Welcome to the Future: Quantum & Photonic in Space

- Over the next decade, space missions will be faster, smarter, and more secure thanks to quantum and photonic technologies.
- From ultra-secure communications to centimetre-accurate navigation, these breakthroughs will transform how we explore, operate, and protect our space assets.

The Perfect Match for Space Challenges

- These technologies address key space challenges:
 - Distance: Deep-space missions demand high-speed data links.
 - Precision: Lunar landings and formation flying require centimetre accuracy.
 - Security: Space assets must be protected from cyber threats.
 - Awareness: Better tools are needed to monitor Earth and track hazards in orbit.

Low Earth Orbit to Deep Space Communication

- Supports telecommunications, crewed missions, advanced telemedicine, and complex image delivery.
- Technologies: Lasers, quantum entanglement, Quantum Key Distribution, cryptography.

Benefits

- Faster data transfer for real-time decision making
- More robust and secure communication links
- Reliable connections over interplanetary distances
- Greater data capacity for high-resolution imagery and science

Positioning, Navigation & Timing (PNT)

 Quantum tech enhances reliability of space-based PNT via atomic clocks & quantum-enhanced navigation.

Benefits

- Centimetre-level positioning accuracy
- Reliable navigation in GPS-denied environments
- Critical for autonomous spacecraft and lunar / Mars missions
- Reduced navigation errors for formation flying

Monitoring the Earth

- Better images aid agriculture, disaster relief, and climate modelling.
- Precise gravity measurements detect subtle sea-level changes and subsurface water.

Benefits:

- Faster disaster response with accurate situational awareness
- Better crop management and resource planning
- Early detection of climate change indicators
- More effective environmental protection and planning

Monitoring Space Objects

 Quantum tech tracks fast-moving, low-reflectivity objects — critical for debris avoidance and asteroid monitoring.

• Benefits:

- Increased safety for crewed and uncrewed spacecraft
- Enhanced space situational awareness
- Reduced collision risks in congested orbits
- Better planetary defence capabilities

Quantum Computing for Space Mission Support

 Optimises satellite constellation design, orbit planning, and real-time data processing.

Benefits

- Faster and more efficient mission planning
- Improved allocation of satellite resources
- Real-time analysis of incoming space data
- Lower operational costs through optimised scheduling

By 2035, Expect...

- Global quantum-secure satellite networks
- GPS-independent precision navigation
- Terabit-speed optical satellite communication
- Superior space object tracking
- Smarter planetary and climate monitoring

Preparing for the Quantum Era

- If the 2010s were about cheaper launches, the 2030s will be about intelligent, secure, autonomous space systems — powered by quantum and photonic breakthroughs.
- Now is the time to engage, invest, and prepare.

