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We report on Quantinuum Helios, a 98-qubit trapped-ion quantum processor based on the quan-
tum charge-coupled device (QCCD) architecture. Helios features "**Ba™ hyperfine qubits, all-to-all
connectivity enabled by a rotatable ion storage ring connecting two quantum operation regions by a
junction, speed improvements from parallelized operations, and a new software stack with real-time
compilation of dynamic programs. Averaged over all operational zones in the system, we achieve
average infidelities of 2.5(1) x 107° for single-qubit gates, 7.9(2) x 10™* for two-qubit gates, and
4.8(6) x 10™* for state preparation and measurement, none of which are fundamentally limited and
likely able to be improved. These component infidelities are predictive of system-level performance
in both random Clifford circuits and random circuit sampling, the latter demonstrating that Helios
operates well beyond the reach of classical simulation and establishes a new frontier of fidelity and

complexity for quantum computers.

I. INTRODUCTION

Quantum computing hardware has progressed signifi-
cantly in the last decade, providing strong experimental
evidence of quantum supremacy [1-3] and the feasibil-
ity of fault-tolerance [4, 5]. As an increasing number of
different modalities check off the basic requirements for
quantum computing, the focus of progress is shifting to-
ward scaling these systems to much larger sizes without
sacrificing performance.

Like all modalities, the trapped-ion QCCD architec-
ture [6-11] has a unique set of engineering challenges
in scaling. For example, trapped-ions can require laser
systems for loading, cooling, state-preparation, measure-
ment and coherent control (or a subset of these), intro-
ducing somewhat non-standard integration constraints
between sub-systems. However, atomic-qubit architec-
tures that use qubit transport, including QCCD and
optical tweezers [12, 13|, can distribute these computa-
tional resources more efficiently than stationary qubits.
Mobile qubit architectures allow qubits to flow through
the QPU like bits in classical processing architectures,
with separated memory structures, data buses, and
logic processing units, each optimized for their func-
tion. Conversely, stationary-qubit architectures, like su-
perconducting qubits [1, 14] or even atomic-qubits with-
out transport [15, 16], deliver quantum operations to
each individual qubit (or connected qubits), which can
pose significant engineering and calibration issues. Since
transport-based qubits can share expensive hardware re-
sources, the relative complexity of optical control systems
(for example) is largely offset by reducing the multiplica-
tive complexity associated with the number of processing
zones [17]. Of course, the effectiveness of mobile qubit de-
sign principles depends on how sensitive the quantum in-

Ring Storage -’ cache

Quantum Logic

Memory

FIG. 1. An image of 98 atomic ions illuminated by resonant
laser light in the Helios 2D surface trap illustrated in Fig. 2.
The overlaid lines indicate different regions of the device with
the quincunx of ions showing the location of the ion trap
junction.

formation is to the required transport operations and how
easy the controls are to build and operate. Using hyper-
fine clock-states and standard scalable micro-fabricated
traps for transport control, the QCCD architecture can
readily take advantage of these strategies. Indeed, as we
show in this work, trapped-ion QPUs are roughly scaling
in qubit number as fast or faster than solid state tech-
nologies, with the first QCCD computer demonstrated
five years ago with 6 qubits [9], to now using 98 qubits.

In this paper, we present Helios, the next generation
system from Quantinuum, which introduces three ad-
vances to transport-based, trapped-ion quantum comput-
ers. First, Helios uses barium ions as the qubits [18],
achieving improved quantum operation error rates with
a more scalable laser architecture compared to ytterbium
ions used in earlier Quantinuum QPUs [9, 10]. Second,
we use a four-way “X” junction [19-27] to efficiently con-
nect memory regions to quantum logic regions without
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FIG. 2. An illustration of the Helios design and conception of operations. (a) The final five stages of loading the cache region
with qubits from ring storage. The ring rotates ions in both directions to move the circled qubit into the cache. (b) Diagram of
trap (not to scale) part-way through a program, ring storage qubits are being loaded into the cache and qubits in the quantum
logic region are undergoing ground-state cooling. The actual horizontal length is 15.3 mm, the ring diameter is 2.8 mm, and
the operational zones are 750 pum apart. (c¢) Junction operations showing the retrieval and alignment of an ion crystal, and an
ion crystal moving through the junction to stay in the ring storage. (d) The proper alignment of a 4-ion crystal in the quantum
logic zones. (e) Laser beam and crystal configurations during example quantum operations as labeled. Beams are focused to
operate on top/bottom legs as shown by color gradients. The 2Q gate beams are tilted both vertically and horizontally away
from the 45 degree line that intersects the ion crystals in both legs by approximately 1 degree so to only interact with a single

ion crystal at a time.

increasing electrical control or device fabrication com-
plexity compared to the Quantinuum H2 [10]. Third,
Helios is orchestrated by a new classical control imple-
mentation capable of making real-time decisions about
all transport and quantum operations, enabling execu-
tion of truly arbitrary quantum programs with all-to-all
connectivity. We show that these generational advance-
ments set a new state-of-the-art in digital quantum com-
puters according to several figures of merit—average two-
qubit, single-qubit, and state preparation and measure-
ment (SPAM) fidelities—confirmed by component and
system-level benchmarks.

We organize this paper by first providing an overview
of the notable advances in the Helios system—the ar-
chitecture and trap design IT A, the ion species 11 B, the
concept of operations of the QCCD II C and the real time
compilation of programs ITD. We then establish the per-
formance of the QPU with component-level and system-
level benchmarking data in Sec. III. Finally, we discuss
the outlook in Sec. IV and provide additional experimen-
tal and theoretical details in the appendix.

II. HARDWARE AND SOFTWARE
ARCHITECTURE

A. QPU architecture and ion trap design

Helios is a transport-based quantum processor with
spatially separated qubit memory regions and quantum
logic regions. These elements are realized on a 2D surface
electrode QCCD [9, 28], which confines ions with electric
fields generated by a pattern of electrodes (see Fig. 1 and
Fig.2), and the QPU uses individual ions for qubits. To
apply gates to qubits or pairs of qubits, the ions are phys-
ically transported to isolated trapping zones to facilitate
low-crosstalk addressing and maintain high fidelity.

Figure 2 illustrates how Helios operates. The quan-
tum logic region processes batches of up to 16 qubits
at a time, using 8 high-fidelity operation zones, each
with the capability to perform state preparation, mea-
surement, ground-state laser cooling, and quantum logic
gates. Each operation is implemented via focused laser
beams propagating parallel to the chip surface as shown
in Fig. 2e. High-fidelity operation necessitates low noise,
independent electrode voltages and multiple laser beams
for each zone, so they consume most of the control re-
sources in the processor. By using shared lasers across



multiple operation zones (Fig. 2e), the quantum logic re-
gion design scales these essential components more effi-
ciently than previous systems.

Qubits outside the operation zones are stored in func-
tionally distinct memory regions: ring storage, leg stor-
age, and cache, see Fig. 2b. Memory regions require
less control resources as the only operations available are
sympathetic laser cooling [29] and qubit transport. To
minimize the number of transport control signals, seg-
mented DC electrodes in the memory regions use voltages
that are broadcast in a repeating triplet pattern similar
to Ref. [10]. The cache is a small memory region that
holds the next batch of pre-sorted qubits before going to
the quantum logic region. The leg storage operates as
a first in, last out memory, while the ring storage acts
as a random access memory, because it connects to the
operational region via an X-junction.

The junction is a key structure enabling this architec-
ture. As qubits move through the junction, they can be
routed to remain in memory or be added to the cache in
either the upper or lower legs. Furthermore, by imple-
menting qubit routing in a separate structure from the
quantum logic region, qubit sorting can proceed in par-
allel with the ground state cooling of ions in the logic
region, reducing the effective clock-speed of the QPU.
Comparisons to the Quantinuum H1 [9] and Quantin-
uum H2 [10] QPUs summarize the cumulative impact of
these design choices in the electrical control subsystems
(Table I).

System  Num. Num. Signals/Qubit
Electrodes Signals

H1 198 198 9.9

H2 376 268 4.8

Helios 1228 273 2.8

TABLE I. The number of electrodes and independent voltage
signals per qubit for three different generations of Quantin-
uum QPUs.

B. Ion Species - qubit and coolant

Helios is the first quantum computer to utilize 13" Bat.
We define |F'=1,my =0) and |F' = 2,m; = 0) hyper-
fine levels in the 3"Ba® electronic ground state as |0)
and |1) respectively. The optical transitions used to
implement quantum operations are in the visible part
of the wavelength spectrum, allowing for laser and op-
tical components that are more mature, reliable, and
cost-effective and enables fundamentally better perfor-
mance. Using more available laser power with better
phase performance, we can suppress the leading sources
of errors in logic gates, including spontaneous emission
errors, laser phase fluctuations, and higher-order Lamb-
Dicke errors [30].

Specifically, the single-qubit (1Q) and two-qubit (2Q)

gates are implemented with pairs of 515 nm laser beams
separated by the ~8.04 GHz qubit frequency splitting.
The 1Q gates, Ujg (6, ¢) = e(7i0/2)(cos9X+sin@Y) “qre jm-
plemented with co-propagating laser beams for improved
phase stability of the Raman interaction and minimal
sensitivity to the ions’ thermal motion. 1Q Z-rotations,
Rz(0) = e*49/2 are implemented by phase changes in
software. The 2Q) gates are implemented with beams in-
tersecting the quantum logic zones at 90 degrees to each
other such that the difference k-vector is parallel to the
crystal axis (Fig.2e). The 2Q gate protocol is based on
the Mglmer-Sgrensen interaction using wrapper pulses to
remove optical phase sensitivity [9, 31], yielding a native
2Q gate Rzz(0) = e~ 4%9/2. The gate angle 6 is specified
by the user and is varied by adjusting the detuning and
duration of the gate. Gate infidelities have been shown to
improve for smaller angles [10], but here we only bench-
mark the perfect entangler Rz z(mw/2).

State preparation and measurement (SPAM) are
achieved in '*"Ba*t with a combination of lasers at 493
nm, 614 nm, 650 nm and 1762 nm via narrow-band op-
tical pumping Ref. [32, 33]. The 1762 nm laser is locked
to a narrow linewidth cavity to facilitate high-fidelity
mapping pulses between the Sy, ground state and Ds /o
state (Fig. 3). The standard measurement protocol first
maps the |F' =1,my = 0) qubit state to the D5/, man-
ifold with multiple 7 pulses to different levels in Ds 5.
Then the 493 nm and 650 nm lasers are turned on to
induce fluorescence from all S/, states. Additionally,
the 1762 nm laser is used to protect neighboring qubits
from measurement crosstalk errors (Fig. 3b) and enables
a ternary (three outcome) measurement to detect leak-
age population (Fig. 3c) without the use of ancillas or 2Q
gates [34-36].

The QCCD architecture relies on mid-circuit recooling
of ions, achieved here with sympathetic cooling applied to
7yb* jons co-trapped with the 3"Ba™ qubit ions. The
1Y * ion is chosen because of similar mass to 3" Ba™
and for the established and straightforward methods for
qubit control and state measurement [37]. The cooling is
performed with lasers tuned near the S/, to Py /o tran-
sition of 1"'Yb* at 369 nm.

To load ions into the QCCD, we photoionize both
species from cold atomic beams produced by an atomic
source similar to Ref. [10], based on a neutral atom
magneto-optical trap (MOT) [38, 39]. Other hardware
details, including implementation of all quantum opera-
tions are described in the Appendix.

C. QCCD operation

In this section, we describe how Helios executes quan-
tum programs using the operations depicted in Fig. 2.
An arbitrary quantum program is decomposed into ion
transport and quantum operations. These operations are
not pre-planned but instead executed with a new real-
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FIG. 3. Three types of measurements are available in all 8
quantum operation zones. All measurements are made with
the target ion displaced from the RF null to reduce stray
light interacting with non-measured ions [40] as shown with
double arrows. (a) Standard measurement occurs when the
user specifies a measurement but not for all the qubits in
the batch. (b) Protected measurement occurs when the com-
piler detects an entire batch of qubits will be measured, such
as at the end-of-program measurement. Protected measure-
ment performs the D5, mapping operations on both qubits
prior to state detection such that crosstalk from 493 nm de-
tection light does not affect the measurement outcome. (c)
User specified ternary measurement allows the user to obtain
a result of 0, 1, or L. In this case, each qubit state amplitude
is mapped to different parts of the Dj/, manifold [41] and
any remaining population in the Sy, population (represent-
ing leakage errors) is measured via induced fluorescence with
the 493 nm and 650 nm lasers. Afterwards, a series of pulses
independently maps each state amplitude back into the S/,
and D3/, manifolds allowing measurement of the qubit state
(0 or 1). Ternary and protected measure can be combined
when an entire batch is measured. (d) Energy level diagram
for 1¥"Bat with S, /2 ground state manifold used for storage
and quantum operations and the D5/, used during measure-
ment.

time and dynamic classical control software called “He-
lios runtime”, which is described in detail in Sec. 11 D.

Tons move through the trap using transport opera-
tions from four categories: shift, split/combine, junction
transport, and rotate. Shift operations translate ions
along linear sections in the cache, quantum logic, and
leg storage regions. These operations can move both two-
ion Ba—Yb (BY) and four-ion Ba—Yb—Yb—Ba (BYYB)
crystals. Split (combine) operations separate (merge)
BYYB (BY and YB) crystals in the eight operation
zones. Junction exit (enter) operations move crystals
from (into) the junction into (from) the desired leg in
the cache with the desired order, BY or YB. Rotate op-
erations collectively move crystals in the ring clockwise
or counterclockwise.

Programs use these transport operations to move
qubits between the memory and processor regions of the
trap. This cycle occurs during a single layer in a program,
in which qubits are removed from ring storage, processed
in batches within the quantum logic region, and then re-
turned to ring storage. Every program begins with qubits
in a default configuration: 8 BYYB crystals in the quan-

tum logic region and 82 BY crystals in ring storage. Each
layer contains up to 7 batches, with a maximum of 16
qubits per batch.

Using appropriate ion-to-qubit assignments, quantum
operations immediately begin on the qubits already in
the eight operation zones with individual addressing op-
erations occurring first: state preparation (or reset), 1Q
gates, and measure operations. Next, if 2Q gates are re-
quired, the BY and YB pairs associated with each zone
are combined to BYYB crystals and ground-state cool-
ing begins. In parallel with cooling, qubits for the next
batch of gating are moved from the ring storage to the
cache. This parallel sorting with ground state cooling
allows cooling and gating cycles to run nearly continu-
ously, as the next batch of qubits is ready to shift in as
the current batch finishes operations.

Unlike 1Q, reset, and measure operations, 2Q opera-
tions are executed in only four of the eight quantum logic
zones (second and fourth zones on top and bottom legs
as shown in green in Fig. 2b,e). To perform 2Q gates on
all 8 qubit pairs, the qubits are first merged and cooled
as 8 four-ion crystals in all operation zones and then 2Q
beams are applied in the four 2Q) operation zones. Im-
mediately after executing the 2Q gates, the four-ion shift
operation moves all crystals over by one zone (the crys-
tals in the right edge operational zones are split to BY
and YB pairs and then shifted into the storage legs).
We then apply a small (~300 us) additional amount of
cooling to remove any energy gained from the shift op-
eration and then gate the remaining four crystals. The
2Q gate operation itself requires approximately ~70 us
to execute.

After executing quantum operations, a batch is com-
plete: its qubits move to leg storage, while qubits in the
cache shift to the quantum logic region. This process
repeats until all qubits requiring operations have been
processed. Lastly, all qubits move from leg storage to
the ring, and the cycle begins for the next layer.

Fig. 4a shows timing estimates and a breakdown of op-
erations per layer for a representative program on Helios.
The program is constructed as a sequence of 10 layers,
in which qubits are randomly paired and receive 1Q and
2Q gates each layer. We define the “depth-1 time” as the
time required to perform the random pairing and 1Q and
2Q) gates in a single layer, and use this time as our charac-
teristic figure of merit for processor speed. We estimate
the average depth-1 time by measuring the duration of
the depth-10 program and dividing it by the number of
layers to average any fortunate sort cases, resulting in an
average of 55 ms per layer. To illustrate how program
details such as 2Q gate density and qubit connectivity
impact depth-1 time, we present timing results in Fig. 4b
for three example programs as a function of the number
of active qubits (for more details, see App. A2).
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FIG. 4. (a) Time budget per layer for an example depth-10 random program that executes 1Q and 2Q gates on all 98 qubits
after an arbitrary permutation each layer, broken down into three categories: ion transport; ground-state cooling; and quantum
operations (1Q and 2Q gates). (b) Total time per layer versus number of active qubits for three programs: a random program
with fully dense 2Q gates, the same random program with approximately half the 2Q gate density, and a program with 2D
nearest-neighbor 2Q gate pairing. For the two random programs, solid points represent the mean of 10 program instances;

hollow points show the individual values.

D. Real time compilation of sorting and gates

To realize the full capability of the Helios QPU, the sys-
tem must be capable of executing arbitrary quantum pro-
grams efficiently, including dynamic quantum programs.
Optimal decision making for dynamic quantum programs
requires a new classical control hardware unit and soft-
ware compilation stack. This new stack both allows for
real-time qubit routing decisions and increases the level
of abstraction of quantum programs—mirroring the way
classical computers advanced from writing assembly code
to writing high-level programs.

In particular, Helios is the first trapped-ion QPU to
translate operations on a program’s “virtual qubits” [42]
into operations on corresponding physical qubits on the
device in real time—that is, while the program is exe-
cuting and quantum state is live. This is enabled by
the Helios runtime, whose responsibility is to efficiently
map virtual qubits to physical qubits on the device and
turn declarative gates on virtual qubits into operations
on physical qubits. This runtime enables state-of-the-
art user programming constructs for use on a quantum
computer (functions that can allocate and de-allocate
qubits depending on the control flow of the program),
early termination of programs based on mid-circuit mea-
surement or arbitrary classical logic, and classical con-
trol flow such as if-then-else statements, for loops, and
while loops. This is in stark contrast to the way most
gate-level quantum programs, commonly referred to as
“dynamic circuits” [43], are written right now—as a
flat series of gates with conditional gates conditioned on

measurements. Many of the Guppy [44] programs for
the applications discussed in Sec. III use some of these
features. Additionally, any programming language com-
piling to QIR such as Q# [45], qiskit [46], Open QASM
2.0/3.0 [47, 48], cirq [49], and CUDA-Q [50] can use QIR
adaptive profile features to implement these control flow
constructs for programs executing on Helios.

An example of high-level operations enabled by the
Helios runtime is the “gate streaming” used in [51]. In
the Guppy program executed on Helios for this work, a
section of the program performs a remote-procedure-call
out to a classical server that is separate from the con-
trol system but which is allowed to communicate to the
control system via a networking interface [52]. The infor-
mation transmitted to the control system by the classical
server is the measurement basis for each qubit. If a qubit
needs no change in measurement basis then the runtime
receives no 1Q gate to apply before measurement. In the
case that a whole row of BY or YB crystals on the top
or bottom legs needs no basis change, the Helios run-
time will not perform any extraneous transport to ad-
dress these qubits. Importantly, this reduces the overall
shot time, improving the critical latency times in that ap-
plication. Efficient gate streaming would be impossible
without the real-time identification of qubits provided by
the runtime.

The core responsibilities of the Helios runtime are the
following: (1) receive qubit allocation requests on virtual
qubits and resolve them to physical qubits; (2) receive
gating requests on allocated virtual qubits; (3) trans-
form requested gates on sets of virtual qubits into parallel
operations on as many physical qubits as can fit in the



quantum operation zones; and (4) transport batches of
physical qubits from the ring into these zones, referred
to as a “sort”.

Responsibility (1) is performed using a model of the
physical QPU state as the program runs and determining
efficient mappings from virtual qubits to physical qubits.
Responsibilities (2) and (3) are performed by identifying
which quantum logic operations can be done in parallel
by storing them in sets contained in a data-structure we
refer to as a “slice”. Sequences of slices are accumulated
into another data-structure that drives the sorting of each
slice to execute the quantum logic operations within. Re-
sponsibility (4) is performed by doing an O(n) traversal
over the ring storage to determine which two pairs in a
slice have qubits closest to the cache. The runtime then
assigns one pair to move to the top leg and the other
to the bottom. Subsequently, the algorithm determines
the smallest number of rotations needed to move the two
pairs into BYYB crystals in both legs. This process is
visualized in Fig. 2. This process repeats until either
enough pairs are moved into the cache to fill a batch, or
until no more pairs need to be sorted. Finally, the run-
time dispatches the calculated sort by generating these
operations as a queue of commands to lower-level control
system software for performing transport operations and
parallelized cooling as outlined in ITC. After all of the
quantum logic operations have been executed in a given
slice via repetitions of this sort, transport is generated
to return the qubits back into the ring storage—and the
sorting algorithm repeats for subsequent slices.

III. BENCHMARKING
A. Overview

To see how Helios performs in practice and understand
current limitations, we characterize individual operations
with component-level benchmarks and full-device oper-
ation with system-level benchmarks [10]. Operations
include SPAM, 1Q and 2Q gates, mid-circuit measure-
ments and resets (MCMRs), and qubit idle during ion
transport. We perform two separate system-level bench-
marking experiments [53-58], both of which are exam-
ples of volumetric benchmarks [54]. The first involves
random Clifford circuits with MCMR, which can be sim-
ulated classically. We include MCMRs, unlike most prior
work, because they are necessary for quantum error cor-
rection. The second experiment is mirror benchmarking
of random circuit sampling (RCS), which is an appealing
benchmark because the quantum computational power
can be measured by the classical simulation cost. The
use of mirroring allows for estimating the circuit fidelity
where classical simulation is unfeasible.

In the following, we first describe the component-level
benchmarks in Sec. III B, with a summary of the results
given in Tab. II. We then present our system-level bench-
mark results with a detailed comparison to the prediction

from the component-level benchmarks in Sec. ITI1 C.

Component Metric Value (x10~%)
SPAM (standard) Average error 4.8(6)
SPAM (ternary) Average error 17(1)
1Q gates Clifford avg. infidelity 0.25(1)
2Q gates Avg. infidelity (2QRB) 7.9(2)
2Q gates Avg. infidelity (CB) 8.1(2)
Transport idle Linear memory error rate 5(1)
Transport idle Quadratic memory error 0.7(2)
parameter
MCMR crosstalk Avg. infidelity (global) 0.48(1)

TABLE II. Component-level benchmark values, averaged
over all operation zones.

B. Component-level benchmarks
1. State-preparation and measurement

It is difficult to differentiate state preparation errors
from measurement errors [59], although from detailed
modeling of "Bat qubits we expect state preparation
errors to be the largest contributor [32].

We measure SPAM errors by preparing 16 qubits in the
8 operation zones in the |0) or |1) states, and measuring
each qubit. For any given shot, the state preparations are
randomized among the different qubits, but we ensure
that each qubit is prepared in each state for the same to-
tal number of shots. We run two experiments: standard
measurement that ideally differentiates |0) from |1) but
falsely returns |1) in the event that the qubit has leaked,
and a ternary measurement, shown in Fig. 3c, that ide-
ally differentiates |0), |1), and leaked states. For both
experiments, we take 4000 shots per state preparation.

For the standard measurement, we measure errors of
8(1) x 10~* and 1.6(5) x 10~* when preparing |0) and |1),
respectively. Because this measurement protocol mis-
takenly detects leaked states as |1), the reported error
for preparing and measuring |1) will not catch all errors
[32]. For the ternary measurement, we find an average
leakage probability of 4.2(7) x 1073, and in the event of
non-leakage we measure SPAM errors of 7(1) x 10~% and
2.8(2) x 1073, for |0) and |1), respectively. Although the
ternary measurement reveals more information as it can
detect leakage, it also has a larger SPAM error due to
a larger number of shelving pulses involved. The SPAM
errors reported in Tab. I are averaged between the two
state preparations.

2. Single-qubit gates

Single-qubit gate errors are primarily caused by spon-
taneous emission during the Raman gate, laser phase and
intensity noise, and finite qubit coherence. Importantly,
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spontaneous emission causes leakage outside of the com-
putational subspace. We quantify 1Q gate errors by Clif-
ford randomized benchmarking (RB) [60], with details
provided in App. A3 B.

We follow the methods in Ref. [61] to account for leak-
age in the 1Q infidelity estimate. The ternary mea-
surement allows us to measure the leakage population
at the end of every circuit without the use of ancilla
qubits (as was done in Ref. [10]). We estimate the
rate of leakage per 1Q Clifford r; by the rate at which
the measured leakage population increases with sequence
length. The probability of observing the expected com-
putational state decays exponentially due to non-leakage
errors as p(l) = A(1 —r)! 4+ 1/2 for sequence length [.
The reported 1Q error is the Clifford average infidelity
€avg,1Q = 1"/2 +rr [61]

Figure 5 shows the survival probability and the leaked
population as a function of [, for all 16 qubits in the
8 operation zones. We obtain a zone-averaged 1Q er-
ror of 2.5(1) x 1075, which includes a leakage rate of
1.12(6) x 1075. The error bars represent a 1-sigma con-
fidence interval obtained from bootstrapping [62]. The
leakage rates and infidelities for each individual qubit
are given in Tab. Al. The measured errors can be com-
pared with our predictions from physical error models of
2.6(6) x 107° that account for measured laser intensity
noise, calculated spontaneous emission, and measured
memory error.

Finally, we ran a statistical hypothesis test for corre-
lated errors in the simultaneous 1QRB data. An error
channel on multiple subsystems is correlated if it can-
not be factored into a tensor product of individual error
channels on each subsystem, and such correlated errors
are a signature of crosstalk. We found no evidence of cor-
related errors at the 95% confidence level (see App. A3 A
for analysis details).

3. Two-qubit gates

Errors in the Rz 7(0) gates are caused by spontaneous
emission from the Raman lasers and experimental imper-
fections including laser phase and intensity noise at the
ion’s position, thermal motion of the ions, voltage noise
on the electrodes, and imprecise calibrations of the gate
parameters. We validate the performance of the maxi-
mally entangling Rzz(mw/2) gate (referred to as the 2Q)
gate) using both Clifford 2QRB and cycle benchmark-
ing (CB). Additional details of each implementation is in
App. A3B.

We again follow the methods in Ref. [61] to account
for leakage in the 2QRB infidelity estimate. The leaked
population versus sequence length is used to extract a
leakage rate per Clifford, which is rescaled into a leak-
age rate per 2Q gate 71, 20, using the fact that there are
1.5 2Q gates per 2Q Clifford on average. We fit the sur-
vival probability of the remaining population to the decay
model p(l) = A(1—7)"+1/4, and the average infidelity of
the non-leakage error component per Clifford is given by
3r/4, which is rescaled into an average infidelity per 2Q
gate of /2. The average infidelity per 2Q gate (including
leakage) is then computed as €qy4,20 = r/2+ 1L 2g. We
note that our rescaling of the error per Clifford into an
error per 2Q neglects the errors from 1Q gates and mem-
ory errors during the 2QRB sequence, which we estimate
to contribute 1.2(2) x 10~ per 2Q) gate.

The experimental 2QRB data is shown in Fig. 6.
We obtain a zone-averaged 2Q infidelity of equg20 =
7.9(2) x 10~%, which includes a leakage rate of rp 29 =
2.4(1) x 10~%. The leakage rates and infidelities for each
individual qubit pair are given in Tab. A2. The leakage
errors arise both from spontaneous emission error, which
we measure to be 1.0(2) x 10~% in agreement with the
model of [63], and from the leakage memory error (dis-
cussed in Sec. IIIB4). In total, we expect leakage to
contribute 1.7(2) x 10~% of the error.
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up to unlearnable degrees of freedom, for the 8 operation zones.

Our measured value of 7.9(2) x 10~* can be compared
to a total expected error per 2Q gate of 3.5(4) x 1074,
which we predict from an error budget consisting of spon-
taneous emission errors, memory error, and 1Q pulse
errors plus other characterized experimental sources of
noise such as laser phase and intensity noise, thermal mo-
tion of the ions, and imprecise calibrations. The discrep-
ancy of the measured 2Q error with predicted value could
be explained by a number of factors including higher leak-
age error in the operational zones due to finite extinction
of the resonant detection beams present, non-thermal
motional distributions, crosstalk, or other unaccounted
for effects.

Just as with the 1QRB data, we performed a statisti-

cal test for the presence of correlated errors in the 2QRB
data and found no significant evidence of correlated er-
rors across the qubit pairs (see App. A3 A for details).

We also perform two-qubit cycle benchmarking
(2QCB) [64] to estimate a partial Pauli error model for
the 2Q) gate in each operation zone, with the experimen-
tal and theoretical details supplied in App. A3B. Fig. 7
shows the expectation value decays and estimated Pauli
error channels, for each qubit pair. We find the zone-
averaged infidelity is 8.1(2) x 10~4, which includes a leak-
age rate of 1.14(4) x 107, and is dominated by IZ and
Z1 errors. We note that our estimate of leakage rate per
2Q gate from 2QCB is about a factor of two smaller than
the estimate from 2QRB.
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4. Transport idle memory errors

Qubits idle during ion transport and cooling and incur
memory errors due to spatiotemporal magnetic field inho-
mogeneities, with their impact being heavily dependent
on the circuit structure and its specific transport sched-
ule. As a figure of merit we define the depth-n memory
error to be the average infidelity per qubit after randomly
pairing all qubits, performing the transport and cooling
operations that would be required to apply 2Q gates on
all pairs (but no actual gate operations), and repeating
this process n times.

We measure memory error with a variant of 1QRB that
interleaves random transport between 1Q Clifford gates,
referred to as transport-1QRB [10, 65]. Our method here
differs from Ref. [10] in that we partition the 98 qubits
into groups where the qubits in each group have a ran-
dom 1Q Clifford operation applied after every k rounds
of depth-1 transport operations as shown in Fig. 9. The
qubits in the different groups will have a different amount
of transport and idle time between Clifford operations,

which allows us to extract how memory errors scale with
the number of depth-1 transport operations for random
circuits.

We run transport-1QRB circuits on the 98 qubits with
one Clifford between every k € {1, 2,4, 8} transport oper-
ations Additionally, we use the ternary measurement to
extract any leakage errors during transport. Fig. 8a and
b show the measured decay in transport-1QRB for com-
putational and ternary measurements respectively. The
decay curves are clustered into 4 groups determined by
k. By fitting the decay curves and accounting for the
leakage rate using the same procedure as in Sec. 11 B 2,
we obtain the Clifford infidelity for each qubit.

Fig. 8c shows a plot of the Clifford infidelity as a func-
tion of the number of depth-1 transport operations, av-
eraged over all qubits in the corresponding group. The
expected scaling of memory error with delay time varies
depending on the time scale of the noise sources [66]. For
this reason we fit the memory error versus [ to a quadratic
equation a + bl + cl?> where b and c capture the linear
memory error rate (from fast noise) and quadratic mem-
ory error parameter (from slow noise), respectively [65].

From the fit to the data, we infer a linear memory
error rate of 5(1) x 107* and a quadratic memory error
parameter of 7(2) x 107>, We find that the leakage error
scales linearly with the number of transport operations,
with a rate of 4.0(2) x 10~ and accounts for nearly all
of the linear memory error. The expected coherent error
from typical drift in magnetic fields between calibrations
(every ~ 5 s) of approximately 10 uG is 3 x 1075 in a
depth-1 circuit. The remaining coherent error may be
explained by imperfections in the phase tracking routine
or other unaccounted sources of noise.
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horizontal lines indicate the global average infidelity which is the mean crosstalk error for all 97 spectator qubits.

5. Mid-circuit measurement and reset crosstalk

MCMR causes crosstalk errors on un-measured or un-
reset qubits that absorb stray measurement or reset light.
The resulting spontaneous emission can lead to bit-flip,
leakage, or dephasing errors.

We measure MCMR crosstalk errors by partitioning
the 98 qubits into target qubits that are measured and
reset repeatedly. Spectator qubits are prepared in the
|0) or |1) and we use the ternary measurement at the
end. The combination allows us to differentiate bit-flip
rates from leakage rates to get a more detailed picture
of the crosstalk error channel. The test was repeated for
individual target qubits in the operation zones to illus-
trate the structure of MCMR crosstalk errors as shown
in Fig. 10. Further details are provided in App. A3 B.

It is clear that ions sitting adjacent to the 493 nm
lasers applied to the target ion (in the same zone or
neighboring zone above/below as shown in Fig. 2e) have
much larger crosstalk errors. We distinguish between lo-
cal (three ions that are laser-adjacent) and global (all
97 spectators) crosstalk, reporting per MCMR average
crosstalk infidelities 2.1(1) x 107* and 4.8(1) x 1075, re-
spectively. The linear memory error rate (see Table II)
contributes background leakage at a per MCMR rate of
roughly 9(2) x 1076 to the measured average infidelities.

C. System-level benchmarks
1. Random Clifford circuits with mid-circuit measurements

To test the ability of Helios to execute arbitrary 98-
qubit circuits using all primitive components, we run
circuits with layers consisting of random Clifford 1Q
and 2Q gates and MCMRs. Ref. [67] introduced cir-
cuits with random Clifford layers as a scalable system-
level benchmark called binary randomized benchmarking
(BiRB). An extension allowing for MCMRs was given
in [68], called quantum instrument randomized bench-
marking (QIRB). Our circuits are constructed similarly
to Ref. [68] with a few small modifications. An example
circuit diagram is shown in Fig. 11.

In our implementation, a length [ circuit on N qubits
with n,, MCMRs per layer consists of the following for
each layer:

e A distinct uniformly random 1Q Clifford is applied
to each qubit.

e The N qubits are uniformly randomly paired into
| & | qubit pairs, and the 2Q gate Rzz(m/2) is ap-
plied to each pair, with Pauli-twirling applied to
the 2Q gates.

e A uniformly random subset of n,, qubits are sam-
pled, and for each qubit a 1Q Clifford is applied to
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stabilizer S is chosen and evolved through the circuit to de-
termine a binary outcome (success or failure) for each shot.

prepare a measurement in a particular Pauli basis,
followed by an MCMR operation.

To classically verify correct circuit outputs, we track a
random initial stabilizer through the circuit, as explained
in App. A3C. The parity of the evolved stabilizer de-
fines a success/failure trial. For the purpose of fidelity
estimation, the average success probability is rescaled
into a quantity called the polarization [67], defined as
Ypol = 2Psuce — 1. A polarization of 1 corresponds to per-
fect success, whereas a polarization of 0 corresponds to
50% success, or random guessing. A plot of ypor(l, 7m)
versus [ for different values of n,, is shown in Fig. 12a.
Let F(n.,) be the process fidelity per circuit layer as a
function of n,,. We estimate F'(n,,) by fitting the polar-
ization to an exponential decay model.

Figure 12b shows a plot of F(n,,) versus n,,. We note
that the layer fidelity actually increases slightly (with
overlapping error bars) as n,, increases from 8 to 16.
This is explained by the fact that a batch of 16 mea-
surements in the operation zones utilizes the protected
measure scheme (explained in Fig. 3b), which protects
against MCMR crosstalk in the operation zones.

To see whether the results are consistent with our com-
ponent benchmarks, we first compute an effective 2Q gate
error €xg from the n,, = 0 data, using

F(nm = 0) = (1 - 5eaq/4) L 5], (1)

where the factor of 5/4 comes from the conversion be-
tween process and average fidelity [69]. The effective
2Q gate error includes errors from 2Q) gates, 1Q gates,
and memory errors, and it can be thought of as the infi-
delity of a 2Q depolarizing channel that would best fit
the data in the absence of all other errors. We find
€ag = 2.0(3) x 1073, whereas an accounting of 2 and
memory errors from Tab. II predicts 2.2(1) x 1073 (see
Sec. A3 C for details).

We next compute effective MCMR, errors €, for the
n., = 8 and n,, = 16 data, using the heuristic formula

Fnm) = (1 - 5e20/4) 71 (1 = 3epr/2) (2)
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together with our computed value of ezg. We find
err(y = 8) = (2.6 £ 1.3) x 1073 and epr(n, = 16) =
1.0(7) x 102, By comparison, adding the component-
level SPAM error and the MCMR crosstalk error, we pre-
dict effective MCMR errors of 2.2(1)x1073 and 1.7(1) x
1073 for n,, = 8 and n,, = 16 (see Sec. A3C for de-
tails). We conclude that the data from our random Clif-
ford with MCMR circuits is consistent with our mea-
sured component-level 2Q error, but tighter error bars
are needed to assess the consistency of the effective
MCMR errors. We remark that our method of compari-
son is heuristic and a rigorous methodology for compar-
ing component-level to system-level benchmarking per-
formance is an open problem.

2. RCS mirror benchmarking

Random circuit sampling (RCS) is a system-level
benchmark assessing how effectively a quantum com-
puter can generate computationally complex quantum
states [1]. Like BiRB, RCS probes the extent to which
quantum circuits obtain the performance expected from
component-level benchmarks. At the same time, be-
cause the classical difficulty of sampling from the out-



puts of random quantum circuits has been extremely
well-studied over the last decade [70], RCS provides a
well-vetted benchmark for the computational power of a
quantum computer.

Leveraging the arbitrary connectivity of the Helios
quantum computer, we consider RCS with circuit ge-
ometries constructed from colorings of random-regular
graphs [3]: A layer depth-/ random circuit is constructed
by interleaving [ layers of 2Q Rz (7/2) gates (each layer
containing N/2 2Q gates) with [ + 1 layers of Haar-
random 1Q gates (each layer containing N 1Q gates).
While the fidelity of such circuits can in principle be
inferred by running them and performing cross-entropy
benchmarking [72], evaluating the cross-entropy requires
exact simulation of the circuits in question and is infeasi-
ble except for small depth or qubit number. To estimate
the expected state fidelity in RCS (and therefore the an-
ticipated performance in cross-entropy benchmarking),
we follow the strategy of Refs. [3, 73-76] and infer the fi-
delity of a layer depth-[ circuit by computing the return-
probability Fysp of a “mirrored” layer depth-1/2 circuit,
with the second (mirrored) half of the circuit employing
randomized compiling to prevent unintended cancellation
of coherent errors. The randomness for randomized com-
pilation is sampled in real-time at the start of each shot,
and the corresponding random 1Q gates are compiled on
the fly (with the existing Haar-random 1Q gates), re-
sulting in only one physical 1Q gate per qubit per layer.
Following Ref. [3], we also initialize each mirrored cir-
cuit into a random computational basis state to prevent
unequal SPAM errors between the two basis states from
biasing the fidelity estimate. At each depth, we execute
between 1000 and 2500 shots spread evenly across 100
random circuit connectivities.

The fidelity of RCS as a function of depth inferred in
this manner is reported in Fig. 13a. We perform a least-
squares best fit to the gate-counting model from [3],

5 \N(-
Fae(l) = (1 = pepam)N (1 — 1€20)” (= (3)

Here, N =98, § = 1.12 is a correction to effective circuit
layer depth from boundary effects in mirror circuits [3],
Dspam 18 the effective SPAM error, and eaq is the effective
average 2Q error rate, which includes effects from 1Q,
2Q, and memory errors as in the previous section. From
the fit, we estimate pspam = 5.3(51) x 107* and eaq =
2.00(6) x 1073, This effective 2Q error is also consistent
with the estimate obtained from random Clifford circuits
as well as component benchmarks reported in Table II.
Heuristic estimates of the classical cost of drawing sam-
ples from forward circuits at the same depths is shown in
Fig.13b. The reported costs are for optimized tensor-
network contraction assuming so-called “embarrassing
parallelization” (via slicing) into independent computa-
tions involving various amounts of available memory, and
were obtained using (sliced) simulated annealing built
into cotengra [77]. We note that the contraction-cost
optimization performed here is only approximate, and
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FIG. 13. (a) Fidelity of N = 98 mirrored RCS circuits as
a function of circuit depth (red). The best-fit gate-counting
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exponential decay with depth. (b) Estimated cost of classical
sampling via tensor-network contraction from RCS circuits of
varying depth on both H2 (purple) and Helios (teal). The
left axis reports time in years required to draw a single sam-
ple by tensor-network contraction on a state-of-the-art su-
percomputer (achieving about 10'® FLOPs per second). The
right axis shows the required power (assuming state-of-the-art
GPU power efficiency of roughly 10'* FLOPs/W) to perform
contraction-based sampling at the same rate that Helios can
draw samples. Costs are quoted across different assumptions
on the total memory footprint of the contraction (in a similar
fashion to [71]), corresponding to the cotengra contraction
width W. Triangles show costs assuming access to unlimited
memory (W = o0), which saturates at large depths to the
~ 2" scaling of statevector simulation; squares (W = 54) al-
low use of all external storage of the Frontier supercomputer,
while diamonds (W = 49) restrict to the available memory on
Frontier, and circles (W = 30) correspond to spreading the
slices independently among state-of-the-art GPUs. Shaded
bands indicate the range of costs obtained over 5 random cir-
cuit instances at each depth, with the markers indicating the
median cost.

the costs could certainly be mildly improved by provid-
ing the optimization heuristics with more computational
power. However, we do not expect such improvements



to change the overall conclusion that Helios can produce
states at high global fidelity for which the (classical) sam-
pling cost is vastly beyond the capabilities of existing
supercomputers.

IV. OUTLOOK

In this manuscript, we reported on how Helios operates
and its current performance. Even at this early stage in
its lifecycle, Helios exhibits state-of-the-art capabilities at
the scale of ~ 100 qubits. Like its predecessors Quantin-
uum H1 and H2, we expect Helios’s performance to im-
prove over time. Examples of relatively straight-forward
performance improvements include: (1) fewer gate errors
as our two-qubit gate error model suggests the 2Q gate
error could be cut in half, (2) smaller memory errors us-
ing dynamic decoupling strategies [78] and (3) reduced
circuit times from both faster transport operations [79-
81] and better compilation methods.

Beyond these performance improvements, increasing
clock speed is one scaling challenge for the QCCD plat-
form. In this work we begin to address this issue through
a fundamental architectural shift by parallelizing op-
erations [17]. Previous generations, H1 and H2, used
the same space for ground-state cooling and gating op-
erations, with cooling operations being up to two or-
ders of magnitude slower [9, 10]. Helios, on the other
hand, spreads the cooling operation over space to al-
low ions to spend less time in the zones used for 2Q)
gates. By increasing the ratio of cooling zones to gate
zones, future QCCD-based QPUs can optimize the pro-
cessor zone complexity while simultaneously increasing
the clock speed.

While we do not yet fully understand the power or lim-
itations of Helios, the combination of a new qubit choice,
device architecture, and control software runtime already
represents significant progress in the push for more pow-
erful devices, scalable architectures, and capabilities for
fault-tolerant computation. Helios is far beyond the sim-
ulation abilities of classical computers, as evidenced by
the RCS demonstration described above, and well poised
to expand upon the set of tasks best suited for con-
temporary quantum computers. Indeed, as reported in
Refs. [51, 82, 83], Helios is already enabling advancements
in quantum simulations of superconductivity and in cryp-
tographic protocols to generate certified randomness.

Looking further ahead, the successful integration of the
four-way junction paves the way for much larger QCCD
processors. Junction-based architectures should allow
QCCD machines to maintain all-to-all connectivity for
large numbers of qubits, opening the design space for
fault-tolerance to high-efficiency encodings [84], transver-
sal logic [85, 86], low-overhead magic state factories [87],
and single-shot error correction [88-90].
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APPENDICES
Al. HARDWARE DETAILS
A. Quantum logic

For 2Q gates, we create a Mglmer-Sgrensen|[30] inter-
action by using pairs of Raman beams aligned at 90 de-
grees to each other with the 5k aligned along the axes
of BYYB crystals, and we use the axial stretch mode at
1.86 MHz to couple the internal states of the ions. The
uncontrolled optical phase of the gate is removed using
wrapper pulses to generate a ZZ interaction [9, 31]. 2Q
gates can be performed in four of the operation zones.

As in Ref. [32], state-preparation uses narrow-band op-
tical pumping by driving S/, leakage states first to Ds /o
with a narrow linewidth 1762 nm laser, and then to P39
F = 0 using 614 nm light where it will decay back to
S1/2 leading to population accumulation in the qubit sub-
space. The measurement protocol begins by transferring
the [F,mp) = |1,0) qubit state to the D5/, manifold
(shelving) with the 1762 nm laser, and population re-
maining in the S; /o manifold is measured with resonant
fluorescence. We reduce measurement crosstalk by shelv-
ing all qubits located in the quantum logic region before
measurement if an entire batch of 16 qubits is to be mea-
sured, called “protected measure.” Furthermore, the end
user can also choose to shelve both |1,0) and |2,0) qubit
states and check for leakage out of the qubit subspace,
called “ternary measure”, and then measure the qubit
state by de-shelving one of the qubit states and apply-
ing resonant light to check for fluorescence. The ternary
measurement doubles the measure time as shelving-and-
detect needs to be performed twice. All shelving opera-
tions use multiple pulses (cabinet shelving) with different
final states to exponentially reduce population transfer
errors.

B. Ground state cooling

For the "1Yb* coolant ion, the nuclear spin I = 1/2
allows for a fast frequency selective state-preparation
scheme not reliant on a particular polarization [37]. For
ground state cooling, we use counter-propagating lin-
perp-lin Raman beams aligned at 45 degrees to the crys-
tal axis to get a 5k projection on all three principal axes
(the radial modes are rotated so as to not be orthogo-
nal or parallel to the trap surface). The parallel cooling
is achieved using 5 pairs of Raman beams detuned from
the Si/p to Ppjp transition near 369.4 nm. The laser
beam angles are aligned to 45 4 0.2 degrees with respect
to the storage legs such that the beams can simultane-
ously intersect an operational zone in each leg. The beam
waist focii are positioned between the two zones so each
zone has the same beam waist and intensity. Carrier
Rabi rates of up to 1 MHz are achieved in all zones for

random qubit
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FIG. Al. Example four-qubit program where all qubits are
arbitrarily permuted and receive 1Q and 2Q gates each layer.

the cooling operations. In this configuration, we perform
sideband cooling sequences to achieve ground state cool-
ing times of approximately 3 ms [9].

C. Qubit frequency calibrations

Helios operates with an externally imposed bias field
of 3.95 G, making the qubit states approximate clock
states, meaning they are naturally robust to magnetic
field fluctuations with a second-order field coefficient of
488.8 Hz/G? (at zero field they become true clock-states
that are insensitive to magnetic fields up to second order).

Variations in the qubit frequency arise primarily from
the slow drift of magnetic fields at the level of ~ 200 uG
(over 24 hrs) and their gradient, as well as varying AC
Zeeman shifts of the clock transition in *"Ba* from the
trap RF current. To mitigate these effects, we employ
a real-time spatial phase tracking routine [85]. The rou-
tine gets corrections to the reference qubit frequency from
measurements of the average magnetic field in the quan-
tum operation zones and the spatially-varying magnetic
field in all 277 wells. After these calibrations, the routine
applies the appropriate corrections to 1Q operations.

A2. PROGRAM PROFILING

To profile programs written in Guppy (see Sec. 11 D),
the compiled code is executed on a real-time control sys-
tem simulator. Although this simulator is separate from
Helios, it accurately captures timing information by us-
ing the same compiler, real-time software, and system
settings used on Helios.

In Fig. 4b of the main text, we present timing results
for three example programs run on the control system
simulator. The first two programs consist of 1Q and 2Q
gates executed on arbitrary qubit pairs, which are ran-
domized each layer. Fig. Al illustrates their structure
using an example four-qubit program with four layers.
To get an accurate estimate of the time per layer, we



Rotate (18.2 ms)

B Global Shift (7.9 ms)

B Four-ion Shift (1.7 ms)
Other Shifts (4.3 ms)
Split/Combine (4.1 ms)
Junction (4.5 ms)

mmm Static (0.3 ms)

FIG. A2. Timing breakdown of transport operations for a
single layer of the 98-qubit program profiled in Fig. 4a of the
main text. Operations are broken down into the five cate-
gories described in Sec. 11 C, plus four additional ones: global
shift operations that collectively move ions in the cache, quan-
tum operation, and storage leg regions; four-ion shift opera-
tions; all other shift operations; and static operations that do
not move ions.

exclude reset and measure operations that occur during
the first and last layers of the program. We reduce the
density of 2Q) gates to roughly half by randomly selecting
qubit pairs and gate them such that the 2Q) gates occur
Ld%J times per layer where N is the number of active
qubits in the program and d =1 (d = %) corresponds to
fully (half) dense.

For the fully dense random program, Fig. A2 shows a
breakdown of the transport operation times per layer.
Ring rotations dominate, while global shifts are the
second-largest contributor. Future work will focus on
reducing the total time spent on transport operations,
thereby improving the depth-1 time. For example, com-
piler optimizations can reduce the number of transport
operations in a program, while improvements in trans-
port operation speed can lower their execution time.

The third program we profile uses 2D nearest-neighbor
qubit pairing, which reflects common use cases such
as quantum error correction and quantum simulation.
While similar to the previously discussed example, this
program restricts qubit pairings to one of four possible
configurations on a square grid of qubits described as fol-
lows. Configurations (1) and (2) define horizontal pair-
ings that alternate by row such that in (1), even rows
pair adjacent qubits starting at the first column, while
odd rows start at the second column; configuration (2)
reverses this pattern. Configurations (3) and (4) follow
the same alternating pattern but for vertical pairings, al-
ternating the starting row by column parity: (3) starts at
the first row for even columns and the second row for odd
columns, while (4) reverses this pattern. Each layer in
the program applies one of these pairing configurations,
cycling through all four configurations every four layers.
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A3. BENCHMARKING DETAILS

A. Correlated Error Analysis for randomized
benchmarking

In this section, we detail our method for identifying
correlated errors in simultaneous 1QRB and 2QRB ex-
periments. Our analysis for correlations uses subsystem
RB polarizations. Consider an experiment of k simulta-
neous RB experiments (e.g. qubits in operation zones of
Helios). The result of running a simultaneous RB cir-
cuit consisting of parallel RB circuits on k disjoint qubit
subsets, labeled 1,2,...,k, is described by a k-bit string
$182 .. .8k, where s; = 0 if the bit string outcome of the
RB subexperiment on qubit subset ¢ matches its target
outcome, and s; = 1 otherwise. A subsystem parity zs
for S C{1,2,...,k} is defined as

s = H(_1)5j7

jES

(A1)

and the expected value (zg) is called a subsystem polar-
1zation.

The subsystem decay factor Ag is found by fitting the
empirical values of (zg) to an exponential decay, i.e.
(zs)1 = A, where [ is the circuit depth. In the absence
of correlated errors, \g = ers M. Ag is a Pauli chan-
nel eigenvalue for the twirled error channel produced by
Clifford twirling on the individual qubit subsystems on
which RB is performed in parallel. Each Ag;y is simply
one of the eigenvalues of a Clifford-twirled error channel,
and the total error rate of the channel is %(1 -5,
where n is the number of qubits in the RB subexperi-
ment.

To search for evidence of correlated errors across multi-
ple RB subexperiments, and quantify any such errors, we
start by estimating A(;; for each subexperiment i. Then,
we estimate \A; ;3 for each pair (i,j) of subexperiments
and compute the test statistic

a = log(Ag ;1) — log(Ary) — log(Agy)- (A2)

In the absence of correlated errors between subsystems
i and j, Ay 5y = A3y and so a = 0, and if there are
any correlated error between subsystems ¢ and j, then
Afijy > AiyAgy) and so a > 0. In our analysis, we only
have access to estimates of each Ag, which we denote
by Ag, and a corresponding estimate of a, denoted a.
We therefore compute a and implement a statistical test
to ascertain whether a is large enough to conclude that
a > 0 with at least 95% confidence (an o = 0.05 signifi-
cance). We use a normal approximation for a’s distribu-
tion under the null hypothesis (no correlated errors), with
a standard deviation for this distribution estimated us-
ing a non-parametric bootstrap. As we test for correlated
errors between all k choose 2 pairs of subsystems, we im-
plement our individual hypothesis tests (of whether each

a > 0) at % = % significance (a Bonferroni correc-
2 2
tion). This means that if there are no correlated errors,



we will erroneously conclude there are correlated errors
with at most 5% probability, known as the family-wise
error rate of the hypothesis tests.

We find that none of the a are larger than zero, in
our 95% confidence hypothesis test, indicating no statis-
tically significant evidence for correlated errors. Suffi-
ciently small correlated errors will probably not be de-
tected by this analysis. Using simulations, we can esti-
mate what fraction of the error would have to be corre-
lated error in order for our analysis to detect it. For the
simultaneous 2QRB experiments we find that, given the
estimated RB error rates from the experimental data, a
two-subsystem correlated error would need to constitute
approximately 10% of the total error rate of the con-
stituent subsystems (i.e., contributing 4.3 x 10~* to the
average 2QRB infidelity) to be identified as statistically
significant in our analysis with at least 50% probabil-
ity. For the 1QRB experiments, a correlated error would
need to constitute approximately 50% (i.e., contributing
1.19 x 1075 to the average 1QRB infidelity) of the total
error rate of the constituent subsystems to be identified
as statistically significant in our analysis with at least
50% probability.

B. Detailed component benchmarking data and
experimental details

For component-level benchmarks including 1QRB,
transport-1QRB, 2QRB, CB, and MCMR crosstalk, all
error rates reported in the main text are the average in-
fidelity, defined as follows. Let £ be the error process (a
completely-positive map) for a given operation U, such
that its noisy implementation is given by £ olf. Then the
average infidelity is

ang(€) =1 / @y WIEW) WD IY).  (A3)

where the integral is taken over all pure states in the
computational Hilbert space with respect to the Haar
measure.

1. SPAM

For a,b € {0,1}, let p(a|b) denote the probability of
measuring outcome a given state preparation b. For the
standard measurement, we find p(1/0) = 8.1(1) x 10~*
and p(0|1) = 1.6(5)x10~%. For the ternary measurement,
we find leakage probabilities of p(L|0) = 2.7(8) x 1073
and p(L|1) = 5.7(1) x 1073, and SPAM errors of p(1|0) =
7(1) x 107* and p(0[1) = 2.8(2) x 1073, conditioned on
non-leakage.
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2. Single-qubit RB

In 1Q Clifford RB, a sequence of [ uniformly random
Clifford group elements are applied to a qubit, followed
by an inverse Clifford that randomly includes a bit-flip
(X) gate. In the absence of error, this process prepares
the qubit in a random computational basis state. In our
decomposition of the 1Q Clifford group into native gates,
the 24 group elements have 0.375 pi/2 pulses and 0.75 pi
pulses on average.

We run 1QRB simultaneously on 16 qubits in the
8 operation zones with different random sequences ap-
plied to each qubit [91]. We use sequence lengths [ €
{10, 1000, 2000}, generate 10 circuits per each sequence
length, and run 100 shots of each circuit. Table A1 lists
the measured leakage rates and average infidelities (in-
cluding the contribution from leakage) for each individual
qubit.

TABLE Al. 1QRB leakage rate and average infidelity.
Qubit Leakage Rate (x10~°) Avg. Infidelity (x10°)

@ 0.9(1) 2.9(8)
Q1 1.4(0) 3.1(7)
. 1.4(1) 2.3(4)
as 1.5(4) 2.8(4)
@ 1.2(3) 2.4(4)
as 1.3(0) 2.0(2)
g 0.8(2) 2.7(4)
qr 1.0(0) 3.1(6)
qs 1.5(2) 2.5(3)
qo 1.6(0) 2.5(3)
q10 049(5) 2.1(3)
qi1 0.8(1) 2.5(7)
12 1.2(1) 2.3(3)
13 1.4(4) 2.4(4)
q14 0.5(2) 2.1(4)
q15 06(0) 2.5(4)
Mean 1.12(7) 2.5(1)

3. Two-qubit RB

Like 1QRB, 2QRB is performed by executing se-
quences of [ uniformly random Clifford group elements
(now drawn from the 2-qubit Clifford group). A final
inverse Clifford then ideally prepares the qubit pair in a
random computational basis state. The 2QRB circuits
are performed on 8 pairs of qubits initialized in the 8 op-
eration zones, each with a distinct random sequence. As
described in Sec. II C, the 2Q gates are applied in par-
allel in only four out of eight zones. We select 8 pairs
of qubits for benchmarking as this configuration corre-
sponds to a typical batch of parallel operations during
circuit execution.



TABLE A2. Two-qubit RB leakage rates and average infi-
delities. Following the protocol described in Sec. 11 C for per-
forming 2Q gates on eight qubit pairs in the operation zones
using 2Q gates applied in only four zones, pairs (0,1) and
(2,3) utilize the same zone for the 2Q gate operation, simi-
larly for pair sets (4,5), (6,7) and (8,9), (10,11) and (12, 13),
(14,15). Most sets of the qubit pairs utilizing the same zone
have infidelities and leakage rates that agree within uncer-
tainties, to the extent there are differences they may arise
from differences in the 1Q gates, memory errors, and cooling,
which occur in the eight separate zones.

Qubit Pair Leakage Rate (x10~?) Avg. Infidelity (x10™%)

0,1 1.8(3) 6.1(5)
(2,3) 2.2(1) 7.7(5)
(4,5) 2.6(2) 8.2(6)
(6,7) 2.1(1) 6.7(5)
(8,9) 2.7(1) 8.0(5)
(10,11) 3.3(5) 8.8(6)
(12,13) 2.3(2) 8.7(5)
(14,15) 2.6(2) 8.7(6)
Mean 2.4(1) 7.9(2)

4. Two-qubit cycle benchmarking

2QCB works by preparing eigenstates of a Pauli op-
erator P, applying a Pauli-twirled 2Q gate [ times, and
measuring in the P basis. We Pauli-twirl [92] the 2Q
gates so that the error channel £ can be assumed to be
a stochastic Pauli channel, which is defined as

E(p) = ZPiPiPPi, (A4)

where the sum is over all Pauli operators modulo an over-
all phase, and the p; are probabilities that sum to one.

The eigenoperators of any stochastic Pauli channel are
themselves Pauli operators, so £(FP;) = f;P;, and their
eigenvalues f; are often called Pauli fidelities and are
given by

fi= Z(—l)“’ﬁpp

J

(A5)

where the symbol (i,j) equals 0 or 1, depending on
whether P; and P; commute or anti-commute, respec-
tively. The Pauli error probabilities can be computed
from the Pauli fidelities via

pi= o S g, (46)
J

where d is the Hilbert space dimension. Denote the noisy
2QCB circuit of length [ as C;. 2QCB estimates the
Pauli fidelities by fitting the empirical expectation values
E/(P;) = Tr(PiCi(P;)) to the model E;(P;) = Af!. The
Pauli error probabilities are then computed via Eq. (A6).
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In terms of the Pauli error probabilities, the average in-
fidelity (not including leakage) is given by

d
6avg(g) Tdr1 ;pia (A7)

where the sum is over all non-identity Pauli probabilities.

Because gate sets have a gauge freedom, not all d?
individual Pauli fidelities can be learned in a SPAM ro-
bust way, but rather, only the geometric means of sub-
sets of Pauli fidelities that are related to each other by
the action of the gate being benchmarked [93]. We there-
fore assume that pairs of Pauli operators within the same
orbit of Rzz(m/2) have the same fidelity (for example:
fix = fzy). Furthermore, simulations of known error
sources in Rzz(7/2) shows symmetry between X and YV
in the Pauli fidelities. We therefore only estimate f; for
P, e{lZ,ZI,ZZ,1X,XI, XX}, and we assume any two
Paulis that are related by an X-Y symmetry to have the
same fidelity (i.e., fxy = fxx)-

In our 2QCB experiment, we prepare the 8 states in the
tensor product bases {|0),[1)}®? and {|+),|-)}®?, ap-
ply the Rz z(7/2) gate [ times with [ € {4, 100, 200, 400},
and measure each qubit in the same basis that it was pre-
pared in. For each state preparation and sequence length
we run 200 shots and employ runtime randomness in the
software stack to implement single-shot Pauli-twirling on
the 2Q gates. Asin 1QRB and 2QRB, we use the ternary
measurement and fit the probability of not leaking ver-
sus [ to infer a leakage rate per gate. The non-leaked
population is then used to compute expectation values
that decay with [. We perform the experiment in paral-
lel on 8 qubit pairs initialized in the 8 operation zones
as in 2QRB and randomize the order of state prepara-
tions within each zone. The leakage rates and average
infidelities (including leakage) are listed in Tab. A3. The
zone-averaged Pauli error probabilities, up to unlearn-
able degrees of freedom and symmetry assumptions, are
listed in Tab. A4.

TABLE A3. 2QCB estimated leakage rates and infidelities.
Qubit pairs that share zones are the same as in A2

Qubit Pair Leakage Rate (x10~ %) Avg. Infidelity (x10~ %)

©,1) T.0(1) 9.6(4)
(2,3 1.0(1) 9.6(5)
(4,5) 1.0(1) 6.1(4)
(6,7) 1.0(2) 6.0(4)
(8,9) 1.0(2) 5.9(3)
(10,11) 1.1(1) 7.4(4)
(12,13) 1.6(1) 10.1(4)
(14,15) 1.6(1) 9.7(5)
Mean 1.14(6) 8.1(2)




TABLE A4. 2QCB estimated Pauli error probabilities, aver-
aged over all qubit pairs, up to unlearnable degrees of freedom
and symmetry assumptions. For error classes with greater
than one element, the right column is the probability of every
Pauli error in the set.

Error Class Probablhty (x1077)
(IX,1Y,ZX, ZY} 15(2)
(XI,YI,XZ,YZ} 5.8(2)

{XX, XY, YX,YY} 0. 06(4)
{17} 19(1)
{21} 19(1)
{22} 5.9(9)

5. Transport-1QRB

We ran transport-1QRB with k € {1,2,4,8} and se-
quence lengths [ € {8,64,128}, where sequence length
here refers to the number of depth-1 transport opera-
tions. For each sequence length, we generate 10 circuits
and run each circuit for 100 shots.

TABLE A5. Transport-1QRB leakage rates and average infi-
delities. Transport depth is the number of depth-1 transport
operations between 1Q Cliffords. The reported numbers are
averaged over qubits with a given transport depth.

1) Avg. Infidelity (x10~ %)

Transport Depth Avg. Leakage Rate (x10~

1 1.4(2) 6.0(3)
2 8.3(5) 12.8(7)
4 17.1(5) 34(2)
8 35(2) 84(5)

6. MCMR crosstalk test

We quantify MCMR, crosstalk errors by fitting the
spectator qubit survival probabilities to a linear decay
model as a function of the number of applied MCMRs to
the target qubits. We relate the fit parameters to error
magnitude based on an effective quantum jump operator
description of the error channel. This is an expansion of
previous work on “bright-state depumping” for '"'Yb™
qubits [40] where the decay rate of spectator qubits pre-
pared in the |1) state was used to determine the average
infidelity. For '3"Ba* qubits, however, the added com-
plexity of the crosstalk decay channels requires that the
spectator qubits be prepared in additional states. Fur-
thermore, the ternary measurement is used to resolve bit-
flip from leakage errors.

The MCMR crosstalk error channel is modeled as a set
of effective quantum jump operators L;; = /%i;]7){j| oc-
curring at rates 7;; between states ¢ and j with ¢,j €
{0,1, L}, leading to population transfer and decoher-
ence [94, 95]. Evaluating Eq. (A3) results in an average
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infidelity

(p(0]1) + p(1]0) + 2p(L|0) + 2p(L|1) + 4pz)
(A8)

cn\»—*

€avg(E) =

where £ is the crosstalk error channel, €4,4(&) is the av-
erage infidelity, p(i|j) is the conditional probability for
transitioning from state j to state ¢ via a quantum jump,
and pz is the phase-flip probability. Individual terms in
Eq. (A8) can be resolved by preparing spectator qubits
in eigenstates of the Pauli operators [96] and using the
ternary measurement. In Sec. IIIB 5, circuits preparing
the spectator qubits in each state of the computational
basis were used to estimate bit-flip and leakage probabil-
ities with results shown in Fig. 10.

Measuring pz requires circuits preparing the specta-
tor qubits in the X/Y eigenstates, which suffer from
additional memory error that we separately quantify
with transport-1QRB (see Sec. IIIB4). Instead, to es-
timate pz (and consequently €q,4(E)), we expand py =~
[p(1]0) + p(0[1) + p(L|1) + p(L|0) + per] /4, which reflects
the scattering-induced random phase shifts leading to
crosstalk-induced decoherence. This expansion makes an
assumption that the intensity of crosstalk light is weak
such that the duration of an MCMR on a target qubit
is brief compared to the crosstalk transition rates ;;,
which is well-satisfied in practice. The elastic (Rayleigh)
contribution p.; was measured in Ref. [97] using a spin-
echo sequence for “Bet. We estimate the contribution of
pe to the average infedlity to be roughly %8 of the total
error budget, however measurement of this contribution
on Helios remains the subject of future study.

In addition to the MCMR crosstalk experiments de-
scribed in Sec. IIIB 5, we also run an MCMR, crosstalk
experiment on 8 target qubits simultaneously. This ar-
rangement has one target qubit and one spectator qubit
in each operation zone, with the remaining qubits in the
storage ring as spectator qubits. We perform this experi-
ment to estimate the contribution of MCMR crosstalk
to the effective MCMR error in the system-level ran-
dom Clifford circuits benchmark, for circuits that contain
batches of multiple MCMRs per layer (see Sec. IIIC1).
The data is shown in Fig. A3B6. We find an average
MCMR crosstalk error per qubit of 5.2(2) x 107> in the
operation zones and 1.21(4) x 10~° in the storage ring.

TABLE A6. Local and global MCMR crosstalk error channels
estimated from Fig. 10.

Error Channel Local (x10~%) Global (x107°)
p(110) (2) 1.2(2)
p(0[1) 1.6(2) 2.8(2)
p(L|0) 0.8(1) 2.1(2)
p(L[1) (2) 4.8(2)
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FIG. A3. MCMR crosstalk data with target qubits in {0, 2,
4, 6, 8, 10, 12, 14}. MCMR operations are applied simulta-
neously to the target qubits. The plot shows estimated rates
of different error channels (smaller bars) and the average infi-
delity (wider bars) for spectator qubits in the operation zones
(qubit index in {1, 3, 5, 7, 9, 11, 13, 15}) and in the storage
ring.

C. Random Clifford circuits with mid-circuit
measurements

Here we provide additional details on the system-level
random Clifford circuits with MCMR benchmark, dis-
cussed in Sec. [TTC 1. We first describe the method of
stabilizer tracking.

A stabilizer of a state |1) is a Pauli operator for which
[t) is a +1 eigenstate. Initially, the state is |0...0) and
is stabilized by all Paulis tensor products of I and Z. We
select a random initial stabilizer S with biased sampling
of {I, Z} with probabilities {1/4,3/4}. We then propa-
gate S through each layer of the circuit using an efficient
binary matrix representation of the Clifford operations.
When a qubit is chosen for an MCMR operation, a 1Q
correction gate is applied to measure the qubit in the
Pauli basis determined by S (or equivalently, since all
measurements are in the Z basis, the correction maps
the stabilizer from X or Y to Z). After an MCMR,
a new qubit is appended to S with stabilizer randomly
randomly chosen from {I, Z} with the same biased sam-
pling of probabilities in {1/4,3/4}. Finally, at the end
of the circuit, each qubit is measured in the Pauli ba-
sis according to S. The shot succeeds if the parity of
the measured bitstring (including all the mid-circuit mea-
surements) agrees with the sign of the evolved stabilizer
S.

In our experiment we choose n, € {0,8,16} and
l € {2,4,6,8}. For each value of n,, and I, we gener-
ate 10 circuits, and run each circuit for 100 shots, with
the order of all circuits randomized. The average success
probability is rescaled into a quantity called the polar-
ization [67], defined as Ypoi = 2Psucc — 1. Let F(ny,)
be the process fidelity per circuit layer as a function of
Nm. We estimate F(n,,) by fitting the polarization to
the model Y01 (L, 1) = AF(ny)!, where A is a 98-qubit
SPAM parameter that we fix to be equal for all values of
N
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Below we list the process fidelities per circuit layer
for n,, € {0,8,16}, which are plotted in Fig. 12 in
Sec. IITC1. Here n,, is the number of MCMRs per cir-
cuit layer.

TABLE A7. Process fidelity per layer versus number of mid-
circuit measurements and resets per layer.

MCMRs per layer Fidelity per layer

0 0.883(16)
8 0.856(15)
16 0.862(15)

As explained in Sec. IIIC 1, we compute an effective
2Q gate error ezg from the n, = 0 data, and sepa-
rate effective MCMR errors € from both the n,, = 8
and n,, = 16 data. The effective fidelities as well their
predicted values from the component-level benchmarking
data are listed in Tab. A8. Here, we explain our proce-
dure for predicting the effective fidelities.

For €3, we take the 2Q gate error from 2QRB in
Tab. II, and we convert the average infidelity into a pro-
cess infidelity. We then take the depth-1 memory error
per qubit from Tab. A5, again convert into a process in-
fidelity and multiply by two (to get depth-1 error per
two qubits). We add the process infidelities from the 2Q
gate to the memory error and convert again into average
infidelity:

4 5 3
6262:5 1 6RB"‘2 5 €mem | -

Plugging in egp = 7.9(2) x107* and €pem = 6.0(3) x 1074
and propagating uncertainties gives the value of ezg in
Tab. AS8.

For epr(nm,, = 8), we take the SPAM error of the
standard measurement from Tab. II, and we add the
measured crosstalk error from the MCMR crosstalk ex-
periment with 8 simultaneous target qubits shown in
Fig. A3B6, since that is the measurement configuration
used for the MCMRs in the n,, = 8 QiRB circuits. We
add the measured crosstalk error per MCMR in the stor-
age ring times the number of spectator qubits in the ring,
plus the crosstalk error per MCMR in the operation zones
times the number of spectator qubits in the zones:

(A9)

erm(nm = 8) = espam + 82 X EMCMR, ring

+ 8 x €EMCM R, zones- (AIO)

For epr(n,, = 16), since the batch of 16 measurements
is performed using the “protected measure” scheme, we
omit the crosstalk error on qubits in the operation zones:

em(nm = 16) = espanm + 82 X eprcMR, ring.  (All)

Plugging in with espay = 48(6) X 10_4, €EMCMR, ring =
1.51(5) X 1075, and €EMCMR, zones — 6.5(3) X 1075, and
propagating uncertainties gives the values of €y, listed in
Tab. AS8.



TABLE AS8. Effective fidelities estimated from QiRB data
(middle column), compared to predicted values from the
component-level benchmarking data (right column).

Parameter  System-level Component-level
value (x1072)  value (x107%)
20 2.0(3) 2.2(1)
ev(nm = 8) 2.6(13) 2.2(1)
ervt(nm =16)  1.0(7) 1.7(1)

20
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