and obligations	30
G.3 Conditions for modifications on this and obligations	30
G.4 Future public offers	30
G.5 Issuer retained to-a.	30
G.6 Utilit token ssifica on	31
G.7 Key feat. of goods/services of utility tokens	31
Utility ens redemption	31
9 Nading request	31
0 Crypto-assets purchase or sale modalities	31
G.11 Crypto-assets transfer restrictions	31
G.12 Supply adjustment protocols	31
G.13 Supply adjustment mechanisms	32
G.14 Token value protection schemes	32
G.15 Token value protection schemes description	32
G.16 Compensation schemes	32
G.17 Compensation schemes description	32
G.18 Applicable law	32
G.19 Competent court	32
Part H – information on the underlying technology	32
H.1 Distributed ledger technology (DTL)	32
H.2 Protocols and technical standards	32

	H.3 Technology used	34
	H.4 Consensus mechanism	34
	H.5 Incentive mechanisms and applicable fees	36
	H.6 Use of distributed ledger technolo	38
	H.7 DLT functionality description	38
	H.8 Audit	38
	H.9 Audit outcome	38
Ρá	art I – Info matiologo risko	38
	I.1 Offes-rela risks	38
	V ssuer ted risks	40
	Cr), assets-related risks	42
	roject implementation-related risks	46
	1.5 Technology-related risks	46
	I.6 Mitigation measures	48
Pá	art J – Information on the sustainability indicators in relation to adverse impact on	the
cl	imate and other environment-related adverse impacts	48
	J.1 Adverse impacts on climate and other environment-related adverse impacts	48
	S.1 Name	48
	S.2 Relevant legal entity identifier	48
	S.3 Name of the cryptoasset	48
	S.4 Consensus Mechanism	48
	S.5 Incentive Mechanisms and Applicable Fees	50
	S.6 Beginning of the period to which the disclosure relates	52
	S.7 End of the period to which the disclosure relates	52
	S.8 Energy consumption	52

S.9 Energy consumption sources and methodol	52
S.10 Renewable energy consumption	52
S.11 Energy intensity	52
S.12 Scope 1 DLT GHG emissions – Control of Administration	52
S.13 Scope 2 DLT GHG emissions vchased	53
S.14 GHG intensity	53
S.15 Key energy sour and lodologies	53
S.16 Key SHG so ses ar Methodologies	53

01. Date of notification

2025-04-28

02. Statement in accord 2023/1114

This crypto-asset white paper has been approved by any competent authority in any Member State of the appearance. The person seeking admission to trading of the crypto-asset is solvered by the content of this crypto-asset white paper.

03. Copolian statement in accordance with Article 6(6) of Repulation (EU) 2023/1114

cryp casset white paper complies with Title II of Regulation (EU) 2023/1114 of the Euler ean Parliament and of the Council and, to the best of the knowledge of the magement body, the information presented in the crypto-asset white paper is fair, clear and not misleading and the crypto-asset white paper makes no omissions likely to affect its import.

04. Statement in accordance with Article 6(5), points (a), (b), (c), of Regulation (EU) 2023/1114

The crypto-asset referred to in this crypto-asset white paper may lose its value in part or in full, may not always be transferable and may not be liquid.

05. Statement in accordance with Article 6(5), point (d), of Regulation (EU) 2023/1114

The tokens allow token holders to perform various governance functions within a decentralized autonomous organization (DAO), among other things.

Since the token has additional functions (hybrid ton), these are already conceptually not utility tokens within the meaning of the MiCAP the definition of Article 3 (1), due to the necessity of the "exclusivity".

06. Statement in accorda (Article 6(5), points (e) and (f), of Regulation (EU) 2023/1114

The crypto-asset referred to it is white paper is not covered by the investor compensation scheme under vice tive 97/9/EC of the European Parliament and of the Council or the deposit guarantee schemes under Directive 2014/49/EU of the European Parliament of the Eu

Sumar

Warning in accordance with Article 6(7), second paragraph, of Regulation (EU) 2023/1114

Warning: This summary should be read as an introduction to the crypto-asset white paper. The prospective holder should base any decision to purchase this crypto-asset on the content of the crypto-asset white paper as a whole and not on the summary alone. The offer to the public of this crypto-asset does not constitute an offer or solicitation to purchase financial instruments and any such offer or solicitation can be made only by means of a prospectus or other offer documents pursuant to the applicable national law. This crypto-asset white paper does not constitute a prospectus as referred to in Regulation (EU) 2017/1129 of the European Parliament and of the Council or any other offer document pursuant to union or national law.

08. Characteristics of the crypto-asset

ai16z tokens this white paper refers to are crypto-assets other than EMTs and ARTs, which are available on the Solana blockchain (2025-03-16 and according to DTI FFG shown in F.14).

The initial production of the 1,000,000,000 token the so-called "mint") took place on October 25, 2024 01:44:39 +UTC tee transaction hash: 3djvt4PcrUKLRaUn7BDrZvxHPdqBpUJ2VUx2hED Dkop MiWbwmYdSfUmNdZLjxS Y2E8zMmarlyKf5VXfw1).

There was a second minting every 200, 200 Zokens on October 25, 2024 02:29:30 +UTC (see transaction hash: 4E1zWekW2Bxyk3XtMgU9k Qb Zkq1yizH656dE9ZqidrKzfpWzBJwAYeypsj4Rd6hCya ssVS1EBnYZTZtcBf).

The token allow ken livers to perform various governance functions within a decentralize tonor organization (DAO), among other things.

Since the san has additional functions (hybrid token), these are already conceptually not to the meaning of the MiCAR within the definition of Article 3 (1), as to the necessity of the "exclusivity".

. Information about the quality and quantity of goods or services to which the utility tokens give access and restrictions on the transferability

The tokens allow token holders to perform various governance functions within a decentralized autonomous organization (DAO), among other things.

Since the token has additional functions (hybrid token), these are already conceptually not utility tokens within the meaning of the MiCAR within the definition of Article 3 (1), due to the necessity of the "exclusivity".

10. Key information about the offer to the public or admission to trading

Crypto Risk Metrics GmbH is seeking admission to trading on any Crypto Asset Service Provider platform in the European Union in accordance to Article 5 of REGULATION (EU) 2023/1114 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 31 May 2023 on markets in crypto-assets, and amending Regulations (EU) No 1093/2010 and (EU) No

1095/2010 and Directives 2013/36/EU and (EU) 19/1937. In accordance to Article 5(4), this crypto-asset white paper may be used by atities admitting the token to trading after Crypto Risk Metrics GmbH as the proon relationship for drawing up such white paper has given its consent to its the whole paper, inquiries can be made under info@crypto-risk-metrics.com.

Part A – Information of the offeror or the person seeking admission to taking

A.1 Name

Crypto R. Metric nbH

2 Le for

21

Registered address

DE, Lange Reihe 73, 20099 Hamburg, Germany

A.4 Head office

Not applicable.

A.5 Registration date

2018-12-03

A.6 Legal entity identifier

39120077M9TG0O1FE242

A.7 Another identifier required pursuant to applicable national law

Crypto Risk Metrics GmbH is registered with the commercial register in the the city of Hamburg, Germany, under number HRB 154488.

Nah.	Position	Address
Tin ölitz	Chairman	Lange Reihe 73, 20099
		Hamburg, Germany

A.13 Business activity

Crypto Risk Metrics GmbH is a technical service provider, who supports regulated entities in the fulfillment of their regulatory requirements. In this regard, Crypto Risk Metrics GmbH acts as a data-provider for ESG-data according to article 66 (5). Due to the regulations laid out in article 5 (4) of the REGULATION (EU) 2023/1114 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 31 May 2023 on markets in crypto-assets, and amending Regulations (EU) No 1093/2010 and (EU) No 1095/2010 and Directives 2013/36/EU and (EU) 2019/1937, Crypto Risk Metrics GmbH aims at providing central services for crypto-asset white papers in order to minimize market confusion due to conflicting white papers for the same asset.

A.14 Parent company business activity

Not applicable.

A.15 Newly established

Crypto Risk Metrics GmbH has been etablished (i. e. older than three years).

A.16 Financial condition for the past three ar

Crypto Risk Metrics GmbH's proter taxon the last three financial years are as follows:

2024 (unaudited): neg e 50 11,8 EUR

2023 (unaudited): gative 65,32 EUR

2022: 104.25 EUR

As 2023 and 2024 were the years building software for the MiCAR-Regulation which was not year place, revenue streams from these investments are expeted to be generated in 25.

Financial condition since registration

This point would only be applicable if the company were newly established and the financial conditions for the past three years had not been provided in the bulletpoint before.

Part B – Information about the issuer, if different from the offeror or person seeking admission to trading

B.1 Issuer different from offeror or person seeking admission to trading

Yes

B.2 Name

The Al16Z project, later rebranded as ElizaOS, was founded by Shaw Walters in October 2024. Walters is an entrepreneur with a background in artificial intelligence, decentralized finance (DeFi), and blockchain technology. Prior to founding Al16Z, he worked on various initiatives and participated in early-stage Web3 startups,

according to his public LinkedIn profile (http://www.linkedin.com/in/shaw-walters-

36603a289/, accessed on 2025-04-24).

According to the project statement on the website ttps: www.elizaos.ai/dao, accessed

on 2025-04-24), the tokens are manage by a AQ that has the corresponding control

over the crypto-asset. Shaw Walter boult serve re not be referred to as the issuer. At

the time of writing the white paper (2 04-24), the mint and update authorities of the

data account the public address

"AZtt8LUScEAG74iKn uYgC m JhAf6yUkAXjAd8sp".

B.3 Legal form

Due to the way of the DAO, the crypto-asset does not have a management body as

defined in icle 3,7, point (27), of Regulation (EU) 2023/1114.

Regardaddress

Dube the nature of the DAO, the crypto-asset does not have a registered address.

.5 Head office

Due to the nature of the DAO, the crypto-asset does not have a head office.

B.6 Registration date

Due to the nature of the DAO, the crypto-asset does not have a registered date. Both

minting events took place on 2024-10-25.

B.7 Legal entity identifier

Due to the nature of the DAO, the crypto-asset does not have a legal entity identifier.

B.8 Another identifier required pursuant to applicable national law

Not applicable.

B.9 Parent company

Not applicable.

B.10 Members of the management body

Due to the nature of the DAO, the crypto-asset characteristics have a management body as defined in Article 3(1), point (27), of Regulation (EU Q23/11-4.

B.11 Business activity

Not applicable.

B.12 Parent company busing ac

Not applicable.

Part C – rma about the operator of the trading platform in cases there draws up the crypto-asset white paper and internationabout other persons drawing the crypto-asset white per arsuant to Article 6(1), second subparagraph, of Regulation (EU) 2023/1114

.1 Name

Not applicable.

C.2 Legal form

Not applicable.

C.3 Registered address

Not applicable.

C.4 Head office

Not applicable.

C.5 Registration date

Not applicable.

C.6 Legal entity identifier

Not applicable.

C.7 Another identifier required pursuant to applicational law

Not applicable.

C.8 Parent company

Not applicable.

C.9 Reason for crypto-Asset white paper reparation

Not applicable.

C.10 Members of the via menu body

Not applice

C.11 Operar but activity

Not licab

C. Parent company business activity

Mapplicable.

C.13 Other persons drawing up the crypto-asset white paper according to Article 6(1), second subparagraph, of Regulation (EU) 2023/1114

Not applicable.

C.14 Reason for drawing the white paper by persons referred to in Article 6(1), second subparagraph, of Regulation (EU) 2023/1114

Not applicable.

Part D - Information about the crypto-asset project

D.1 Crypto-asset project name

Long Name: "ai16z", Short Name: "ai16z" according to the Digital Token Identifier Foundation (www.dtif.org, DTI see F.13, FFG DTI see F.14 as of 2025-04-24).

D.2 Crypto-assets name

See F.13.

D.3 Abbreviation

See F.13.

D.4 Crypto-asset project description

The Al16Z project, later rebrande has Elil Dr. was founded by Shaw Walters in October 2024. Walters is an entrepret with background in artificial intelligence, decentralized finance (DeFi) background in artificial intelligence,

As star on the website https://www.daos.for/HeL NuQkmYB4pYWo2zYs22mESHXPQYzXbB8n4V98jwC (accessed 223 20° ai16z is the first Al VC fund, fully managed by Marc Alndrees on we recommendations from the members of the DAO. Token holders have some kind revernance rights within this DAO.

Howitz (commonly referred to as "a16z"), led to the decision to rename the project to S.

D.5 Details of all natural or legal persons involved in the implementation of the cryptoasset project

Name	Role
Shaw Walters	The Al16Z project, later rebranded as ElizaOS, was founded by Shaw Walters in October 2024. Walters is an entrepreneur with a background in artificial intelligence, decentralized finance (DeFi), and blockchain technology. Prior to founding Al16Z, he worked on various initiatives and participated in early-stage Web3 startups, according to his public LinkedIn profile
	(https://www.linkedin.com/in/shaw-walters-36603a289/, accessed on 2025-04-24). According to the project

statement on the rebsite (https://www.elizaos.ai/dao, accessed on 2025-67 with the tokens are managed by a DAO that has corrounding control over the crypto-assection we call should therefore not be reparted to the suer. At the time of writing the white pages 2025-64-24), the mint and update authorities of day account have the public address AZt JJScEAG74iKnPNRuYgQhwmGJhAf6yUkAXjAd8sp".

Github contributo

Within the official GitHub repository for the project (https://github.com/elizaOS), six people are listed, one of whom can be traced back to Shaw Walters.

Uti en Classification

Sing the token has additional functions (hybrid token), these are already conceptually utility tokens within the meaning of the MiCAR within the definition of Article 3 (1), due to the necessity of the "exclusivity".

D.7 Key Features of Goods/Services for Utility Token Projects

Not applicable.

D.8 Plans for the token

There is no official roadmap for the token, since proposals can be made and voted on within the DAO. The website (https://www.elizaos.ai/faq, accessed on 2025-04-26) describes in a FAQ section that planned projects include: "agent marketplace," "autonomous investor," and "DegenSpartanai". However, this information is not legally binding, as it may be changed at any time without consequence. There is no entitlement to implementation or similar.

D.9 Resource allocation

No information was available for this crypto-asset at the time of writing this white paper (2025-04-22)

D.10 Planned use of Collected funds or crypto-Asset

See D.9.

Part E – Information about the rife to the public of crypto-assets or their admission to trace

E.1 Public offering or admissignment

The white paper courses the addression to trading (i. e. ATTR) on any Crypto Asset Service Providers reason, that has obtained the written consent of Crypto Risk Metrics GmbH as the consent of Crypto Risk Metrics.

E.2 Reas for for fer or admission to trading

As a ady stable in A.13, Crypto Risk Metrics GmbH aims to provide central services to white papers in accordance to COMMISSION IMPLEMENTING REPLATION (EU) 2024/2984. These services are offered in order to minimize market rusion due to conflicting white papers for the same asset drawn up from different Crypto Asset Service Providers. As of now, such a scenario seems highly likely as a Crypto Asset Service Provider who drew up a crypto-asset white paper and admitted the respective token in the Union has no incentive to give his written consent to another Crypto Asset Service Provider according to Article 5 (4 b) of the REGULATION (EU) 2023/1114 to use the white paper for his regulatory obligations, as this would 1. strenghthen the market-positioning of the other Crypto Asset Service Provider (who is most likely a competitor) and 2. also entail liability risks.

E.3 Fundraising target

Not applicable.

E.4 Minimum subscription goals

Not applicable.

E.5 Maximum subscription goals

Not applicable.

E.6 Oversubscription acceptance

Not applicable.

E.7 Oversubscription allocation

Not applicable.

E.8 Issue price

Not applicable, as the white are register to support admission to trading and not for the initial offer to the register.

E.9 Official arrance any other crypto-assets determining the issue price

Not applicable, white paper is written to support admission to trading and not for the initial of the public.

Su. cion fee

No applicable, as this white paper is written to support admission to trading and not for initial offer to the public.

E.11 Offer price determination method

Once the token is admitted to trading its price will be determined by demand (buyers) and supply (sellers).

E.12 Total number of offered/traded crypto-assets

1,100,000 tokens were generated in both previous mints (see above). Tokens can be removed from the market through burn processes. At the time of writing this white paper (2025-04-25), there are 1,099,998,656.27 tokens in circulation on the blockchain, which can change anytime in the future.

23

E.13 Targeted holders

ALL

E.14 Holder restrictions

The Holder restrictions are subject to the rules provider as well as additional restrictions the Crypto Asset Service Providers might set in force.

E.15 Reimbursement notice

Not applicable.

E.16 Refund mechanis

Not applicable.

E.17 Refund in line

Not applica

² On use:

No pplicable.

c.19 Early purchase discount

Not applicable.

E.20 Time-limited offer

Not applicable.

E.21 Subscription period beginning

Not applicable.

E.22 Subscription period end

Not applicable.

E.23 Safeguarding arrangements for offered funds/crypto- Assets

Not applicable.

E.24 Payment methods for crypto-asset purchase

The payment methods are subject to the respect to the Provider listing the crypto-asset.

E.25 Value transfer methods for reimburs ep

Not applicable.

E.26 Right of withdrawal

Not applicable, as this tep, written to support admission to trading and not for the initial offer to publicable.

E.27 Transfer curchased crypto-assets

The transfer of purchased crypto-assets are subject to the respective capabilities of the Sypto-asset lervice Provider listing the crypto-asset.

E.2 ransfer time schedule

applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.29 Purchaser's technical requirements

The technical requirements that the purchaser is required to fulfil to hold the cryptoassets of purchased crypto-assets are subject to the respective capabilities of the Crypto Asset Service Provider listing the crypto-asset.

25

E.30 Crypto-asset service provider (CASP) name

Not applicable.

E.31 CASP identifier

Not applicable.

E.32 Placement form

Not applicable.

E.33 Trading platforms name

The trading on all MiCAR-compliant trading platfor states with the state of the trading platfor states and the trading platfor states are the trading platfor.

E.34 Trading platforms Market identifier code (MIC)

Not applicable.

E.35 Trading platforms access

This depends on the radin blaton listing the asset.

E.36 Involved costs

This depends the adir platform listing the asset. Furthermore, costs may occur for making transfer but of the platform (i. e. "gas costs" for blockchain network use that may exceed the value of the crypto-asset itself).

7 On Jenses

No opplicable, as this crypto-asset white paper concerns the admission to trading and the offer of the token to the public.

E.38 Conflicts of interest

MiCAR-compliant Crypto Asset Service Providers shall have strong measurements in place in order to manage conflicts of interests. Due to the broad audience this white-paper is adressing, potential investors should always check the conflicts of Interest policy of their respective counterparty.

E.39 Applicable law

Not applicable, as it is referred to on "offer to the public" and in this white-paper, the admission to trading is sought.

E.40 Competent court

Not applicable, as it is referred to on "offer to the public" and in this white-paper, the admission to trading is sought.

Part F – Information about the crypto sets

F.1 Crypto-asset type

The crypto-asset described in the white part is confer as a crypto-asset under the Markets in Crypto-Assets Regulation (No AP) by does not qualify as an electronic money token (EMT) or an asset-respective (ART). It is a digital representation of value that can be stored and to sferr conferring distributed ledger technology (DLT) or similar technology, whout only divers conferring any rights to its holder.

The asset does not am a paintain a stable value by referencing an official currency, a basket of a per or by of prunderlying rights. Instead, its valuation is entirely market-driven, based supply and demand dynamics, and not supported by a stabilization mechanism to is nearner pegged to any fiat currency nor backed by any external assets, distinguishing a clearly from EMTs and ARTs.

Furthermore, the crypto-asset is not categorized as a financial instrument, deposit, in ance product, pension product, or any other regulated financial product under EU law. It does not grant financial rights, voting rights, or any contractual claims to its holders, ensuring that it remains outside the scope of regulatory frameworks applicable to traditional financial instruments.

F.2 Crypto-asset functionality

The tokens allow token holders to perform various governance functions within a decentralized autonomous organization (DAO). However, due to the novelty of this concept, the exact rights of token holders are subject to legal and technical risks. The novel governance structure of a DAO, which has a significant influence on the project, creates additional risks for investors.

The DAO can make decisions that adversely affect the investor.

F.3 Planned application of functionalities

All functionalities referred to in F.2 have already been applied. There were no statements made to further functionalities for the crypto-asset (2025-04-22)

A description of the characteristics of the crypto asset, including the data necessary for classification of the crypto asset white paper in the register referred to in Article 109 of regular n (EU) 2023/1114, as specified in accordance with paragraph 8 to Article

F.4 Type of crypto-asset white par

The white paper type is "other crypto- to" (i. e. "OTHR").

F.5 The type of submion

The white paper surgissal type is "NEWT", which stands for new token.

F.6 Crypto-a chart cs

The token are consists other than EMTs and ARTs, which are available on the Solo block on. The tokens are fungible (up to 9 digits after the decimal point), and a lot 2,000,000 have already been issued. The tokens are a digital representation of the

Commercial name or trading name

See F.13.

F.8 Website of the issuer

https://www.elizaos.ai/dao

F.9 Starting date of offer to the public or admission to trading

2025-05-26

F.10 Publication date

2025-05-26

F.11 Any other services provided by the issuer

As the issuer of the token could not be determined due to the nature of a DAO it is not possible to exclude a possibility that the issuer of the token provides or will provide other services not covered by Regulation (EU) 2023/1114 (i.e. MiCAR).

F.12 Language or languages of the crypto-asset whit

ΕN

F.13 Digital token identifier code used to uniquely it is the crypto-asset or each of the several crypto assets to which the white puer rates, where available

2PZTQFMK4

F.14 Functionally fungible group coultoken identifier, where available

8SON5VKWH

F.15 Voluntry data g

Mandatory

F.1 ersona ta flag

whit per does contain personal data.

F. El eligibility

The issuer should be eligible for a Legal Entity Identifier.

F.18 Home Member State

Germany

F.19 Host Member States

Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden

Part G – Information on the rights and obligations attached to the crypto-assets

G.1 Purchaser rights and obligations

The tokens allow token holders to perform various governance functions within a decentralized autonomous organization (DAO). However, due to the novelty of this

concept, the exact rights of token holders are succept, the exact rights of token holders are succept.

novel governance structure of a DAO, which has a cant influence on the project,

creates additional risks for investors.

The DAO can make decisions that advers after the investor.

G.2 Exercise of rights and obligation

The tokens allow token hope perform various governance functions within a

decentralized auton ous or anize on (DAO). However, due to the novelty of this

concept, the exact given holders are subject to legal and technical risks. The

novel governove account of a DAO, which has a significant influence on the project,

creates address. I risks for investors.

The AO canake decisions that adversely affect the investor.

Condense for modifications of rights and obligations

Th AO can influence governance structures. Due to its novelty and dynamic nature,

ese structures are not fixed, which represents a risk of modification for investors.

G.4 Future public offers

Information on the future offers to the public of crypto-assets were not available at the

time of writing this white paper (2025-03-08 until 2025-04-24).

G.5 Issuer retained crypto-assets

There is no information from the issuer or the DAO as to how many tokens are held by

them or associated persons. The current distribution can be changed at any time.

The actual distribution of tokens can be traced on-chain

(https://solscan.io/token/HeLp6NuQkmYB4pYWo2zYs22mESHXPQYzXbB8n4V98jwC#hol

ders). The investor must be aware that a public address cannot necessarily be assigned

to a single person or other entity.

It is not possible to determine exactly how many assets will be retained by the issuer.

G.6 Utility token classification

No

G.7 Key features of goods/services of utility tolens

Not applicable.

G.8 Utility tokens redemption

Not applicable.

G.9 Non-trading registration

The admistration to the pain ought

G.10 Cry asset Chase or sale modalities

Not vicab sthe admission to trading of the tokens is sought.

G. Crypto-assets transfer restrictions

transferable. The Crypto Asset Service Providers can impose their own restrictions in agreements they enter with their clients. The Crypto Asset Service Providers may impose restrictions to buyers and sellers in accordance with applicable laws and internal policies and terms.

G.12 Supply adjustment protocols

As stated on the website https://www.elizaos.ai/dao (accessed at 2025-04-22) the Supply can be adjusted by minting new tokens, if the DAO votes to do so. Also, it is possible to decrease the circulating supply, by transferring crypto-assets to so called "burn-adresses", which are adresses that render the crypto-asset "non-transferable" after sent to those adresses.

At the time of writing the white paper (2025-04-24), the mint and update authorities of the data account have the public address "AZtt8LUScEAG74iKnPNRuYgQhwmGJhAf6yUkAXjAd8sp".

G.13 Supply adjustment mechanisms

The mint authority (the entity who can create new that crypto-asset), as stated in the mint's data account, has the potential right of the supply of the crypto-assets.

G.14 Token value protection schem

No, the token does not have prote schemes.

G.15 Token value proteon scame description

Not applicable.

G.16 Compelis n schemes

No, the tok does not have compensation schemes.

7 Consation schemes description

No oplicable.

ى.18 Applicable law

Applicable law likely depends on the location of any particular transaction with the token.

G.19 Competent court

Competent court likely depends on the location of any particular transaction with the token.

Part H – information on the underlying technology

H.1 Distributed ledger technology (DTL)

See F.13.

H.2 Protocols and technical standards

The tokens were created with Solana's Token Program, a smart contract that is part of the Solana Program Library (SPL). Such tokens are commonly referred to as SPL-token.

The token itself is not an additional smart contract but what is called a data account on Solana. As the name suggests data accounts store on the blockchain. However, unlike smart contracts, they cannot be executed and called perform any operations. Since one cannot interact with data accounts account on the blockchain. However, unlike smart contracts, they cannot be executed and called perform any operations. Since one cannot interact with data accounts account on the blockchain. However, unlike smart contracts, they cannot be executed and called perform any operations. Since one cannot interact with data accounts account on the blockchain. However, unlike smart contracts, they cannot be executed and called a data account on the blockchain. However, unlike smart contracts, they cannot be executed and called a data account on the blockchain. However, unlike smart contracts, they cannot be executed and called a data account on the blockchain. However, unlike smart contracts, they cannot be executed and called a data accounts on the blockchain. However, unlike smart contracts with data accounts accounts account of the blockchain. However, and the blockchain accounts are contracted as a contract and called a data accounts on the blockchain.

The Token Program is every doin Rust, a memory-safe, high-performance programming language lesign of a secure and efficient development. On Solana, Rust is said to be the frimal anguage used for developing on-chain programs (smart contracts), and the safety and reliability in decentralized applications (dApps)

Conjunction of the Token Program:

 $\text{lize}_{\text{limin}}() \rightarrow \text{Create a new type of token, called a mint}$

p to() \rightarrow Mints new tokens of a specific type to a specified account

burn() → Burns tokens from a specified account, reducing total supply

transfer() → Transfers tokens between accounts

approve() → Approves a delegate to spend tokens on behalf of the owner

set_authority() → Updates authorities (mint, freeze, or transfer authority)

These functions ensure basic operations like transfers, and minting/burning can be performed within the Solana ecosystem.

In addition to the Token Program, another smart contract, the Metaplex Token Metadata Program is commonly used to store name, symbol, and URI information for better ecosystem compatibility. This additional metadata has no effect on the token's functionality.

H.3 Technology used

1. Solana-Compatible Wallets: The tokens are surported by all wallets compatible with

Solana's Token Program

2. Decentralized Ledger: The Solana blockcharts as a decentralized ledger for all

token transactions, with the interior to ling an unalterable record of token

transfers and ownership to epoch bold parency and security.

3. SPL Token Program The SP' (So Program Library) Token Program is an inherent

Solana smart contractor to the and manage new types of tokens (so called mints).

This is sign captly feren from ERC-20 on Ethereum, because a single smart contract

that is part that lana's core functionality and as such is open source, is responsible for

all the tox. This sures a high uniformity across tokens at the cost of flexibility.

Bloom bair Scalability: With its intended capacity for processing a lot of transactions

econd and in most cases low fees, Solana is intended to enable efficient token

crateractions, maintaining high performance even during peak network usage.

Security Protocols for Asset Custody and Transactions:

1. Private Key Management: To safeguard their token holdings, users must securely

store their wallet's private keys and recovery phrases.

2. Cryptographic Integrity: Solana employs elliptic curve cryptography to validate and

execute transactions securely, intended to ensure the integrity of all transfers.

H.4 Consensus mechanism

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS). The core

concepts of the mechanism are intended to work as follows:

Core Concepts

1. Proof of History (PoH):

Time-Stamped Transactions: PoH is a cryptographic technique that timestamps

transactions, intended to creating a historical record that proves that an event has

occurred at a specific moment in time.

FFG: 8SQN5VKWH - 2025-04-28

34

Verifiable Delay Function: PoH uses a Verifiable lay Function (VDF) to generate a

unique hash that includes the transaction and the was processed. This sequence

of hashes provides a verifiable order of events tende enabling the network to

efficiently agree on the sequence of trans

2. Proof of Stake (PoS):

Validator Selection: Validator chos produce new blocks based on the number

of SOL tokens they e stated the pre tokens staked, the higher the chance of being

selected to validate answers and produce new blocks.

Delegation. Len handelegate their SOL tokens to validators, earning rewards

proporting to the ake while intended to enhancing the network's security.

Con sus P 2ss

1. nsaction Validation:

Sactions are broadcasted to the network and collected by validators. Each

transaction is validated to ensure it meets the network's criteria, such as having correct

signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp

and the previous hash. This process creates a historical record of transactions,

establishing a

cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is

responsible for bundling the validated transactions into a block. The leader validator

uses the PoH sequence to order transactions within the block, ensuring that all

transactions are processed in the correct order.

4. Consensus and Finalization:

FFG: 8SQN5VKWH - 2025-04-28

35

Other validators verify the block produced by leader validator. They check the

correctness of the PoH sequence and validate the actions within the block. Once

the block is verified, it is added to the blockchain blidate by gn off on the block, and it

is considered finalized.

Security and Economic Incentives

1. Incentives for Validators:

Block Rewards: Vally are earlier and remarks for producing and validating blocks. These

rewards are distributed and lockens and are proportional to the validator's stake and

performan

Transactory Feet Pators also earn transaction fees from the transactions included in

he locks produce. These fees provide an additional incentive for validators to

actions efficiently.

2. <mark>Hu</mark>rity:

aking: Validators must stake SOL tokens to participate in the consensus process. This

staking acts as collateral, incentivizing validators to act honestly. If a validator behaves

maliciously or fails to perform, they risk losing their staked tokens.

Delegated Staking: Token holders can delegate their SOL tokens to validators, intended

to enhance network security and decentralization. Delegators share in the rewards and

are incentivized to choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or

producing invalid blocks. This penalty, known as slashing, results in the loss of a portion

of the staked tokens, discouraging dishonest actions.

H.5 Incentive mechanisms and applicable fees

1. Validators:

Staking Rewards: Validators are chosen based on the number of SOL tokens they have

staked. They earn rewards for producing and validating blocks, which are distributed in

FFG: 8SQN5VKWH - 2025-04-28

36

SOL. The more tokens staked, the higher the decrees of being selected to validate

transactions and produce new blocks.

Transaction Fees: Validators earn a portion of the page on fees paid by users for the

transactions they include in the blocks. This is pended to provide an additional financial

incentive for validators to proceed and maintain the network's

integrity.

2. Delegators:

Delegated Staking: Oker Ideas who do not wish to run a validator node can delegate

their SOL waling for. In return, delegators share the rewards earned by the

validators must intended to encourage widespread participation in securing the

network a posures decentralization.

Ecol ecurity:

Slamng: Validators can be penalized for malicious behavior, such as producing invalid

ks or being frequently offline. This penalty, known as slashing, involves the loss of a

portion of their staked tokens. Slashing is intended to deter dishonest actions and

ensures that validators act in the best interest of the network.

Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens,

which could otherwise be used or sold. This opportunity cost is intended to incentivize

participants to act honestly to earn rewards and avoid penalties.

Fees Applicable on the Solana Blockchain

1. Transaction Fees:

Solana is designed to handle a high throughput of transactions, which is intended to

keep the fees low and predictable.

Fee Structure: Fees are paid in SOL and are used to compensate validators for the

resources they expend to process transactions. This includes computational power and

network bandwidth.

2. Rent Fees:

FFG: 8SQN5VKWH - 2025-04-28

State Storage: Solana charges so called ""rent fee for storing data on the blockchain.

These fees are designed to discourage inefficient state storage and encourage

developers to clean up unused state. Rent feet are in the

efficiency and performance of the network

3. Smart Contract Fees:

Execution Costs: Similar to action to the second se

smart contracts on lana e as n the computational resources required. This is

intended to ensure use e charged proportionally for the resources they

consume.

H.6 Use of distincted ledger technology

No ALT is neperated by the issuer or a third party acting on the issuer's behalf.

QLT conality description

No oplicable.

H.8 Audit

As we are understanding the question relating to "technology" to be interpreted in a

broad sense, the answer answer to whether an audit of "the technology used" was

conducted is "no, we can not guarantee, that all parts of the technology used have been

audited". This is due to the fact this report focusses on risk, and we can not guarantee

that each part of the technology used was audited.

H.9 Audit outcome

Not applicable.

Part I - Information on risks

I.1 Offer-related risks

1. Regulatory and Compliance

FFG: 8SQN5VKWH - 2025-04-28

This white paper has been prepared with utmost tion; however, uncertainties in the

regulatory requirements and future changes in regulatory requirements and respectively.

impact the token's legal status and its tradabilit There so a high probability that

other laws will come into force, change room the trading of the token.

Therefore, such developments shall be made acted upon accordingly.

2. Operational and Technical

Blockchain Dependery: The total natirely dependent on the blockchain the crypto-

asset is issued upon 2007-05). Any issues, such as downtime, congestion, or

security villnerables with the blockchain, could adversely affect the token's

functionalit

Smart Compact Nexts: Smart contracts governing the token may contain hidden

vulne vilitie or bugs that could disrupt the token offering or distribution processes.

Compection Dependency: As the trading of the token also involves other trading venues,

termical risks such as downtime of the connection or faulty code are also possible.

Human errors: Due to the irrevocability of blockchain-transactions, approving wrong

transactions or using incorrect networks/addresses will most likely result in funds not

being accessibly anymore.

Custodial risk: When admitting the token to trading, the risk of losing clients assets due

to hacks or other malicious acts is given. This is due to the fact the token is hold in

custodial wallets for the customers.

3. Market and Liquidity

Volatility: The token will most likely be subject to high volatility and market speculation.

Price fluctuations could be significant, posing a risk of substantial losses to holders.

Liquidity Risk: Liquidity is contingent upon trading activity levels on decentralized

exchanges (DEXs) and potentially on centralized exchanges (CEXs), should they be

involved. Low trading volumes may restrict the buying and selling capabilities of the

tokens.

4. Counterparty

As the admission to trading involves the content to other trading venues,

counterparty risks arise. These include, but are no piter of, the following risks:

General Trading Platform Risk: The risk of the highest

standards is given. Examples live TX standards is given. Examples live TX standards is given.

compliance and oversight-framerks hot be fully established and/or enforced.

Listing or Delisting 1 : The sting of the token is subject to the trading

partners internal partners. Densting of the token at the connected trading partners

could harn tely but the ability to trade the token.

5. Liquid

Light of token can vary, especially when trading activity is limited. This could

It in slippage when trading a token.

6. ure of one or more Counterparties

Another risk stems from the internal operational processes of the counterparties used.

As there is no specific oversight other than the typical due diligence check, it cannot be

guaranteed that all counterparties adhere to the best market standards.

Bankruptcy Risk: Counterparties could go bankrupt, possibly resulting in a total loss for

the clients assets hold at that counterparty.

I.2 Issuer-related risks

1. Insolvency

As with every other commercial endeavor, the risk of insolvency of the issuer is given.

This could be caused by but is not limited to lack of interest from the public, lack of

funding, incapacitation of key developers and project members, force majeure (including

40

pandemics and wars) or lack of commercial success or prospects.

2. Counterparty

In order to operate, the issuer has most literal engaged in different business

relationships with one or more third parties on with strongly depends on. Loss or

changes in the leadership or key partners the leadership or key partners the leadership or key partners

counterparties can lead to disruptions, logist, project failure. This could result

in a total loss of economic value for the case holders.

3. Legal and Regulatory Compliance

Cryptocurrencies a block a block technologies are subject to evolving regulatory

landscapes worldwide gula vary across jurisdictions and may be subject to

significant hange Non-combinance can result in investigations, enforcement actions,

penalties, first anction of the prohibition of the trading of the crypto-asset impacting

its viability and it acceptance. This could also result in the issuer to be subject to

pri litiga The beforementioned would most likely also lead to changes with

pectaged ding of the crypto-asset that may negatively impact the value, legality, or

fur onality of the crypto-asset.

operational

Failure to develop or maintain effective internal control, or any difficulties encountered

in the implementation of such controls, or their improvement could harm the issuer's

business, causing disruptions, financial losses, or reputational damage.

5. Industry

The issuer is and will be subject to all of the risks and uncertainties associated with a

memecoin-project, where the token issued has zero intrinsic value. History has shown

that most of this projects resulted in financial losses for the investors and were only set-

up to enrich a few insiders with the money from retail investors.

6. Reputational

The issuer faces the risk of negative publicity, whether due to, without limitation,

operational failures, security breaches, or association with illicit activities, which can

damage the issuer reputation and, by extension, the value and acceptance of the

crypto-asset.

FFG: 8SQN5VKWH - 2025-04-28

7. Competition

There are numerous other crypto-asset projects in the second which could have an

effect on the crypto-asset in question.

8. Unanticipated Risk

In addition to the risks included in an ection, there might be other risks that cannot be

foreseen. Additional risks no also materialize as unanticipated variations or

combinations of the s discussed

I.3 Crypto-assets-reted ris

1. Valuation

As the cry asset does not have any intrinsic value, and grants neither rights nor

poligonas, he only mechanism to determine the price is supply and demand.

rically, most crypto-assets have dramatically lost value and were not a beneficial

ny ment for the investors. Therefore, investing in these crypto-assets poses a high

sκ, and the loss of funds can occur.

2. Market Volatility

Crypto-asset prices are highly susceptible to dramatic fluctuations influence by various

factors, including market sentiment, regulatory changes, technological advancements,

and macroeconomic conditions. These fluctuations can result in significant financial

losses within short periods, making the market highly unpredictable and challenging for

investors. This is especially true for crypto-assets without any intrinsic value, and

investors should be prepared to lose the complete amount of money invested in the

respective crypto-assets.

3. Liquidity Challenges

Some crypto-assets suffer from limited liquidity, which can present difficulties when

executing large trades without significantly impacting market prices. This lack of liquidity

can lead to substantial financial losses, particularly during periods of rapid market

FFG: 8SQN5VKWH - 2025-04-28

movements, when selling assets may becomballenging or require accepting

unfavorable prices.

4. Asset Security

Crypto-assets face unique security threat in the risk of theft from exchanges or

digital wallets, loss of private key and part failures of custodial services. Since

crypto transactions are general reveal, a security breach or mismanagement can

result in the permanent logous emphasizing the importance of strong security

measures and practical

5. Scams

The irre ability of nsactions executed using blockchain infrastructure, as well as the

psectionym nature of blockchain ecosystems, attracts scammers. Therefore,

est. bypto-assets must proceed with a high degree of caution when investing in

if vinvest in crypto-assets. Typical scams include – but are not limited to – the

craction of fake crypto-assets with the same name, phishing on social networks or by

email, fake giveaways/airdrops, identity theft, among others.

6. Blockchain Dependency

Any issues with the blockchain used, such as network downtime, congestion, or security

vulnerabilities, could disrupt the transfer, trading, or functionality of the crypto-asset.

7. Smart Contract Vulnerabilities

The smart contract used to issue the crypto-asset could include bugs, coding errors, or

vulnerabilities which could be exploited by malicious actors, potentially leading to asset

loss, unauthorized data access, or unintended operational consequences.

8. Privacy Concerns

All transactions on the blockchain are permanently recorded and publicly accessible,

which can potentially expose user activities. Although addresses are pseudonoymous,

the transparent and immutable nature of blockchain allows for advanced forensic

43

analysis and intelligence gathering. This level of transparency can make it possible to link blockchain addresses to real-world identities over the appropriate privacy.

9. Regulatory Uncertainty

ets is constantly evolving, which can The regulatory environment surrounding ion, directly impact their usage, v egal status. Changes in regulatory frameworks may introduce p quire s related to consumer protection, taxation, lerin₂ and anti-money lav , creating uncertainty and potential challenges for investors and by ling in the crypto space. Although the crypto-asset do not create or nfer contractual or other obligations on any party, certain neve ss qualify the crypto-asset as a security or other financial regulators r applicable law, which in turn would have drastic consequences set, including the potential loss of the invested capital in the asset. for this could lead to the sellers and its affiliates, directors, and officers being d to pay fines, including federal civil and criminal penalties, or make the cryptot illegal or impossible to use, buy, or sell in certain jurisdictions. On top of that, regulators could take action against the issuer as well as the trading platforms if the the regulators view the token as an unregistered offering of securities or the operations otherwise as a violation of existing law. Any of these outcomes would negatively affect the value and/or functionality of the crypot-asset and/or could cause a complete loss of funds of the invested money in the crypto-asset for the investor.

10. Counterparty risk

Engaging in agreements or storing crypto-assets on exchanges introduces counterparty risks, including the failure of the other party to fulfill their obligations. Investors may face potential losses due to factors such as insolvency, regulatory non-compliance, or fraudulent activities by counterparties, highlighting the need for careful due diligence when engaging with third parties.

11. Reputational concerns

Crypto-assets are often subject to reputational risks stemming from associations with illegal activities, high-profile security breaches, and technological failures. Such incidents

can undermine trust in the broader ecosystem, nextively affecting investor confidence

and market value, thereby hindering widespread adaptation and acceptance.

12. Technological Innovation

New technologies or platforms gould reflected as design less competitive or even

break fundamental parts (i.e., ntun puting might break cryptographic

algorithms used to secure the etwo pacting adoption and value. Participants

should approach the cryptor a clear understanding of its speculative and

volatile nature and bear potential losses, which

could include the implete of the asset's value.

13. Community of Narrative

As crypt sset has no intrinsic value, all trading activity is based on the intended

is heavily dependent on its community and the popularity of the

mecoin narrative. Declining interest or negative sentiment could significantly impact

tboken's value.

14. Interest Rate Change

Historically, changes in interest, foreign exchange rates, and increases in volatility have

increased credit and market risks and may also affect the value of the crypto-asset.

Although historic data does not predict the future, potential investors should be aware

that general movements in local and other factors may affect the market, and this could

also affect market sentiment and, therefore most likely also the price of the crypto-

asset.

15. Taxation

The taxation regime that applies to the trading of the crypto-asset by individual holders

or legal entities will depend on the holder's jurisdiction. It is the holder's sole

responsibility to comply with all applicable tax laws, including, but not limited to, the

reporting and payment of income tax, wealth tax, or similar taxes arising in connection

with the appreciation and depreciation of the crypto-asset.

16. Anti-Money Laundering/Counter-Terrorism Financing

FFG: 8SQN5VKWH - 2025-04-28

It cannot be ruled out that crypto-asset wallet a resses interacting with the crypto-

asset have been, or will be used for money launder terrorist financing purposes,

or are identified with a person known to have conditted person fenses.

17. Market Abuse

It is noteworthy that crypto-asse the policy prone to increased market abuse

risks, as the underlying infrage ure be used to exploit arbitrage opportunities

through schemes as as by the g, spoofing, pump-and-dump, and fraud across

different systems, places, graphic locations. This is especially true for crypto-

assets with a low tracket devalization and few trading venues, and potential investors

should be that could lead to a total loss of the funds invested in the crypto-

asset.

18. Nine Milestones

Critical project milestones could be delayed by technical, operational, or market

ch enges.

19. DAO Risks

The novel governance structure of a DAO, which has a significant influence on the

project, creates additional risks for investors. The DAO can make decisions that adversely

affect the investor.

I.4 Project implementation-related risks

As this white paper relates to the "Admission to trading" of the crypto-asset, the

implementation risk is referring to the risks on the Crypto Asset Service Providers side.

These can be, but are not limited to, typical project management risks, such as key-

personal-risks, timeline-risks, and technical implementation-risks.

I.5 Technology-related risks

As this white paper relates to the "Admission to trading" of the crypto-asset, the

technology-related risks mainly lie in the settling on the Solana-Network.

1. Blockchain Dependency Risks

FFG: 8SQN5VKWH - 2025-04-28

Solana Network Downtime: Potential outages or egestion on the Solana blockchain

could interrupt on-chain token transfers, trading, are functions.

Scalability Challenges: Despite Solana's compative high throughput design,

unexpected demand or technical issues ght moromise its performance.

2. Smart Contract Risks

Vulnerabilities: The smart of t governing the token could contain bugs or

vulnerabilities that in the experted precting token distribution or vesting schedules.

3. Wallet and Stor Risks

Private Key agement Token holders must securely manage their private keys and

recovery asses prevent permanent loss of access to their tokens, which includes

Tract-Venitowho are a prominent target for dedicated hacks.

Compatibility Issues: The tokens require Solana-compatible wallets for storage and

raffer. Any incompatibility or technical issues with these wallets could impact token

cessibility.

4. Network Security Risks

Attack Risks: The Solana blockchain may face threats such as denial-of-service (DoS)

attacks or exploits targeting its consensus mechanism, which could compromise

network integrity.

Centralization Concerns: Although claiming to be decentralized, Solana's relatively

smaller number of validators/concentration of stakes within the network compared to

other blockchains and the influence of the Solana Foundation (as of 2025-03-09) might

pose centralization risks, potentially affecting network resilience.

5. Evolving Technology Risks: Technological Obsolescence: The fast pace of innovation in

blockchain technology may make Solana or the SPL token standard appear less

competitive or become outdated, potentially impacting the usability or adoption of the

token.

FFG: 8SQN5VKWH - 2025-04-28

I.6 Mitigation measures

None.

Part J – Information on the sur air bility indicators in relation to adverse impact on the transport of the adverse impacts

J.1 Adverse impacts climate and dependent environment-related adverse impacts

S.1 Name

Crypto Risk fics

S.2 Releva legal ty identifier

2912 7M9 M001FE242

S.3 me of the cryptoasset

عکر

S.4 Consensus Mechanism

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS). The core concepts of the mechanism are intended to work as follows:

Core Concepts

1. Proof of History (PoH):

Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, intended to creating a historical record that proves that an event has occurred at a specific moment in time.

Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, intended to enabling the network to efficiently agree on the sequence of transactions.

2. Proof of Stake (PoS):

Validator Selection: Validators are chosen to prodenew blocks based on the number

of SOL tokens they have staked. The more tokens the higher the chance of being

selected to validate transactions and produce never seks

Delegation: Token holders can delegate eight olders to validators, earning rewards

proportional to their stake while it seed to seed the network's security.

Consensus Process

1. Transaction Validat

Transaction are coadcast to the network and collected by validators. Each

transaction didated ensure it meets the network's criteria, such as having correct

signature and succent funds.

Polygue ice Generation:

A dator generates a sequence of hashes using PoH, each containing a timestamp

the previous hash. This process creates a historical record of transactions,

establishing a

cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is

responsible for bundling the validated transactions into a block. The leader validator

uses the PoH sequence to order transactions within the block, ensuring that all

transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the

correctness of the PoH sequence and validate the transactions within the block. Once

the block is verified, it is added to the blockchain. Validators sign off on the block, and it

is considered finalized.

Security and Economic Incentives

FFG: 8SQN5VKWH - 2025-04-28

1. Incentives for Validators:

Block Rewards: Validators earn rewards for producing and validating blocks. These

rewards are distributed in SOL tokens and are provided to the validator's stake and

performance.

Transaction Fees: Validators also transactions fees from the transactions included in

the blocks they produce. The Ges per an additional incentive for validators to

process transaction fficiery

2. Security:

Staking: Value or staking: Value or sensus process. This

staking as as rational staking as as rational staking as a staking as

maliously wils to perform, they risk losing their staked tokens.

gate Zaking: Token holders can delegate their SOL tokens to validators, intended

to hance network security and decentralization. Delegators share in the rewards and

Incentivized to choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or

producing invalid blocks. This penalty, known as slashing, results in the loss of a portion

of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

1. Validators:

Staking Rewards: Validators are chosen based on the number of SOL tokens they have

staked. They earn rewards for producing and validating blocks, which are distributed in

SOL. The more tokens staked, the higher the chances of being selected to validate

transactions and produce new blocks.

Transaction Fees: Validators earn a portion of the transaction fees paid by users for the

transactions they include in the blocks. This is intended to provide an additional financial

incentive for validators to process transactions eigently and maintain the network's

integrity.

2. Delegators:

Delegated Staking: Token holders who delegate to run a validator node can delegate

their SOL tokens to a validator. It is surn, which can be share the rewards earned by the

validators. This is intended acoust widespread participation in securing the

network and ensure secential at the

3. Economic Securi

Slashing: Various penalized for malicious behavior, such as producing invalid

blocks cheing the ntly offline. This penalty, known as slashing, involves the loss of a

portion of the staked tokens. Slashing is intended to deter dishonest actions and

sure alidators act in the best interest of the network.

Opertunity Cost: By staking SOL tokens, validators and delegators lock up their tokens,

Th could otherwise be used or sold. This opportunity cost is intended to incentivize

participants to act honestly to earn rewards and avoid penalties.

Fees Applicable on the Solana Blockchain

1. Transaction Fees:

Solana is designed to handle a high throughput of transactions, which is intended to

keep the fees low and predictable.

Fee Structure: Fees are paid in SOL and are used to compensate validators for the

resources they expend to process transactions. This includes computational power and

network bandwidth.

2. Rent Fees:

State Storage: Solana charges so called ""rent fees"" for storing data on the blockchain.

These fees are designed to discourage inefficient use of state storage and encourage

developers to clean up unused state. Rent fees are intended to help maintain the

efficiency and performance of the network.

FFG: 8SQN5VKWH - 2025-04-28

3. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fee for ploying and interacting with

smart contracts on Solana are based on the contracts of Solana are based on the contract of S

intended to ensure that users are charges proportionally for the resources they

consume.

S.6 Beginning of the period to the sure relates

2024-04-26

S.7 End of the period to when the disclosure relates

2025-04-26

S.8 Energy sumption

34.72 21 h/a

S.9 ergy consumption sources and methodologies

energy consumption of this asset is aggregated across multiple components: To

determine the energy consumption of a token, the energy consumption of the

network(s) solana is calculated first. Based on the crypto asset's gas consumption per

network, the share of the total consumption of the respective network that is assigned

to this asset is defined. When calculating the energy consumption, we used - if available

- the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all

implementations of the asset of question in scope and we update the mappings

regulary, based on data of the Digital Token Identifier Foundation.

S.10 Renewable energy consumption

14.7702082420 %

S.11 Energy intensity

0.00000 kWh

S.12 Scope 1 DLT GHG emissions - Controlled

0.00000 tCO2e/a

S.13 Scope 2 DLT GHG emissions – Purchased

0.18667 tCO2e/a

S.14 GHG intensity

0.00000 kgCO2e

S.15 Key energy sources and methodology

ble energy usage, the locations of the nodes are To determine the p to be determined us rmation sites, open-source crawlers and crawlers aubl developed in-hou If no mation is available on the geographic distribution of the s are used which are comparable in terms of their nodes, ret incentivi re and consensus mechanism. This geo-information is merged rmation from the European Environment Agency (EEA) and thus public he intensity is calculated as the marginal energy cost wrt. one more ern action.

Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined. The intensity is calculated as the marginal emission wrt. one more transaction.

FFG: 8SQN5VKWH - 2025-04-28

