
EPOXY

*Epoxy is a study in violating fundamental type design rules. The shapes are broken into subgroups (uppercase, lowercase, figures) that each have their own construction logic rather than an overall logic. These disparate shapes are glued back together with the optical side effects of deliberately not following traditional stroke modulation. But, really, this typeface exists mostly because I made a boring geometric sans because those are always best sellers but literally no one bought mine so I said “F**k it. I’m going to draw something that I think is funny.”*

Thin
Light
Book
Medium
Bold
Black

DESIGNER
TAL LEMING
2021-?

16 STYLES
6 WEIGHTS
ROMAN

COMPLEX
PRODUCT
STREAKS
UNIFLOW
OXIRANE
NUMBER

Reductive
Stamford
Database
Quantum
Brooklyn
Corporal

SPACE

DRIVER

ORBITAL

MACHINE

QUANTUM

Helium

Culture

Baryonic

Seamless

November

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mould cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot or cold chamber machine is used. The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process. Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency. Die casting equipment was invented in 1838 for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in 1849 for a small hand-operated machine for the purpose of mechanized printing type production. In 1885 Otto Mergenthaler invented the Linotype machine, which cast an entire line of type

DIE CASTING EQUIPMENT WAS INVENTED IN 1838 FOR THE PURPOSE OF PRODUCING MOVABLE TYPE FOR THE PRINTING INDUSTRY. THE FIRST DIE CASTING-RELATED PATENT WAS GRANTED IN 1849 FOR A SMALL HAND-OPERATED MACHINE FOR THE PURPOSE OF MECHANIZED PRINTING TYPE PRODUCTION. IN 1885 OTTO MERGENTHALER INVENTED THE LINOTYPE MACHINE, WHICH CAST AN ENTIRE LINE OF TYPE AS A SINGLE UNIT, USING A DIE CASTING PROCESS. IT NEARLY COMPLETELY REPLACED SETTING TYPE BY HAND IN THE PUBLISHING INDUSTRY. THE SOSS DIE-CASTING MACHINE, MANUFACTURED IN BROOKLYN, NY, WAS THE FIRST MACHINE TO BE SOLD IN THE OPEN MARKET IN

Two dies are used in die casting; one is called the “cover die half” and the other the “ejector die half”. Where they meet is called the parting line. The cover die contains the sprue (for hot-chamber machines) or shot hole (for cold-chamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the cold-chamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mould cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mould cavity is cut into two cavity inserts, which are separate pieces that can be replaced relatively easily and bolt into the die halves. The

THE MOST IMPORTANT MATERIAL PROPERTIES FOR THE DIES ARE THERMAL SHOCK RESISTANCE AND SOFTENING AT ELEVATED TEMPERATURE; OTHER IMPORTANT PROPERTIES INCLUDE HARDENABILITY, MACHINABILITY, HEAT CHECKING RESISTANCE, WELDABILITY, AVAILABILITY (ESPECIALLY FOR LARGER DIES), AND COST. THE LONGEVITY OF A DIE IS DIRECTLY DEPENDENT ON THE TEMPERATURE OF THE MOLTEN METAL AND THE CYCLE TIME. THE DIES USED IN DIE CASTING ARE USUALLY MADE OUT OF HARDENED TOOL STEELS, BECAUSE CAST IRON CANNOT WITHSTAND THE HIGH PRESSURES INVOLVED, THEREFORE THE DIES ARE VERY EXPENSIVE, RESULTING IN HIGH START-

Other die components include cores and slides. Cores are components that usually produce holes or opening, but they can be used to create other details as well. There are three types of cores: fixed, movable, and loose. Fixed cores are ones that are oriented parallel to the pull direction of the dies (i.e. the direction the dies open), therefore they are fixed, or permanently attached to the die. Movable cores are ones that are oriented in any other way than parallel to the pull direction. These cores must be removed from the die cavity after the shot solidifies, but before the dies open, using a separate mechanism. Slides are similar to movable cores, except they are used to form undercut surfaces. The use of movable cores and slides greatly increases the cost of the dies. Loose cores, also called pick-outs, are used to cast intricate features, such as threaded holes. These loose cores are inserted into the die by hand before each cycle and then ejected with the part at the end of the cycle. The core then must be removed by hand. Loose cores are the most expensive type of core, because of the extra labor and increased cycle time. Other features in the dies include water-cooling passages and vents along the parting lines. These vents are usually wide and thin (approximately 0.13 mm or 0.005 in) so that when the molten metal starts filling them the metal quickly solidifies and minimizes scrap. No risers are used because the high pressure ensures a continuous feed of metal from the

ZINC THE EASIEST METAL TO CAST; HIGH DUCTILITY; HIGH IMPACT STRENGTH; EASILY PLATED; ECONOMICAL FOR SMALL PARTS; PROMOTES LONG DIE LIFE. ALUMINUM LIGHTWEIGHT; HIGH DIMENSIONAL STABILITY FOR VERY COMPLEX SHAPES AND THIN WALLS; GOOD CORROSION RESISTANCE; GOOD MECHANICAL PROPERTIES; HIGH THERMAL AND ELECTRICAL CONDUCTIVITY; RETAINS STRENGTH AT HIGH TEMPERATURES. MAGNESIUM: THE EASIEST METAL TO MACHINE; EXCELLENT STRENGTH-TO-WEIGHT RATIO; LIGHTEST ALLOY COMMONLY DIE CAST. COPPER HIGH

PASTE

CYCLIC

DISPLAY

SOLUBLE

ACQUIRES

Splash
Printed
Carriage
Helvetician
Ouverture

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mould cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot or cold chamber machine is used. The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process. Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency. Die casting equipment was invented in 1838 for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in 1849 for a small hand-operated machine for the purpose of mechanized printing type production. In 1885 Otto Mergenthaler invented the Linotype machine, which

DIE CASTING EQUIPMENT WAS INVENTED IN 1838 FOR THE PURPOSE OF PRODUCING MOVABLE TYPE FOR THE PRINTING INDUSTRY. THE FIRST DIE CASTING-RELATED PATENT WAS GRANTED IN 1849 FOR A SMALL HAND-OPERATED MACHINE FOR THE PURPOSE OF MECHANIZED PRINTING TYPE PRODUCTION. IN 1885 OTTO MERGENTHALER INVENTED THE LINOTYPE MACHINE, WHICH CAST AN ENTIRE LINE OF TYPE AS A SINGLE UNIT, USING A DIE CASTING PROCESS. IT NEARLY COMPLETELY REPLACED SETTING TYPE BY HAND IN THE PUBLISHING INDUSTRY. THE SOSS DIE-CASTING MACHINE, MANUFACTURED IN BROOKLYN, NY, WAS THE FIRST MACHINE TO BE SOLD IN THE OPEN MARKET IN

Two dies are used in die casting; one is called the “cover die half” and the other the “ejector die half”. Where they meet is called the parting line. The cover die contains the sprue (for hot-chamber machines) or shot hole (for cold-chamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the cold-chamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mould cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mould cavity is cut into two cavity inserts, which are separate pieces that can be replaced relatively easily and bolt into the die halves. The

THE MOST IMPORTANT MATERIAL PROPERTIES FOR THE DIES ARE THERMAL SHOCK RESISTANCE AND SOFTENING AT ELEVATED TEMPERATURE; OTHER IMPORTANT PROPERTIES INCLUDE HARDENABILITY, MACHINABILITY, HEAT CHECKING RESISTANCE, WELDABILITY, AVAILABILITY (ESPECIALLY FOR LARGER DIES), AND COST. THE LONGEVITY OF A DIE IS DIRECTLY DEPENDENT ON THE TEMPERATURE OF THE MOLTEN METAL AND THE CYCLE TIME. THE DIES USED IN DIE CASTING ARE USUALLY MADE OUT OF HARDENED TOOL STEELS, BECAUSE CAST IRON CANNOT WITHSTAND THE HIGH PRESSURES INVOLVED, THEREFORE THE DIES ARE VERY EXPENSIVE, RESULTING IN HIGH

Other die components include cores and slides. Cores are components that usually produce holes or opening, but they can be used to create other details as well. There are three types of cores: fixed, movable, and loose. Fixed cores are ones that are oriented parallel to the pull direction of the dies (i.e. the direction the dies open), therefore they are fixed, or permanently attached to the die. Movable cores are ones that are oriented in any other way than parallel to the pull direction. These cores must be removed from the die cavity after the shot solidifies, but before the dies open, using a separate mechanism. Slides are similar to movable cores, except they are used to form undercut surfaces. The use of movable cores and slides greatly increases the cost of the dies. Loose cores, also called pick-outs, are used to cast intricate features, such as threaded holes. These loose cores are inserted into the die by hand before each cycle and then ejected with the part at the end of the cycle. The core then must be removed by hand. Loose cores are the most expensive type of core, because of the extra labor and increased cycle time. Other features in the dies include water-cooling passages and vents along the parting lines. These vents are usually wide and thin (approximately 0.13 mm or 0.005 in) so that when the molten metal starts filling them the metal quickly solidifies and minimizes scrap. No risers are used because the high pressure ensures a continuous feed of metal from the

ZINC THE EASIEST METAL TO CAST; HIGH DUCTILITY; HIGH IMPACT STRENGTH; EASILY PLATED; ECONOMICAL FOR SMALL PARTS; PROMOTES LONG DIE LIFE. ALUMINIUM LIGHTWEIGHT; HIGH DIMENSIONAL STABILITY FOR VERY COMPLEX SHAPES AND THIN WALLS; GOOD CORROSION RESISTANCE; GOOD MECHANICAL PROPERTIES; HIGH THERMAL AND ELECTRICAL CONDUCTIVITY; RETAINS STRENGTH AT HIGH TEMPERATURES. MAGNESIUM: THE EASIEST METAL TO MACHINE; EXCELLENT STRENGTH-TO-WEIGHT RATIO; LIGHTEST ALLOY COMMONLY DIE CAST. COPPER HIGH

M-37A

CRANK

LEGIBLE

OBJECTS

MAINTAIN

Swisse Making Cyanate Products Shrinkage

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mould cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot or cold chamber machine is used. The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process. Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency. Die casting equipment was invented in 1838 for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in 1849 for a small hand-operated machine for the purpose of mechanized printing type production. In 1885 Otto Mergenthaler invented the Linotype

DIE CASTING EQUIPMENT WAS INVENTED IN 1838 FOR THE PURPOSE OF PRODUCING MOVABLE TYPE FOR THE PRINTING INDUSTRY. THE FIRST DIE CASTING-RELATED PATENT WAS GRANTED IN 1849 FOR A SMALL HAND-OPERATED MACHINE FOR THE PURPOSE OF MECHANIZED PRINTING TYPE PRODUCTION. IN 1885 OTTO MERGENTHALER INVENTED THE LINOTYPE MACHINE, WHICH CAST AN ENTIRE LINE OF TYPE AS A SINGLE UNIT, USING A DIE CASTING PROCESS. IT NEARLY COMPLETELY REPLACED SETTING TYPE BY HAND IN THE PUBLISHING INDUSTRY. THE SOSS DIE-CASTING MACHINE, MANUFACTURED IN BROOKLYN, NY, WAS THE FIRST MACHINE TO BE SOLD IN THE OPEN MARKET

Two dies are used in die casting; one is called the “cover die half” and the other the “ejector die half”. Where they meet is called the parting line. The cover die contains the sprue (for hot-chamber machines) or shot hole (for cold-chamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the cold-chamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mould cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mould cavity is cut into two cavity inserts, which are separate pieces that can be replaced relatively easily and bolt into

THE MOST IMPORTANT MATERIAL PROPERTIES FOR THE DIES ARE THERMAL SHOCK RESISTANCE AND SOFTENING AT ELEVATED TEMPERATURE; OTHER IMPORTANT PROPERTIES INCLUDE HARDENABILITY, MACHINABILITY, HEAT CHECKING RESISTANCE, WELDABILITY, AVAILABILITY (ESPECIALLY FOR LARGER DIES), AND COST. THE LONGEVITY OF A DIE IS DIRECTLY DEPENDENT ON THE TEMPERATURE OF THE MOLTEN METAL AND THE CYCLE TIME. THE DIES USED IN DIE CASTING ARE USUALLY MADE OUT OF HARDENED TOOL STEELS, BECAUSE CAST IRON CANNOT WITHSTAND THE HIGH PRESSURES INVOLVED, THEREFORE THE DIES ARE VERY

Other die components include cores and slides. Cores are components that usually produce holes or opening, but they can be used to create other details as well. There are three types of cores: fixed, movable, and loose. Fixed cores are ones that are oriented parallel to the pull direction of the dies (i.e. the direction the dies open), therefore they are fixed, or permanently attached to the die. Movable cores are ones that are oriented in any other way than parallel to the pull direction. These cores must be removed from the die cavity after the shot solidifies, but before the dies open, using a separate mechanism. Slides are similar to movable cores, except they are used to form undercut surfaces. The use of movable cores and slides greatly increases the cost of the dies. Loose cores, also called pick-outs, are used to cast intricate features, such as threaded holes. These loose cores are inserted into the die by hand before each cycle and then ejected with the part at the end of the cycle. The core then must be removed by hand. Loose cores are the most expensive type of core, because of the extra labor and increased cycle time. Other features in the dies include water-cooling passages and vents along the parting lines. These vents are usually wide and thin (approximately 0.13 mm or 0.005 in) so that when the molten metal starts filling them the metal quickly solidifies and minimizes scrap. No risers are used because the high pressure ensures a

ZINC THE EASIEST METAL TO CAST; HIGH DUCTILITY; HIGH IMPACT STRENGTH; EASILY PLATED; ECONOMICAL FOR SMALL PARTS; PROMOTES LONG DIE LIFE. ALUMINUM LIGHTWEIGHT; HIGH DIMENSIONAL STABILITY FOR VERY COMPLEX SHAPES AND THIN WALLS; GOOD CORROSION RESISTANCE; GOOD MECHANICAL PROPERTIES; HIGH THERMAL AND ELECTRICAL CONDUCTIVITY; RETAINS STRENGTH AT HIGH TEMPERATURES. MAGNESIUM: THE EASIEST METAL TO MACHINE; EXCELLENT STRENGTH-TO-WEIGHT RATIO; LIGHTEST ALLOY COMMONLY DIE CAST. COPPER HIGH

SHOW
BREAK
CLUTCH
DEXTRIN
GRADUAL

Water
Golden
Reports
68 Laser
Maximum

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mould cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot or cold chamber machine is used. The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process. Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency. Die casting equipment was invented in 1838 for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in 1849 for a small hand-operated machine for the purpose of mechanized printing type production. In 1885

DIE CASTING EQUIPMENT WAS INVENTED IN 1838 FOR THE PURPOSE OF PRODUCING MOVABLE TYPE FOR THE PRINTING INDUSTRY. THE FIRST DIE CASTING-RELATED PATENT WAS GRANTED IN 1849 FOR A SMALL HAND-OPERATED MACHINE FOR THE PURPOSE OF MECHANIZED PRINTING TYPE PRODUCTION. IN 1885 OTTO MERGENTHALER INVENTED THE LINOTYPE MACHINE, WHICH CAST AN ENTIRE LINE OF TYPE AS A SINGLE UNIT, USING A DIE CASTING PROCESS. IT NEARLY COMPLETELY REPLACED SETTING TYPE BY HAND IN THE PUBLISHING INDUSTRY. THE SOSS DIE-CASTING MACHINE, MANUFACTURED IN BROOKLYN, NY, WAS THE FIRST MACHINE

Two dies are used in die casting; one is called the “cover die half” and the other the “ejector die half”. Where they meet is called the parting line. The cover die contains the sprue (for hot-chamber machines) or shot hole (for cold-chamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the cold-chamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mould cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mould cavity is cut into two cavity inserts, which are separate pieces that can be replaced relatively

THE MOST IMPORTANT MATERIAL PROPERTIES FOR THE DIES ARE THERMAL SHOCK RESISTANCE AND SOFTENING AT ELEVATED TEMPERATURE; OTHER IMPORTANT PROPERTIES INCLUDE HARDENABILITY, MACHINABILITY, HEAT CHECKING RESISTANCE, WELDABILITY, AVAILABILITY (ESPECIALLY FOR LARGER DIES), AND COST. THE LONGEVITY OF A DIE IS DIRECTLY DEPENDENT ON THE TEMPERATURE OF THE MOLTEN METAL AND THE CYCLE TIME. THE DIES USED IN DIE CASTING ARE USUALLY MADE OUT OF HARDENED TOOL STEELS, BECAUSE CAST IRON CANNOT WITHSTAND THE HIGH PRESSURES INVOLVED, THEREFORE THE DIES ARE VERY

Other die components include cores and slides. Cores are components that usually produce holes or opening, but they can be used to create other details as well. There are three types of cores: fixed, movable, and loose. Fixed cores are ones that are oriented parallel to the pull direction of the dies (i.e. the direction the dies open), therefore they are fixed, or permanently attached to the die. Movable cores are ones that are oriented in any other way than parallel to the pull direction. These cores must be removed from the die cavity after the shot solidifies, but before the dies open, using a separate mechanism. Slides are similar to movable cores, except they are used to form undercut surfaces. The use of movable cores and slides greatly increases the cost of the dies. Loose cores, also called pick-outs, are used to cast intricate features, such as threaded holes. These loose cores are inserted into the die by hand before each cycle and then ejected with the part at the end of the cycle. The core then must be removed by hand. Loose cores are the most expensive type of core, because of the extra labor and increased cycle time. Other features in the dies include water-cooling passages and vents along the parting lines. These vents are usually wide and thin (approximately 0.13 mm or 0.005 in) so that when the molten metal starts filling them the metal quickly solidifies and minimizes scrap. No risers are

ZINC THE EASIEST METAL TO CAST; HIGH DUCTILITY; HIGH IMPACT STRENGTH; EASILY PLATED; ECONOMICAL FOR SMALL PARTS; PROMOTES LONG DIE LIFE. ALUMINIUM LIGHTWEIGHT; HIGH DIMENSIONAL STABILITY FOR VERY COMPLEX SHAPES AND THIN WALLS; GOOD CORROSION RESISTANCE; GOOD MECHANICAL PROPERTIES; HIGH THERMAL AND ELECTRICAL CONDUCTIVITY; RETAINS STRENGTH AT HIGH TEMPERATURES. MAGNESIUM: THE EASIEST METAL TO MACHINE; EXCELLENT STRENGTH-TO-WEIGHT RATIO; LIGHTEST ALLOY COMMONLY DIE CAST. COPPER

ROOM
QUEST
FLOPPY
GROUND
MINIMUM

Study
Matrix
Custom
Almanac
Overview

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mould cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot or cold chamber machine is used. The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production.

Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process. Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency.

Die casting equipment was invented in 1838 for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in 1849 for a small hand-operated machine for the purpose of

DIE CASTING EQUIPMENT WAS INVENTED IN 1838 FOR THE PURPOSE OF PRODUCING MOVABLE TYPE FOR THE PRINTING INDUSTRY. THE FIRST DIE CASTING-RELATED PATENT WAS GRANTED IN 1849 FOR A SMALL HAND-OPERATED MACHINE FOR THE PURPOSE OF MECHANIZED PRINTING TYPE PRODUCTION. IN 1885 OTTO MERGENTHALER INVENTED THE LINOTYPE MACHINE, WHICH CAST AN ENTIRE LINE OF TYPE AS A SINGLE UNIT, USING A DIE CASTING PROCESS. IT NEARLY COMPLETELY REPLACED SETTING TYPE BY HAND IN THE PUBLISHING INDUSTRY. THE SOSS DIE-CASTING MACHINE, MANUFACTURED IN BROOKLYN, NY, WAS THE FIRST MACHINE

Two dies are used in die casting; one is called the “cover die half” and the other the “ejector die half”. Where they meet is called the parting line. The cover die contains the sprue (for hot-chamber machines) or shot hole (for cold-chamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the cold-chamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mould cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mould cavity is cut into two cavity inserts, which are separate pieces that

THE MOST IMPORTANT MATERIAL PROPERTIES FOR THE DIES ARE THERMAL SHOCK RESISTANCE AND SOFTENING AT ELEVATED TEMPERATURE; OTHER IMPORTANT PROPERTIES INCLUDE HARDENABILITY, MACHINABILITY, HEAT CHECKING RESISTANCE, WELDABILITY, AVAILABILITY (ESPECIALLY FOR LARGER DIES), AND COST. THE LONGEVITY OF A DIE IS DIRECTLY DEPENDENT ON THE TEMPERATURE OF THE MOLTEN METAL AND THE CYCLE TIME. THE DIES USED IN DIE CASTING ARE USUALLY MADE OUT OF HARDENED TOOL STEELS, BECAUSE CAST IRON CANNOT WITHSTAND THE HIGH PRESSURES INVOLVED, THEREFORE THE DIES ARE

Other die components include cores and slides. Cores are components that usually produce holes or opening, but they can be used to create other details as well. There are three types of cores: fixed, movable, and loose. Fixed cores are ones that are oriented parallel to the pull direction of the dies (i.e. the direction the dies open), therefore they are fixed, or permanently attached to the die. Movable cores are ones that are oriented in any other way than parallel to the pull direction. These cores must be removed from the die cavity after the shot solidifies, but before the dies open, using a separate mechanism. Slides are similar to movable cores, except they are used to form undercut surfaces. The use of movable cores and slides greatly increases the cost of the dies. Loose cores, also called pick-outs, are used to cast intricate features, such as threaded holes. These loose cores are inserted into the die by hand before each cycle and then ejected with the part at the end of the cycle. The core then must be removed by hand. Loose cores are the most expensive type of core, because of the extra labor and increased cycle time. Other features in the dies include water-cooling passages and vents along the parting lines. These vents are usually wide and thin (approximately 0.13 mm or 0.005 in) so that when the molten metal starts filling them the metal quickly solidifies and

ZINC THE EASIEST METAL TO CAST; HIGH DUCTILITY; HIGH IMPACT STRENGTH; EASILY PLATED; ECONOMICAL FOR SMALL PARTS; PROMOTES LONG DIE LIFE. ALUMINUM LIGHTWEIGHT; HIGH DIMENSIONAL STABILITY FOR VERY COMPLEX SHAPES AND THIN WALLS; GOOD CORROSION RESISTANCE; GOOD MECHANICAL PROPERTIES; HIGH THERMAL AND ELECTRICAL CONDUCTIVITY; RETAINS STRENGTH AT HIGH TEMPERATURES. MAGNESIUM: THE EASIEST METAL TO MACHINE; EXCELLENT STRENGTH-TO-WEIGHT RATIO; LIGHTEST ALLOY COMMONLY DIE

WERE

FACES

SPRINT

MEDIUM

ORGANIC

Brake

Orwell

Nitroso

Sulfonic

Progress

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mould cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot or cold chamber machine is used. The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process. Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency. Die casting equipment was invented in 1838 for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in 1849 for a small

DIE CASTING EQUIPMENT WAS INVENTED IN 1838 FOR THE PURPOSE OF PRODUCING MOVABLE TYPE FOR THE PRINTING INDUSTRY. THE FIRST DIE CASTING-RELATED PATENT WAS GRANTED IN 1849 FOR A SMALL HAND-OPERATED MACHINE FOR THE PURPOSE OF MECHANIZED PRINTING TYPE PRODUCTION. IN 1885 OTTO MERGENTHALER INVENTED THE LINOTYPE MACHINE, WHICH CAST AN ENTIRE LINE OF TYPE AS A SINGLE UNIT, USING A DIE CASTING PROCESS. IT NEARLY COMPLETELY REPLACED SETTING TYPE BY HAND IN THE PUBLISHING INDUSTRY. THE SOSS DIE-CASTING MACHINE, MANUFACTURED IN BROOKLYN, NY, WAS THE

Two dies are used in die casting; one is called the “cover die half” and the other the “ejector die half”. Where they meet is called the parting line. The cover die contains the sprue (for hot-chamber machines) or shot hole (for cold-chamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the cold-chamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mould cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mould cavity is cut into two cavity inserts, which are separate

THE MOST IMPORTANT MATERIAL PROPERTIES FOR THE DIES ARE THERMAL SHOCK RESISTANCE AND SOFTENING AT ELEVATED TEMPERATURE; OTHER IMPORTANT PROPERTIES INCLUDE HARDENABILITY, MACHINABILITY, HEAT CHECKING RESISTANCE, WELDABILITY, AVAILABILITY (ESPECIALLY FOR LARGER DIES), AND COST. THE LONGEVITY OF A DIE IS DIRECTLY DEPENDENT ON THE TEMPERATURE OF THE MOLTEN METAL AND THE CYCLE TIME. THE DIES USED IN DIE CASTING ARE USUALLY MADE OUT OF HARDENED TOOL STEELS, BECAUSE CAST IRON CANNOT WITHSTAND THE HIGH PRESSURES INVOLVED,

Other die components include cores and slides. Cores are components that usually produce holes or opening, but they can be used to create other details as well. There are three types of cores: fixed, movable, and loose. Fixed cores are ones that are oriented parallel to the pull direction of the dies (i.e. the direction the dies open), therefore they are fixed, or permanently attached to the die. Movable cores are ones that are oriented in any other way than parallel to the pull direction. These cores must be removed from the die cavity after the shot solidifies, but before the dies open, using a separate mechanism. Slides are similar to movable cores, except they are used to form undercut surfaces. The use of movable cores and slides greatly increases the cost of the dies. Loose cores, also called pick-outs, are used to cast intricate features, such as threaded holes. These loose cores are inserted into the die by hand before each cycle and then ejected with the part at the end of the cycle. The core then must be removed by hand. Loose cores are the most expensive type of core, because of the extra labor and increased cycle time. Other features in the dies include water-cooling passages and vents along the parting lines. These vents are usually wide and thin (approximately 0.13 mm or 0.005 in) so that when the molten metal starts

ZINC THE EASIEST METAL TO CAST; HIGH DUCTILITY; HIGH IMPACT STRENGTH; EASILY PLATED; ECONOMICAL FOR SMALL PARTS; PROMOTES LONG DIE LIFE. ALUMINIUM LIGHTWEIGHT; HIGH DIMENSIONAL STABILITY FOR VERY COMPLEX SHAPES AND THIN WALLS; GOOD CORROSION RESISTANCE; GOOD MECHANICAL PROPERTIES; HIGH THERMAL AND ELECTRICAL CONDUCTIVITY; RETAINS STRENGTH AT HIGH TEMPERATURES. MAGNESIUM: THE EASIEST METAL TO MACHINE; EXCELLENT STRENGTH-TO-WEIGHT RATIO; LIGHTEST ALLOY COMMONLY

Draft is the amount of slope or taper given to cores or other parts of the die cavity to allow for easy ejection of the casting from the die. **All die cast surfaces that are parallel to the opening direction of the die require draft for the proper ejection of the casting from the die.** Die castings that feature proper draft are easier to remove from the die and result in high-quality surfaces and more precise finished product. **Fillet** is the curved juncture of two surfaces that would have otherwise met at a sharp corner or edge. Simply, fillets can be added to a die casting to remove undesirable edges and corners. **Parting line** represents the point at which two different sides of a mould come together. The location of the parting line defines which side of the die is the cover and which is the ejector. **Bosses** are added to die castings to serve as stand

Draft is the amount of slope or taper given to cores or other parts of the die cavity to allow for easy ejection of the casting from the die. **All die cast surfaces that are parallel to the opening direction of the die require draft for the proper ejection of the casting from the die.** Die castings that feature proper draft are easier to remove from the die and result in high-quality surfaces and more precise finished product. **Fillet** is the curved juncture of two surfaces that would have otherwise met at a sharp corner or edge. Simply, fillets can be added to a die casting to remove undesirable edges and corners. **Parting line** represents the point at which two different sides of a mould come together. The location of the parting line defines which side of the die is the cover and which is the ejector. **Bosses** are added to die

Draft is the amount of slope or taper given to cores or other parts of the die cavity to allow for easy ejection of the casting from the die. **All die cast surfaces that are parallel to the opening direction of the die require draft for the proper ejection of the casting from the die.** Die castings that feature proper draft are easier to remove from the die and result in high-quality surfaces and more precise finished product. **Fillet** is the curved juncture of two surfaces that would have otherwise met at a sharp corner or edge. Simply, fillets can be added to a die casting to remove undesirable edges and corners. **Parting line** represents the point at which two different sides of a mould come together. The location of the parting line defines which side of the die is the cover and which is the ejector. **Bosses** are added to die

Draft is the amount of slope or taper given to cores or other parts of the die cavity to allow for easy ejection of the casting from the die. **All die cast surfaces that are parallel to the opening direction of the die require draft for the proper ejection of the casting from the die.** Die castings that feature proper draft are easier to remove from the die and result in high-quality surfaces and more precise finished product. **Fillet** is the curved juncture of two surfaces that would have otherwise met at a sharp corner or edge. Simply, fillets can be added to a die casting to remove undesirable edges and corners. **Parting line** represents the point at which two different sides of a mould come together. The location of the parting line defines which side of the die is the cover and which is the ejector. **Bosses**

OpenType Features

UPPERCASE FORMS @TYPESUPPLY @TYPESUPPLY
BARRED I TIME TIME

Character Set

UPPERCASE	ABCDEFGHIJKLMNPQRSTUVWXYZ
LOWERCASE	abcdefghijklmnopqrstuvwxyz
FIGURES	0123456789
FIGURE STUFF	฿₵£¥€ #%
PUNCTUATION	.,:;!? ---•"“”” /।()[]{}‘‘’’
SYMBOLS & REFERENCE MARKS	¤@*
UPPERCASE	¤@

Supported Languages

English

In Closing

CONTACT Type Supply
122 Overbrook Rd.
Baltimore, MD 21212
United States
info@typesupply.com
typesupply.com

LEGAL STUFF ©2022 Type Supply LLC All rights reserved.
Type Supply is a trademark of Type Supply LLC.
Epoxy is a trademark of Type Supply LLC.

TEXT wikipedia.org