White paper drafted under the European Markets in Crypto-Assets Regulation (EU) 2023/1114 for FFG D5RG2FHH0 # **Preamble** # 00. Table of Contents | 01. Date of notification1 | 1 | |---|----| | 02. Statement in accordance with Article 6(3) of Regulation (EU) 2023/11141 | 1 | | 03. Compliance statement in accordance with Article 6(6) of Regulation (EU) 2023/111 | | | | J) | | 05. Statement in accordance with Article 6(5), point (d), of Regulation (EU) 2023/11141 | 1 | | 06. Statement in accordance with Article 6(5), points (e) and (f), of Regulation (EL 2023/11141 | | | Summary1 | 2 | | 07. Warning in accordance with Article 6(7), second subparagraph, of Regulation (EU2023/11141 | | | 08. Characteristics of the crypto-asset1 | 2 | | 09. Information about the quality and quantity of goods or services to which the utilit tokens give access and restrictions on the transferability1 | - | | 10. Key information about the offer to the public or admission to trading1 | 3 | | Part A – Information about the offeror or the person seeking admission to trading 1 | 4 | | A.1 Name | 4 | | A.2 Legal form1 | 4 | | A.3 Registered address1 | 4 | | A.4 Head office | 4 | | A.5 Registration date | 4 | | A.6 Legal entity identifier | 14 | |--|------------| | A.7 Another identifier required pursuant to applicable national law | 14 | | A.8 Contact telephone number | 14 | | A.9 E-mail address | 14 | | A.10 Response time (Days) | 14 | | A.11 Parent company | 15 | | A.12 Members of the management body | 15 | | A.13 Business activity | 15 | | A.14 Parent company business activity | 15 | | A.15 Newly established | 15 | | A.16 Financial condition for the past three years | 15 | | A.17 Financial condition since registration | 16 | | Part B – Information about the issuer, if different from the offeror or pers | on seeking | | admission to trading | 16 | | B.1 Issuer different from offeror or person seeking admission to trading | 16 | | B.2 Name | 16 | | B.3 Legal form | 16 | | B4. Registered address | 16 | | B.5 Head office | 16 | | B.6 Registration date | 17 | | B.7 Legal entity identifier | 17 | | B.8 Another identifier required pursuant to applicable national law | 17 | | B.9 Parent company | 17 | | B.10 Members of the management body | 17 | | B.11 Business activity | 17 | | | B.12 Parent company business activity | 17 | |----|--|-------| | | art C – Information about the operator of the trading platform in cases where it drap the crypto-asset white paper and information about other persons drawing | | | CI | rypto-asset white paper pursuant to Article 6(1), second subparagraph, of Regular | tion | | | C.1 Name | 18 | | | C.2 Legal form | 18 | | | C.3 Registered address | 18 | | | C.4 Head office | 18 | | | C.5 Registration date | 18 | | | C.6 Legal entity identifier | 18 | | | C.7 Another identifier required pursuant to applicable national law | 18 | | | C.8 Parent company | 18 | | | C.9 Reason for crypto-Asset white paper Preparation | 18 | | | C.10 Members of the Management body | 19 | | | C.11 Operator business activity | 19 | | | C.12 Parent company business activity | 19 | | | C.13 Other persons drawing up the crypto-asset white paper according to Article 6 | 5(1), | | | second subparagraph, of Regulation (EU) 2023/1114 | 19 | | | C.14 Reason for drawing the white paper by persons referred to in Article 6(1), second subparagraph, of Regulation (EU) 2023/1114 | | | _ | | | | Ρ | art D – Information about the crypto-asset project | | | | D.1 Crypto-asset project name | 19 | | | D.2 Crypto-assets name | 19 | | | D 3 Abbreviation | 10 | | D.4 Crypto-asset project description | 19 | |--|------------| | D.5 Details of all natural or legal persons involved in the implementation of th | 3. | | asset project | 20 | | D.6 Utility Token Classification | 20 | | D.7 Key Features of Goods/Services for Utility Token Projects | 20 | | D.8 Plans for the token | 21 | | D.9 Resource allocation | 23 | | D.10 Planned use of Collected funds or crypto-Assets | 23 | | Part E – Information about the offer to the public of crypto-assets or their adn | nission to | | trading | 23 | | E.1 Public offering or admission to trading | 23 | | E.2 Reasons for public offer or admission to trading | 23 | | E.3 Fundraising target | 24 | | E.4 Minimum subscription goals | 24 | | E.5 Maximum subscription goals | 24 | | E.6 Oversubscription acceptance | 24 | | E.7 Oversubscription allocation | 24 | | E.8 Issue price | 24 | | E.9 Official currency or any other crypto-assets determining the issue price | 24 | | E.10 Subscription fee | 24 | | E.11 Offer price determination method | 25 | | E.12 Total number of offered/traded crypto-assets | 25 | | E.13 Targeted holders | 25 | | E.14 Holder restrictions | | | E.15 Reimbursement notice | 25 | | E.16 Refund mechanism | 25 | |---|----| | E.17 Refund timeline | 25 | | E.18 Offer phases | 25 | | E.19 Early purchase discount | 25 | | E.20 Time-limited offer | 25 | | E.21 Subscription period beginning | 26 | | E.22 Subscription period end | 26 | | E.23 Safeguarding arrangements for offered funds/crypto- Assets | 26 | | E.24 Payment methods for crypto-asset purchase | 26 | | E.25 Value transfer methods for reimbursement | 26 | | E.26 Right of withdrawal | 26 | | E.27 Transfer of purchased crypto-assets | 26 | | E.28 Transfer time schedule | 26 | | E.29 Purchaser's technical requirements | 26 | | E.30 Crypto-asset service provider (CASP) name | 27 | | E.31 CASP identifier | 27 | | E.32 Placement form | 27 | | E.33 Trading platforms name | 27 | | E.34 Trading platforms Market identifier code (MIC) | 27 | | E.35 Trading platforms access | 27 | | E.36 Involved costs | 27 | | E.37 Offer expenses | 27 | | E.38 Conflicts of interest | 27 | | F 39 Applicable law | 28 | | E.40 Competent court | 28 | |--|--------------| | Part F – Information about the crypto-assets | 28 | | F.1 Crypto-asset type | 28 | | F.2 Crypto-asset functionality | 28 | | F.3 Planned application of functionalities | 29 | | A description of the characteristics of the crypto asset, including the data | necessary | | for classification of the crypto-asset white paper in the register referred to | o in Article | | 109 of Regulation (EU) 2023/1114, as specified in accordance with paragrap | | | Article | 29 | | F.4 Type of crypto-asset white paper | 29 | | F.5 The type of submission | 29 | | F.6 Crypto-asset characteristics | 29 | | F.7 Commercial name or trading name | 29 | | F.8 Website of the issuer | 29 | | F.9 Starting date of offer to the public or admission to trading | 29 | | F.10 Publication date | 30 | | F.11 Any other services provided by the issuer | 30 | | F.12 Language or languages of the crypto-asset white paper | 30 | | F.13 Digital token identifier code used to uniquely identify the crypto-asset | or each of | | the several crypto assets to which the white paper relates, where available | 30 | | F.14 Functionally fungible group digital token identifier, where available | 30 | | F.15 Voluntary data flag | 30 | | F.16 Personal data flag | 30 | | F.17 LEI eligibility | 30 | | F.18 Home Member State | 30 | | | F.19 Host Member States | 30 | |---|---|----| |) | art G – Information on the rights and obligations attached to the crypto-assets | 31 | | | G.1 Purchaser rights and obligations | 31 | | | G.2 Exercise of rights and obligations | 31 | | | G.3 Conditions for modifications of rights and obligations | 31 | | | G.4 Future public offers | 31 | | | G.5 Issuer retained crypto-assets | 31 | | | G.6 Utility token classification | 31 | | | G.7 Key features of goods/services of utility tokens | 31 | | | G.8 Utility tokens redemption | 31 | | | G.9 Non-trading request | 32 | | | G.10 Crypto-assets purchase or sale modalities | 32 | | | G.11 Crypto-assets transfer restrictions | 32 | | | G.12 Supply adjustment protocols | 32 | | | G.13 Supply adjustment mechanisms | 32 | | | G.14 Token value protection schemes | 32 | | | G.15 Token value protection schemes description | 32 | | | G.16 Compensation schemes | 33 | | | G.17 Compensation schemes description | 33 | | | G.18 Applicable law | 33 | | | G.19 Competent court | 33 | |) | art H – information on the underlying technology | 33 | | | H.1 Distributed ledger technology (DTL) | 33 | | | H 2 Protocols and technical standards | 33 | | | H.3 Technology used | 34 | |----|---|-----| | | H.4 Consensus mechanism | 35 | | | H.5 Incentive mechanisms and applicable fees | 35 | | | H.6 Use of distributed ledger technology | 36 | | | H.7 DLT functionality description | 36 | | | H.8 Audit | 36 | | | H.9 Audit outcome | 36 | | Pá | art I – Information on risks | 36 | | | I.1 Offer-related risks | 36 | | | I.2 Issuer-related risks | 38 | | | I.3 Crypto-assets-related risks | 39 | | | I.4 Project implementation-related risks | 44 | | | I.5 Technology-related risks | 44 | | | I.6 Mitigation measures | 45 | | Pá | art J – Information on the sustainability indicators in relation to adverse impact on | the | | cl | imate and other environment-related adverse impacts | 45 | | | J.1 Adverse impacts on climate and other environment-related adverse impacts | 45 | | | S.1 Name | 45 | | | S.2 Relevant legal entity identifier | 45 | | | S.3 Name of the cryptoasset | 45 | | | S.4 Consensus Mechanism |
45 | | | S.5 Incentive Mechanisms and Applicable Fees | 46 | | | S.6 Beginning of the period to which the disclosure relates | 46 | | | S.7 End of the period to which the disclosure relates | 46 | | | S.8 Energy consumption | 46 | | S.9 Energy consumption sources and methodologies | .46 | |--|-----| | S.10 Renewable energy consumption | .46 | | S.11 Energy intensity | .47 | | S.12 Scope 1 DLT GHG emissions – Controlled | .47 | | S.13 Scope 2 DLT GHG emissions – Purchased | .47 | | S.14 GHG intensity | .47 | | S.15 Key energy sources and methodologies | .47 | | S.16 Key GHG sources and methodologies | .47 | #### 01. Date of notification 2025-03-31 # 02. Statement in accordance with Article 6(3) of Regulation (EU) 2023/1114 This crypto-asset white paper has not been approved by any competent authority in any Member State of the European Union. The person seeking admission to trading of the crypto-asset is solely responsible for the content of this crypto-asset white paper. # 03. Compliance statement in accordance with Article 6(6) of Regulation (EU) 2023/1114 This crypto-asset white paper complies with Title II of Regulation (EU) 2023/1114 of the European Parliament and of the Council and, to the best of the knowledge of the management body, the information presented in the crypto-asset white paper is fair, clear and not misleading and the crypto-asset white paper makes no omission likely to affect its import. # 04. Statement in accordance with Article 6(5), points (a), (b), (c), of Regulation (EU) 2023/1114 The crypto-asset referred to in this crypto-asset white paper may lose its value in part or in full, may not always be transferable and may not be liquid. # 05. Statement in accordance with Article 6(5), point (d), of Regulation (EU) 2023/1114 The token has no utility other than being holdable and transferable and can not be exchanged for any goods or services at the time of writing this white paper (2025-03-08). # 06. Statement in accordance with Article 6(5), points (e) and (f), of Regulation (EU) 2023/1114 The crypto-asset referred to in this white paper is not covered by the investor compensation schemes under Directive 97/9/EC of the European Parliament and of the Council or the deposit guarantee schemes under Directive 2014/49/EU of the European Parliament and of the Council. # **Summary** # 07. Warning in accordance with Article 6(7), second subparagraph, of Regulation (EU) 2023/1114 Warning: This summary should be read as an introduction to the crypto-asset white paper. The prospective holder should base any decision to purchase this crypto –asset on the content of the crypto- asset white paper as a whole and not on the summary alone. The offer to the public of this crypto-asset does not constitute an offer or solicitation to purchase financial instruments and any such offer or solicitation can be made only by means of a prospectus or other offer documents pursuant to the applicable national law. This crypto-asset white paper does not constitute a prospectus as referred to in Regulation (EU) 2017/1129 of the European Parliament and of the Council or any other offer document pursuant to Union or national law. # 08. Characteristics of the crypto-asset The crypto-asset name "Ethereum" (ETH) (DTI FFG shown in F.14) refers to the native token of the Ethereum DL, which powers the network's decentralized applications and smart contracts. The crypto-asset was originally created by Vitalik Buterin and a team of developers in 2015. It follows an adaptive issuance model, with changes influenced by network upgrades like Ethereum Improvement Proposals (EIPs). The crypto asset is used primarily to pay for transaction fees and computing resources within the token ecosystem, but may also be used as a store of value and a medium of exchange. The crypto-assets transactions and smart contracts are secured through its blockchain, ensuring they are secure, transparent, and immutable. Following the transition to Proof-of-Stake (PoS) from Proof-of-Work (PoW) through the Ethereum Merge, token holders can stake their tokens to help secure the network and earn rewards. The tokens have no inherent rights or utility - apart from being holdable, transferable or being used within staking and can not be exchanged for any goods or services at the time of writing this white paper (2025-03-08). # 09. Information about the quality and quantity of goods or services to which the utility tokens give access and restrictions on the transferability Since holding the crypto-asset does not grant access to any goods or services, this is not applicable at the time of writing this white paper (2025-03-15). # 10. Key information about the offer to the public or admission to trading Crypto Risk Metrics GmbH is seeking admission to trading on any Crypto Asset Service Provider platform in the European Union in accordance to Article 5 of REGULATION (EU) 2023/1114 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 31 May 2023 on markets in crypto-assets, and amending Regulations (EU) No 1093/2010 and (EU) No 1095/2010 and Directives 2013/36/EU and (EU) 2019/1937. In accordance to Article 5(4), this crypto-asset white paper may be used by entities admitting the token to trading after Crypto Risk Metrics GmbH as the person responsible for drawing up such white paper has given its consent to its use in writing to the repective Crypto Asset Service Provider. If a CASP wishes to use this white paper, inquiries can be made under info@crypto-risk-metrics.com. # Part A – Information about the offeror or the person seeking admission to trading #### A.1 Name Crypto Risk Metrics GmbH # A.2 Legal form 2HBR #### A.3 Registered address DE, Lange Reihe 73, 20099 Hamburg, Germany #### A.4 Head office Not applicable. #### A.5 Registration date 2018-12-03 ### A.6 Legal entity identifier 39120077M9TG0O1FE242 # A.7 Another identifier required pursuant to applicable national law Crypto Risk Metrics GmbH is registered with the commercial register in the city of Hamburg, Germany, under number HRB 154488. #### A.8 Contact telephone number +4915144974120 #### A.9 E-mail address info@crypto-risk-metrics.com # A.10 Response time (Days) 030 # A.11 Parent company Not applicable. # A.12 Members of the management body | Name | Position | Address | |----------------------|----------|---| | Dr. Sven Hildebrandt | Chairman | Lange Reihe 73, 20099
Hamburg, Germany | | | | Trambara, dermany | ### A.13 Business activity Crypto Risk Metrics GmbH is a technical service provider, who supports regulated entities in the fulfillment of their regulatory requirements. In this regard, Crypto Risk Metrics GmbH acts as a data-provider for ESG-data according to article 66 (5). Due to the regulations laid out in article 5 (4) of the REGULATION (EU) 2023/1114 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 31 May 2023 on markets in cryptoassets, and amending Regulations (EU) No 1093/2010 and (EU) No 1095/2010 and Directives 2013/36/EU and (EU) 2019/1937, Crypto Risk Metrics GmbH aims at providing central services for crypto-asset white papers in order to minimize market confusion due to conflicting white papers for the same asset. ## A.14 Parent company business activity Not applicable. #### A.15 Newly established Crypto Risk Metrics GmbH has been etablished since 2018 and is therefore not newly established (i. e. older than three years). ### A.16 Financial condition for the past three years Crypto Risk Metrics GmbH's profit after tax for the last three financial years are as follows: 15 2024 (unaudited): negative 50.891,81 EUR 2023 (unaudited): negative 27.665,32 EUR 2022: 104.283,00 EUR. As 2023 and 2024 were the years building Software for the MiCAR-Regulation which was not yet in place, revenue streams from these investments are expected to be generated in 2025. A.17 Financial condition since registration This point would only be applicable if the company were newly established and the financial conditions for the past three years had not been provided in the bulletpoint before. Part B – Information about the issuer, if different from the offeror or person seeking admission to trading B.1 Issuer different from offeror or person seeking admission to trading Yes **B.2** Name The crypto-asset and its decentralized network are not operated by a legal entity and thus do not have a parent company. **B.3 Legal form** Due to the nature of the decentralized network, the crypto-asset does not have a management body as defined in Article 3(1), point (27), of Regulation (EU) 2023/1114. **B4.** Registered address Due to the explaination given in field B.3 the crypto-asset does not have a registered address. **B.5 Head office** Due to the explaination given in field B.3 the crypto-asset does not have a registered address. # **B.6 Registration date** Since the issuer of the crypto-asset did not register in a legal form there is no date of registration. The first block on the network was mined on 2015-07-30. # **B.7 Legal entity identifier** Not applicable ### B.8 Another identifier required pursuant to applicable national law Not applicable ## **B.9 Parent company** Not applicable # **B.10 Members of the management body** The crypto-asset and its decentralized network are not operated by a legal entity and thus do not have a parent company. #### **B.11** Business activity Due to the nature of the decentralized network, the crypto-asset does not have a management body as defined in Article 3(1), point (27), of Regulation (EU) 2023/1114. # **B.12 Parent company business activity** Vitalik Buterin who co-authered the crypto-assets whitepaper alongside other developers and the Ethereum Foundation remain an active voice in the future development of the crypto-asset and the crypto space as a whole. He and the other parties however are not the issuer of the crypto-asset, due to it being an open-source, decentralized network,
meaning any developer, validator, or organization can contribute to its growth. Thus there is no applicable activity of the issuer. Not applicable. Part C - Information about the operator of the trading platform in cases where it draws up the crypto-asset white paper and information about other persons drawing the crypto-asset white paper pursuant to Article 6(1), second subparagraph, of # **Regulation (EU) 2023/1114** C.1 Name Not applicable. C.2 Legal form Not applicable. **C.3 Registered address** Not applicable. C.4 Head office Not applicable **C.5** Registration date Not applicable. C.6 Legal entity identifier Not applicable. C.7 Another identifier required pursuant to applicable national law Not applicable. **C.8 Parent company** Not applicable C.9 Reason for crypto-Asset white paper Preparation #### **C.10** Members of the Management body Not applicable. #### C.11 Operator business activity Not applicable. # C.12 Parent company business activity Not applicable C.13 Other persons drawing up the crypto-asset white paper according to Article 6(1), second subparagraph, of Regulation (EU) 2023/1114 Not applicable. C.14 Reason for drawing the white paper by persons referred to in Article 6(1), second subparagraph, of Regulation (EU) 2023/1114 Not applicable. # Part D – Information about the crypto-asset project ### D.1 Crypto-asset project name Long Name: "Ethereum Eth", Short Name: "ETH" according to the Digital Token Identifier Foundation (www.dtif.org, DTI see F.13, FFG DTI see F.14 as of 2025-03-20). #### D.2 Crypto-assets name See F.13. #### **D.3 Abbreviation** See F.13. #### D.4 Crypto-asset project description As described within the official documentation (https://ethereum.org/en/whitepaper/, accessed at 2025-03-20), the crypto-asset is intended to function as a decentralized, permissionless crypto-asset operating on a public, pseudonymous blockchain. The crypto-asset's blockchain is structured as a linked chain of blocks, each containing transactions and smart contract executions, with each block referencing the previous block's hash to maintain integrity. Until September 15, 2022, the Ethereum blockchain used the Proof-of-Work consensus mechanism, until a change to Proof-of-Stake took place. Governance relies on Ethereum Improvement Proposals (EIPs) and community consensus among developers, validators, and users, intending to facilitate continuous upgrades while intending to maintain decentralization and security. # D.5 Details of all natural or legal persons involved in the implementation of the cryptoasset project | Name | Role | |---------------------|--| | Ethereum Foundation | Supporter of the crypto-assets network (https://ethereum.foundation, accessed at 2025-03-08) | | Vitalik Buterin | Co-Founder of the Ethereum network and Co-Author of the (original, non-MiCAR) white paper, remains an influential voice in the space | | Others | More information was not available on
the foundation website
https://ethereum.foundation, accessed at
2025-03-12) | ### **D.6 Utility Token Classification** The token does not classify as a utility token. # D.7 Key Features of Goods/Services for Utility Token Projects Not applicable. D.8 Plans for the token The crypto-asset is a decentralized blockchain platform designed to enable smart contracts and decentralized applications (dApps). It was proposed by Vitalik Buterin in 2013, with the goal of extending Bitcoin's capabilities beyond simple transactions. Since its launch, the crypto-asset has undergone multiple major upgrades to enhance scalability, security, and efficiency. Past Milestones 1. White Paper (2013) - Vitalik Buterin publishes the crypto-asset's white paper, outlining the concept of a Turing-complete blockchain capable of executing smart contracts. 2. Launch – Frontier (2015) - The crypto-asset's mainnet goes live on July 30, 2015, introducing ETH as its native asset and enabling smart contracts. 3. Homestead Upgrade (2016) - The first major upgrade improves security and efficiency, preparing the crypto-asset for future developments. 4. The DAO Hack & Ethereum Hard Fork (2016) - A major exploit in The DAO, an early Ethereum-based project, leads to a controversial hard fork, splitting the crypto-asset into Ethereum (ETH) and Ethereum Classic (ETC). 5. Metropolis Phase 1 – Byzantium (2017) - aims to enhance privacy, security, and transaction efficiency. 6. Metropolis Phase 2 – Constantinople & St. Petersburg (2019) - Reduces gas costs, prepares for PoS transition, and postpones the "difficulty bomb" (a mechanism that encourages the crypto-asset's transition away from PoW). 7. Istanbul Upgrade (2019) - Increases network interoperability and reduces gas costs. - 8. Ethereum 2.0 & Beacon Chain Launch (2020) - Introduces Proof-of-Stake (PoS) via the Beacon Chain, a parallel blockchain designed for future consensus mechanisms. - 9. London Hard Fork & EIP-1559 (2021) - Implements EIP-1559, changing the crypto-asset's fee structure by burning a portion of transaction fees, reducing the crypto asset's inflation. - 10. The Merge (2022) - the crypto-asset fully transitions from Proof-of-Work (PoW) to Proof-of-Stake (PoS), deprecating mining and drastically reducing the crypto-asset's energy consumption. - 11. Shanghai & Capella (Shapella) Upgrade (2023) - Enables token staking withdrawals, allowing validators to unlock staked tokens for the first time since the PoS transition. Future Milestones: It is important to emphasize that future milestones are subject to a high degree of uncertainty due to the decentralized nature of the project, and that implementation is not guaranteed. Likewise, future developments may lead to unfavorable developments. - 1. EIP-4844 & Proto-Danksharding (2024) - Introduces proto-danksharding, significantly reducing gas fees for layer-2 rollups, improving Ethereum's scalability. - 2. Full Danksharding (Expected 2025-2026) - the crypto-asset will implement full sharding, enabling parallel processing of transactions to scale the network to 100,000+ transactions per second (TPS). - 3. Verkle Trees & State Expiry (Expected 2026-2027) - Introduces Verkle Trees to reduce blockchain storage requirements and enhance efficiency. 4. Ethereum's Long-Term Scalability & Security Upgrades (2027 & Beyond) - Continued improvements to rollups, staking mechanisms, and security models to maintain decentralization and efficiency. Ethereum's roadmap remains highly flexible, adapting to new challenges and technological advancements, with an ultimate goal of achieving a scalable, secure, and decentralized world computer. **D.9 Resource allocation** According to their own report the crypto-asset's foundation has a treasury portfolio of \$970,2 million split between \$788,7million in crypto assets (99,45% in ETH) and \$181,5 million in non-crypto investments and assets. (as of October 31st, 2024 in their report https://ethereum.foundation/report-2024.pdf, accessed at 2025-03-20) D.10 Planned use of Collected funds or crypto-Assets Not applicable, as this white paper was drawn up for the admission to trading and not for collecting funds for the crypto-asset-project. Part E – Information about the offer to the public of crypto-assets or their admission to trading E.1 Public offering or admission to trading The white paper concerns the admission to trading (i. e. ATTR) on any Crypto Asset Service Providers platform that has obtained the written consent of Crypto Risk Metrics GmbH as the person drafting this white paper. E.2 Reasons for public offer or admission to trading As already stated in A.13, Crypto Risk Metrics GmbH aims to provide central services to draw up crypto-asset white papers in accordance to COMMISSION IMPLEMENTING REGULATION (EU) 2024/2984. These services are offered in order to minimize market confusion due to conflicting white papers for the same asset drawn up from different Crypto Asset Service Providers. As of now, such a scenario seems highly likely as a Crypto Asset Service Provider who drew up a crypto-asset white paper and admitted the respective token in the Union has no incentive to give his written consent to another Crypto Asset Service Provider according to Article 5 (4 b) of the REGULATION (EU) 2023/1114 to use the white paper for his regulatory obligations, as this would 1. strenghthen the market-positioning of the other Crypto Asset Service Provider (who is most likely a competitor) and 2. also entail liability risks. ## E.3 Fundraising target Not applicable. ### **E.4 Minimum subscription goals** Not applicable. #### **E.5 Maximum subscription goals** Not applicable. ### **E.6 Oversubscription acceptance** Not applicable. ### E.7 Oversubscription allocation Not applicable. # E.8 Issue price Not applicable. ### E.9 Official currency or any other crypto-assets determining the issue price Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public. #### E.10 Subscription fee Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public. E.11 Offer price determination method Once the token is admitted to trading its price will be determined by demand (buyers) and supply (sellers). E.12 Total number of offered/traded crypto-assets There is no fixed supply for the crypto-asset. The amount of token which are available in the market depends on new token issuance which among other things is controlled through staking rewards and the EIP-1559 fee-burning mechanism. **E.13 Targeted holders** ALL **E.14 Holder restrictions** The Holder restrictions are subject to the rules applicable to the Crypto Asset Service Provider as well as additional restrictions the Crypto Asset Service Providers might set in force. **E.15 Reimbursement notice** Not applicable. E.16 Refund mechanism Not
applicable. **E.17 Refund timeline** Not applicable. E.18 Offer phases Not applicable. **E.19** Early purchase discount Not applicable. **E.20 Time-limited offer** Not applicable. # E.21 Subscription period beginning Not applicable. ## E.22 Subscription period end Not applicable. # E.23 Safeguarding arrangements for offered funds/crypto- Assets Not applicable. #### E.24 Payment methods for crypto-asset purchase The payment methods are subject to the respective capabilities of the Crypto Asset Service Provider listing the crypto-asset. #### E.25 Value transfer methods for reimbursement Not applicable. #### E.26 Right of withdrawal Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public. #### E.27 Transfer of purchased crypto-assets The transfer of purchased crypto-assets are subject to the respective capabilities of the Crypto Asset Service Provider listing the crypto-asset. #### **E.28 Transfer time schedule** Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public. #### E.29 Purchaser's technical requirements The technical requirements that the purchaser is required to fulfil to hold the crypto-assets of purchased crypto-assets are subject to the respective capabilities of the Crypto Asset Service Provider listing the crypto-asset. # E.30 Crypto-asset service provider (CASP) name Not applicable. #### **E.31 CASP identifier** Not applicable. #### **E.32 Placement form** Not applicable. #### E.33 Trading platforms name The trading on all MiCAR-compliant trading platforms is sought. ### E.34 Trading platforms Market identifier code (MIC) Not applicable. #### **E.35 Trading platforms access** This depends on the trading platform listing the asset. #### E.36 Involved costs This depends on the trading platform listing the asset. Furthermore, costs may occur for making transfers out of the platform (i. e. "gas costs" for blockchain network use that may exceed the value of the crypto-asset itself). #### E.37 Offer expenses Not applicable, as this crypto-asset white paper concerns the admission to trading and not the offer of the token to the public. #### E.38 Conflicts of interest MiCAR-compliant Crypto Asset Service Providers shall have strong measurements in place in order to manage conflicts of interests. Due to the broad audience this white-paper is adressing, potential investors should always check the conflicts of Interest policy of their respective counterparty. E.39 Applicable law Not applicable, as it is referred to on "offer to the public" and in this white-paper, the admission to trading is sought. **E.40 Competent court** Not applicable, as it is referred to on "offer to the public" and in this white-paper, the admission to trading is sought. Part F – Information about the crypto-assets F.1 Crypto-asset type The crypto-asset described in the white paper is classified as a crypto-asset under the Markets in Crypto-Assets Regulation (MiCAR) but does not qualify as an electronic money token (EMT) or an asset-referenced token (ART). It is a digital representation of value that can be stored and transferred using distributed ledger technology (DLT) or similar technology, without embodying or conferring any rights to its holder. The asset does not aim to maintain a stable value by referencing an official currency, a basket of assets, or any other underlying rights. Instead, its valuation is entirely market- driven, based on supply and demand dynamics, and not supported by a stabilization mechanism. It is neither pegged to any fiat currency nor backed by any external assets, distinguishing it clearly from EMTs and ARTs. Furthermore, the crypto-asset is not categorized as a financial instrument, deposit, insurance product, pension product, or any other regulated financial product under EU law. It does not grant financial rights, voting rights, or any contractual claims to its holders, ensuring that it remains outside the scope of regulatory frameworks applicable to traditional financial instruments. F.2 Crypto-asset functionality The token can be used within the network, for example to pay fees or for staking. It can also be held and transferred. FFG: D5RG2FHH0 - 2025-03-31 28 F.3 Planned application of functionalities The potential planned applications and changes to the crypto-asset have been layed out in D.8 A description of the characteristics of the crypto asset, including the data necessary for classification of the crypto-asset white paper in the register referred to in Article 109 of Regulation (EU) 2023/1114, as specified in accordance with paragraph 8 of that Article F.4 Type of crypto-asset white paper The white paper type is "other crypto-assets" (i. e. "OTHR"). F.5 The type of submission The white paper submission type is "NEWT", which stands for new token. F.6 Crypto-asset characteristics The tokens are crypto-assets other than EMTs and ARTs, which are the native tokens of the Ethereum blockchain. There is no fixed supply for the crypto-asset. The amount of token which are available in the market depends on new token issuance which among other things is controlled through staking rewards and the EIP-1559 fee-burning mechanism. Anyone with an internet connection can send and receive the crypto-asset without intermediaries. F.7 Commercial name or trading name See F.13. F.8 Website of the issuer Not applicable F.9 Starting date of offer to the public or admission to trading 2025-03-31 #### F.10 Publication date 2025-03-31 ## F.11 Any other services provided by the issuer Not applicable # F.12 Language or languages of the crypto-asset white paper ΕN F.13 Digital token identifier code used to uniquely identify the crypto-asset or each of the several crypto assets to which the white paper relates, where available X9J9K872S #### F.14 Functionally fungible group digital token identifier, where available D5RG2FHH0 ### F.15 Voluntary data flag Mandatory. #### F.16 Personal data flag The white paper does contain personal data. # F.17 LEI eligibility The issuer should be eligible for a Legal Entity Identifier. # F.18 Home Member State Germany #### **F.19 Host Member States** Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden # Part G – Information on the rights and obligations attached to the crypto-assets #### **G.1** Purchaser rights and obligations There are no rights or obligations attached for/of the purchaser. #### G.2 Exercise of rights and obligations As the token grants neither rights nor obligations, there are no procedures and conditions for the exercise of these rights applicable. ## G.3 Conditions for modifications of rights and obligations As the token grants neither rights nor obligations, there are no conditions under which the rights and obligations may be modified applicable. # **G.4 Future public offers** Not applicable #### **G.5** Issuer retained crypto-assets The crypto-asset's foundation cannot be named as the issuer of the crypto asset. Nevertheless, the foundation is considered an important party within the ecosystem and hold about 0,26% of the total supply as of 2024-10-31 (https://ethereum.foundation/report-2024.pdf accessed 2025-03-12) ### G.6 Utility token classification No #### G.7 Key features of goods/services of utility tokens As the crypto-asset grants no access to neither goods nor services this information is not applicable. ### **G.8 Utility tokens redemption** Not applicable. **G.9 Non-trading request** The admission to trading is sought. **G.10** Crypto-assets purchase or sale modalities Not applicable, as the admission to trading of the tokens is sought. **G.11 Crypto-assets transfer restrictions** The crypto-assets as such do not have any transfer restrictions and are generally freely transferable. The Crypto Asset Service Providers can impose their own restrictions in agreements they enter with their clients. The Crypto Asset Service Providers may impose restrictions to buyers and sellers in accordance with applicable laws and internal policies and terms. **G.12 Supply adjustment protocols** The crypto-asset's supply is dynamically adjusted through issuance and burning mechanisms. The EIP-1559 upgrade introduced fee burning, permanently removing a portion of tokens from circulation, especially during high network activity. Activities of network validators, primarilyt staking, newly issued token. Failure of validators to follow their obligations will result in part of their Stake being burned. The Shapella upgrade enabled staking withdrawals, allowing flexibility in supply. Depending on transaction volume, the crypto-asset can be inflationary or deflationary, with high demand leading to more tokens being burned than issued, effectively reducing supply. **G.13** Supply adjustment mechanisms See G.12. **G.14 Token value protection schemes** No, the token does not have value protection schemes. G.15 Token value protection schemes description Not applicable. # **G.16 Compensation schemes** No, the token does not have compensation schemes. ## **G.17 Compensation schemes description** Not applicable. #### **G.18** Applicable law Applicable law likely depends on the location of any particular transaction with the token. #### **G.19** Competent court Competent court likely depends on the location of any particular transaction with the token. # Part H - information on the underlying technology ### H.1 Distributed ledger technology (DTL) See F.13. #### **H.2 Protocols and technical standards** The crypto-asset operates on a well-defined set of protocols and technical standards that are intended to ensure its security, decentralization, and functionality. Below are some of the key ones: #### 1. Network Protocols The crypto-asset follows a decentralized,
peer-to-peer (P2P) protocol where nodes communicate over the crypto-asset's DevP2P protocol using RLPx for data encoding. - Transactions and smart contract execution are secured through Proof-of-Stake (PoS) consensus. - Validators propose and attest blocks in Ethereum's Beacon Chain, finalized through Casper FFG. - The Ethereum Virtual Machine (EVM) executes smart contracts using Turing-complete bytecode. - 2. Transaction and Address Standards crypto-asset Address Format: 20-byte addresses derived from Keccak-256 hashing of public keys. Transaction Types: - Legacy Transactions (pre-EIP-1559) - Type 0 (Pre-EIP-1559 transactions) - Type 1 (EIP-2930: Access list transactions) - Type 2 (EIP-1559: Dynamic fee transactions with base fee burning) - 3. Blockchain Data Structure & Block Standards - the crypto-asset's blockchain consists of accounts, smart contracts, and storage states, maintained through Merkle Patricia Trees for efficient verification. Each block contains: - Block Header: Parent hash, state root, transactions root, receipts root, timestamp, gas limit, gas used, proposer signature. - Transactions: Smart contract executions and token transfers. - Block Size: No fixed limit; constrained by the gas limit per block (variable over time). - 4. Upgrade & Improvement Standards Ethereum follows the Ethereum Improvement Proposal (EIP) process for upgrades. # H.3 Technology used 1. Decentralized Ledger: The Ethereum blockchain acts as a decentralized ledger for all token transactions, with the intention to preserving an unalterable record of token transfers and ownership to ensure both transparency and security. - 2. Private Key Management: To safeguard their token holdings, users must securely store their wallet's private keys and recovery phrases. - 3. Cryptographic Integrity: Ethereum employs elliptic curve cryptography to validate and execute transactions securely, intended to ensure the integrity of all transfers. The Keccak-256 (SHA-3 variant) Hashing Algorithm is used for hashing and address generation. The crypto-asset uses ECDSA with secp256k1 curve for key generation and digital signatures. Next to that, BLS (Boneh-Lynn-Shacham) signatures are used for validator aggregation in PoS. #### H.4 Consensus mechanism The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity. The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency. #### H.5 Incentive mechanisms and applicable fees The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees. Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity. This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity. H.6 Use of distributed ledger technology No, DLT is not operated by the issuer or a third party acting on the issuer's behalf. H.7 DLT functionality description Not applicable. H.8 Audit As we are understanding the question relating to "technology" to be interpreted in a broad sense, the answer answer to whether an audit of "the technology used" was conducted is "no, we can not guarantee, that all parts of the technology used have been audited". This is due to the fact this report focusses on risk, and we can not guarantee that each part of the technology used was audited. **H.9 Audit outcome** Not applicable. Part I - Information on risks I.1 Offer-related risks 1. Regulatory and Compliance This white paper (drawn up from 2025-02-20-2025-03-15) has been prepared with utmost caution; however, uncertainties in the regulatory requirements and future changes in regulatory frameworks could potentially impact the token's legal status and its tradability. There is also a high probability that other laws will come into force, changing the rules for the trading of the token. Therefore, such developments shall be monitored and acted upon accordingly. 2. Operational and Technical Blockchain Dependency: The token is entirely dependent on the blockchain the crypto-asset is issued upon (as of 2025-03-01). Any issues, such as downtime, congestion, or security vulnerabilities within the blockchain, could adversely affect the token's functionality. Smart Contract Risks: Smart contracts governing the token may contain hidden vulnerabilities or bugs that could disrupt the token offering or distribution processes. Connection Dependency: As the trading of the token also involves other trading venues, technical risks such as downtime of the connection or faulty code are also possible. Human errors: Due to the irrevocability of blockchain-transactions, approving wrong transactions or using incorrect networks/addresses will most likely result in funds not being accessibly anymore. Custodial risk: When admitting the token to trading, the risk of losing clients assets due to hacks or other malicious acts is given. This is due to the fact the token is hold in custodial wallets for the customers. 3. Market and Liquidity Volatility: The token will most likely be subject to high volatility and market speculation. Price fluctuations could be significant, posing a risk of substantial losses to holders. Liquidity Risk: Liquidity is contingent upon trading activity levels on decentralized exchanges (DEXs) and potentially on centralized exchanges (CEXs), should they be involved. Low trading volumes may restrict the buying and selling capabilities of the tokens. 4. Counterparty As the admission to trading involves the connection to other trading venues, counterparty risks arise. These include, but are not limited to, the following risks: General Trading Platform Risk: The risk of trading platforms not operating to the highest standards is given. Examples like FTX show that especially in nascent industries, compliance and oversight-frameworks might not be fully established and/or enforced. Listing or Delisting Risks: The listing or delisting of the token is subject to the trading partners internal processes. Delisting of the token at the connected trading partners could harm or completely halt the ability to trade the token. 5. Liquidity Liquidity of the token can vary, especially when trading activity is limited. This could result in high slippage when trading a token. 6. Failure of one or more Counterparties Another risk stems from the internal operational processes of the counterparties used. As there is no specific oversight other than the typical due diligence check, it cannot be guaranteed that all counterparties adhere to the best market standards. Bankruptcy Risk: Counterparties could go bankrupt, possibly resulting in a total loss for the clients assets hold at that counterparty. #### I.2 Issuer-related risks #### 1. Insolvency As with every other commercial endeavor, the risk of insolvency of the issuer is given. This could be caused by but is not limited to lack of interest from the public, lack of funding, incapacitation of key developers and project members, force majeure (including pandemics and wars) or lack of commercial success or prospects. #### 2. Counterparty In order to operate, the issuer has most likely engaged in different business relationships with one or more third parties on which it strongly depends on. Loss or changes in the leadership or key partners of the issuer and/or the respective counterparties can lead to disruptions, loss of trust, or project failure. This could result in a total loss of economic value for the crypto-asset holders. #### 3. Legal and Regulatory Compliance Cryptocurrencies and blockchain-based technologies are subject to evolving regulatory landscapes worldwide. Regulations vary across jurisdictions and may be subject to significant changes. Non-compliance can result in investigations, enforcement actions, penalties, fines, sanctions, or the prohibition of the trading of the crypto-asset impacting its viability and market acceptance. This could also result in the issuer to be subject to private litigation. The beforementioned would most likely also lead to changes with respect to trading of the crypto-asset that may negatively impact the value, legality, or functionality of the crypto-asset. 4. Operational Failure to develop or maintain effective internal control, or any difficulties encountered in the implementation of such controls, or their improvement could harm the issuer's business, causing disruptions, financial losses, or reputational damage. 5. Industry The issuer is and will be subject to all of the risks and uncertainties associated with a memecoin-project, where the token issued has zero intrinsic value. History has shown that most of this projects resulted in financial losses for the investors and were only set- up to enrich a few insiders with the money from retail investors. 6. Reputational The issuer faces the risk of negative publicity, whether due to, without limitation,
operational failures, security breaches, or association with illicit activities, which can damage the issuer reputation and, by extension, the value and acceptance of the crypto-asset. 7. Competition There are numerous other crypto-asset projects in the same realm, which could have an effect on the crypto-asset in question. 8. Unanticipated Risk In addition to the risks included in this section, there might be other risks that cannot be foreseen. Additional risks may also materialize as unanticipated variations or combinations of the risks discussed. I.3 Crypto-assets-related risks 1. Valuation As the crypto-asset does not have any intrinsic value, and grants neither rights nor obligations, the only mechanism to determine the price is supply and demand. Historically, most crypto-assets have dramatically lost value and were not a beneficial investment for the investors. Therefore, investing in these crypto-assets poses a high risk, and the loss of funds can occur. 2. Market Volatility Crypto-asset prices are highly susceptible to dramatic fluctuations influence by various factors, including market sentiment, regulatory changes, technological advancements, and macroeconomic conditions. These fluctuations can result in significant financial losses within short periods, making the market highly unpredictable and challenging for investors. This is especially true for crypto-assets without any intrinsic value, and investors should be prepared to lose the complete amount of money invested in the respective crypto-assets. 3. Liquidity Challenges Some crypto-assets suffer from limited liquidity, which can present difficulties when executing large trades without significantly impacting market prices. This lack of liquidity can lead to substantial financial losses, particularly during periods of rapid market movements, when selling assets may become challenging or require accepting unfavorable prices. 4. Asset Security Crypto-assets face unique security threats, including the risk of theft from exchanges or digital wallets, loss of private keys, and potential failures of custodial services. Since crypto transactions are generally irreversible, a security breach or mismanagement can result in the permanent loss of assets, emphasizing the importance of strong security measures and practices. 5. Scams The irrevocability of transactions executed using blockchain infrastructure, as well as the pseudonymous nature of blockchain ecosystems, attracts scammers. Therefore, FFG: D5RG2FHH0 - 2025-03-31 40 investors in crypto-assets must proceed with a high degree of caution when investing in if they invest in crypto-assets. Typical scams include – but are not limited to – the creation of fake crypto-assets with the same name, phishing on social networks or by email, fake giveaways/airdrops, identity theft, among others. # 6. Blockchain Dependency Any issues with the blockchain used, such as network downtime, congestion, or security vulnerabilities, could disrupt the transfer, trading, or functionality of the crypto-asset. ### 7. Privacy Concerns All transactions on the blockchain are permanently recorded and publicly accessible, which can potentially expose user activities. Although addresses are pseudonoymous, the transparent and immutable nature of blockchain allows for advanced forensic analysis and intelligence gathering. This level of transparency can make it possible to link blockchain addresses to real-world identities over time, compromising user privacy. ### 8. Regulatory Uncertainty The regulatory environment surrounding crypto-assets is constantly evolving, which can directly impact their usage, valuation, and legal status. Changes in regulatory frameworks may introduce new requirements related to consumer protection, taxation, and anti-money laundering compliance, creating uncertainty and potential challenges for investors and businesses operating in the crypto space. Although the crypto-asset do not create or confer any contractual or other obligations on any party, certain regulators may nevertheless qualify the crypto-asset as a security or other financial instrument under their applicable law, which in turn would have drastic consequences for the crypto-asset, including the potential loss of the invested capital in the asset. Furthermore, this could lead to the sellers and its affiliates, directors, and officers being obliged to pay fines, including federal civil and criminal penalties, or make the crypto-asset illegal or impossible to use, buy, or sell in certain jurisdictions. On top of that, regulators could take action against the issuer as well as the trading platforms if the the regulators view the token as an unregistered offering of securities or the operations otherwise as a violation of existing law. Any of these outcomes would negatively affect the value and/or functionality of the crypot-asset and/or could cause a complete loss of funds of the invested money in the crypto-asset for the investor. 9. Counterparty risk Engaging in agreements or storing crypto-assets on exchanges introduces counterparty risks, including the failure of the other party to fulfill their obligations. Investors may face potential losses due to factors such as insolvency, regulatory non-compliance, or fraudulent activities by counterparties, highlighting the need for careful due diligence when engaging with third parties. 10. Reputational concerns Crypto-assets are often subject to reputational risks stemming from associations with illegal activities, high-profile security breaches, and technological failures. Such incidents can undermine trust in the broader ecosystem, negatively affecting investor confidence and market value, thereby hindering widespread adoption and acceptance. 11. Technological Innovation New technologies or platforms could render Bitcoin's design less competitive or even break fundamental parts (i.e., quantum computing might break cryptographic algorithms used to secure the network), impacting adoption and value. Participants should approach the crypto-asset with a clear understanding of its speculative and volatile nature and be prepared to accept these risks and bear potential losses, which could include the complete loss of the asset's value. 12. Community and Narrative As the crypto-asset has no intrinsic value, all trading activity is based on the intended market value is heavily dependent on its community and the popularity of the memecoin narrative. Declining interest or negative sentiment could significantly impact the token's value. 13. Interest Rate Change Historically, changes in interest, foreign exchange rates, and increases in volatility have increased credit and market risks and may also affect the value of the crypto-asset. Although historic data does not predict the future, potential investors should be aware that general movements in local and other factors may affect the market, and this could also affect market sentiment and, therefore most likely also the price of the crypto- asset. 14. Taxation The taxation regime that applies to the trading of the crypto-asset by individual holders or legal entities will depend on the holder's jurisdiction. It is the holder's sole responsibility to comply with all applicable tax laws, including, but not limited to, the reporting and payment of income tax, wealth tax, or similar taxes arising in connection with the appreciation and depreciation of the crypto-asset. 15. Anti-Money Laundering/Counter-Terrorism Financing It cannot be ruled out that crypto-asset wallet addresses interacting with the crypto- asset have been, or will be used for money laundering or terrorist financing purposes, or are identified with a person known to have committed such offenses. 16. Market Abuse It is noteworthy that crypto-assets are potentially prone to increased market abuse risks, as the underlying infrastructure could be used to exploit arbitrage opportunities through schemes such as front-running, spoofing, pump-and-dump, and fraud across different systems, platforms, or geographic locations. This is especially true for crypto- assets with a low market capitalization and few trading venues, and potential investors should be aware that this could lead to a total loss of the funds invested in the crypto- asset. 17. Timeline and Milestones Critical project milestones could be delayed by technical, operational, or market challenges. ## I.4 Project implementation-related risks As this white paper relates to the "Admission to trading" of the crypto-asset, the implementation risk is referring to the risks on the Crypto Asset Service Providers side. These can be, but are not limited to, typical project management risks, such as keypersonal-risks, timeline-risks, and technical implementation-risks. #### I.5 Technology-related risks As this white paper relates to the "Admission to trading" of the crypto-asset, the technology-related risks mainly lie in the settling on the Ethereum-Network. #### 1. Blockchain Dependency Risks Network Downtime: Potential outages or congestion on the Ethereum blockchain could interrupt on-chain token transfers, trading, and other functions. Scalability Challenges: Despite Ethereum comparatively high throughput design, unexpected demand or technical issues might compromise its performance. ### 2. Wallet and Storage Risks Private Key Management: Token holders must securely manage their private keys and recovery phrases to prevent permanent loss of access to their tokens, which includes Trading-Venues, who are a prominent target for dedicated hacks. ### 3. Network Security Risks Attack Risks: The Ethereum blockchain may face threats such as denial-of-service (DoS) attacks or exploits targeting its consensus mechanism, which could compromise network integrity. 4. Centralization Concerns: Although claiming to be decentralized, Ethereum relatively smaller number of validators/concentration of stakes within the network compared to other blockchains and
the influence of the Ethereum Foundation (as of 2025-03-09) might pose centralization risks, potentially affecting network resilience. 5. Evolving Technology Risks: Technological Obsolescence: The fast pace of innovation in blockchain technology may make Ethereum less competitive or become outdated, potentially impacting the usability or adoption of the token. I.6 Mitigation measures None. Part J – Information on the sustainability indicators in relation to adverse impact on the climate and other environment-related adverse impacts J.1 Adverse impacts on climate and other environment-related adverse impacts S.1 Name Crypto Risk Metrics GmbH S.2 Relevant legal entity identifier 39120077M9TG0O1FE242 S.3 Name of the cryptoasset Ethereum Eth **S.4 Consensus Mechanism** The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity. The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (\sim 12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto- Danksharding enhancing transaction efficiency. **S.5 Incentive Mechanisms and Applicable Fees** The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees. Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity. This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity. S.6 Beginning of the period to which the disclosure relates 2024-03-22 S.7 End of the period to which the disclosure relates 2025-03-22 S.8 Energy consumption 2390166.00000 kWh/a S.9 Energy consumption sources and methodologies For the calculation of energy consumptions, the so called "bottom-up" approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in- house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. S.10 Renewable energy consumption 17.4057653342 % S.11 Energy intensity 0.00011 kWh S.12 Scope 1 DLT GHG emissions – Controlled 0.00000 tCO2e/a S.13 Scope 2 DLT GHG emissions - Purchased 795.47849 tCO2e/a S.14 GHG intensity 0.00004 kgCO2e S.15 Key energy sources and methodologies To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined. The intensity is calculated as the marginal energy cost wrt. one more transaction. S.16 Key GHG sources and methodologies To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from the European Environment Agency (EEA) and thus determined. The intensity is calculated as the marginal emission wrt. one more transaction.