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1.​ Executive Summary 

Cardiovascular diseases (CVDs) remain a major global health concern, and while current tools 

for arrhythmia detection and diagnosis are widely used, each carries important limitations. 

Standard 12-lead ECGs provide only a brief snapshot of cardiac activity, often missing 

paroxysmal or intermittent arrhythmias. Holter monitors extend recording over multiple days, 

but the resulting volume of data is time-consuming to review, and existing algorithms frequently 

underperform in the presence of noise and artifacts. As a result, manual correction by experts is 

often required, contributing to delays, variability, and the risk of missed diagnoses. 

To address these challenges, NeuralCloud Solutions developed MaxYield™, a neural network 

algorithm designed for the analysis of long-duration ambulatory ECG recordings. MaxYield™ 

reduces noise and artifacts while accurately identifying the onsets and offsets of P-waves, QRS 

complexes, and T-waves, the foundational features of ECG interpretation. The combination of a 

cleaned ECG signal and precise beat-level labeling enables rapid post-processing to identify 

cardiac events and areas of concern, thereby streamlining diagnosis and reducing variability. 

Validation studies demonstrated that MaxYield™ performs on par with expert human annotators 

in terms of accuracy, while providing superior consistency as reflected in lower median error and 

narrower interquartile ranges across P-wave, QRS complex, and T-wave detection. Importantly, 

this performance is maintained even when more noise is introduced, highlighting the robustness 

of its signal-cleaning capabilities. Furthermore, MaxYield™ supports the analysis of extended 

ECG recordings of up to 14.5 days, substantially increasing the likelihood of detecting 

intermittent arrhythmias that would be missed in shorter studies. 

These findings demonstrate that MaxYield™ provides accurate and consistent beat-level labeling 

over long-duration ECG recordings, supporting its use as a reliable foundation for detecting 

clinically important cardiac events. 

 

 



2.​ Introduction 

Cardiovascular diseases (CVDs) continue to represent a significant global health burden, 

remaining a leading cause of morbidity and mortality worldwide. While standard 12-lead 

electrocardiograms (ECGs) provide a rapid “snapshot” of the heart’s electrical performance, their 

utility is constrained by their brief recording duration. Many arrhythmias are paroxysmal or 

intermittent, appearing unpredictably and often absent during short clinical assessments. This 

limitation frequently leads to delayed or missed diagnoses of transient but clinically significant 

events, underscoring the urgent need for more comprehensive monitoring solutions. 

Holter monitors, which enable continuous multi-day ECG recordings, were designed to address 

this limitation but introduce new complexities due to the sheer volume of data generated. Holter 

studies present technicians with millions of heartbeats, where pervasive noise and artifacts hinder 

reliable labeling and make the detection of clinically significant abnormalities especially 

challenging. Current Holter software attempts to identify P, QRS, and T waves and then flag 

potential abnormalities using pattern recognition, but performance varies widely between 

manufacturers and is often undermined by signal quality. The result is frequent false positives, 

missed events, and inconsistent labeling. This forces technicians into labor-intensive manual 

correction, a process that is inefficient, prone to “alarm fatigue,” and introduces variability into 

final reports. 

To address these limitations, we developed a solution focused on two foundations of ECG 

interpretation: robust noise reduction and accurate, consistent detection of P-waves, QRS 

complexes, and T-waves. These features underpin reliable arrhythmia detection and clinical 

decision-making. 

NeuralCloud Solutions introduces MaxYield™, an advanced platform that analyzes raw ECG 

signals to precisely detect PQRST features and extract interval metrics. The core strength of 

MaxYield™ lies in its ability to combine a cleaned ECG signal with accurate beat-level outputs. 

This precision enables rapid post-processing to identify cardiac events with reliability, 

streamlining diagnostic workflows. 

The results, detailed in the following sections, highlight MaxYield™’s performance in accurate 

beat-level labeling, supporting its potential to reduce diagnostic variability, improve efficiency, 

and ultimately enhance the detection of critical cardiac abnormalities. 



 

3.​ Background 

A validation study was conducted to assess the variance between fifteen Registered Cardiology 

Technologists and the AI model in MaxYield™. Each of the fifteen technologists independently 

performed manual annotations of ECG waveforms, focusing on the precise identification of 

P-wave, QRS complex, and T-wave onsets and offsets. By involving a cohort of fifteen experts 

rather than relying on a single reference annotator, we were able to capture the natural variability 

that exists in human interpretation. This is critical because conventional approaches to evaluating 

AI models typically compare predictions against a single human label, an inherently flawed 

method that overlooks inter-technologist variance. Using multiple annotators not only provided a 

more rigorous benchmark but also allowed us to measure where MaxYield™ aligns within the 

spectrum of expert performance. 

 

4.​ Methodology 
4.1​ Selection of ECG Samples 

Representative ECG data were selected from publicly available datasets made accessible through 

Zenodo and PhysioNet. The test dataset consisted of 400 ECG files, specifically curated to 

represent real-world Holter-style and standard 12-lead ECG conditions. Synthetic or simulated 

ECG data were used. Importantly, all test files were withheld from model training and 

development to maintain the independence of the model validation. 

The Holter data included sinus rhythm, atrial fibrillation, atrial flutter, premature atrial 

contractions (PACs), and premature ventricular contractions (PVCs). From these categories, files 

were randomly selected in equal proportions. 

As for the 12-lead data, random files and leads were selected. This was done to include ECG 

tracings with a higher quality signal and different polarity waves. 

This test set was used to analyze the analysts’ and the model’s ability to label waveform 

annotations under real-world signal conditions. The data was selected to reflect a broad range of 

physiologic and arrhythmic conditions.  

 



4.2​ Analysts​

Registered Cardiology Technologists were selected to represent a diverse range of professional 

experience (1–31 years; mean: ~10 years), academic training (including diplomas, bachelor’s, 

master’s, and doctoral degrees), and certification credentials (primarily through the Canadian 

Society of Cardiology Technologists and the Ontario Society of Cardiology Technologists). 

Several participants possessed additional specialization in domains such as electrophysiology, IV 

therapy, and cardiac rhythm device programming. This heterogeneity was intentional, reflecting 

the variation commonly observed in clinical environments. By incorporating a spectrum of 

interpretive approaches informed by varying levels of training and practical experience, the 

labeling process simulates real-world variability in ECG interpretation. The sample size was 

chosen to balance annotation diversity with operational feasibility and to approximate the 

staffing scale of a mid-sized clinical ECG department. This approach enhances the ecological 

validity of the resulting dataset and supports the development and evaluation of robust, 

generalizable signal processing algorithms. 

 

4.3​ Labeling Process 

An in-house labeling tool was created for labeling the ECG files. Each analyst was given all 400 

files and presented with 10-second one-lead ECG tracings. These were individual 10-second 

strips, one strip for each unique ECG file in the dataset. They were tasked to label all the P-waves, 

QRS complexes, and T-waves. This included the onset and offset of each wave, as well as the 

type of wave, specifically P, QRS, or T.  

The labeling process involved analysts selecting a wave type and then dragging their mouse over 

the ECG tracing to highlight a wave. If there were errors, they could delete the labeled wave and 

try again, or they could manually edit the onset and offset using some buttons. Once the analysts 

completed labeling the ECG, they could submit the labels to a central database.  

 

4.4​ Statistical Analysis and AI Model Evaluation 

The labels were downloaded from the central database, and then each labeled wave was grouped. 

Waves were considered to be the same wave and grouped if labels were for the same type of 

wave, and if they had any overlap with at least one of the other analysts' labels. So if label A 



overlaps with label B, and label B overlaps with label C, then label A and label C are considered 

to be labeling the same wave even if label A and label C do not overlap. Each group of labels 

represented one wave. If fewer than three analysts labelled a specific wave, then that group was 

removed and considered mislabelled. 

The mean of each group's onset and offsets was calculated using the analysts’ labels. The mean 

was used as the ‘true’ value when measuring the error of the analysts and the model. The root 

mean square error (RMSE) was calculated for each analyst and the model. 
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RMSE was chosen over other methods because it penalizes outliers. In practice, labeling the 

onsets and offsets perfectly is not essential; however, it is crucial not to misslabel a wave.  

The mean of the RMSE was calculated for each analyst's wave onsets and offsets. This average 

error was used to rank the analysts and the model. This method provides a slight advantage to the 

analysts, as their labels were used to calculate the ‘true’ value.  

The median error and interquartile range (IQR) were calculated for each analyst and the model. 

This was done to better understand the accuracy of each analyst in labeling and to compare it to 

the model. 

Due to low-quality signals and noise, not every analyst agreed on whether a P-wave existed. An 

analysis was performed to estimate the accuracy with which an analyst and the model can 

identify P-waves. Since not all analysts agreed, the probabilities of each P-wave existing were 

first calculated and later used to weight the accuracy of the analysts. 

The probability that a wave is a P-wave was calculated by dividing the number of analysts who 

claimed the wave is a P-wave by the total number of analysts who labeled the file. For example, 

if two analysts labeled a P-wave out of a total of ten analysts who labeled the file, then the 

probability of that P-wave existing would be 0.2. The probabilities were used to weight the 

percentage of time the analyst labeled a P-wave versus the total number of P-waves. This 

ensured more weight was placed on P-waves where the majority of analysts agreed.  

The model P-wave accuracy was evaluated in the same manner as the analysts. The only 



difference is that the model's P-wave predictions were not used to calculate any probabilities for 

a P-wave to exist. This gives the analysts a slight advantage. 

The model was also tested with added noise. For each file, we randomly added noise, which 

included white noise, baseline wander, powerline, and artifacts. The model then labeled the noisy 

file. We used the results in the statistical analysis. Since the noise was random, this method was 

run five times, and the average was taken. This is an unfair advantage for the human labelers, as 

they were only given the clean version of the signal and did not experience the same level of 

noise. Therefore, we expect the model with added noise to struggle more.  

 

5.​ Results 

There were 400 unique files, comprising a total of 4,517 QRS complexes. Each analyst labelled 

all 400 files.  

The root mean square error (RMSE) shows the error of each analyst in labelling the waves. This 

is important as a mislabelled wave could lead to misdiagnosing crucial cardiac events. Table 1 

shows the result for each analyst, indicating that MaxYield™ performed similarly to the top-2 

ranked analysts by having the 2nd lowest Mean RMSE. This shows the high level of accuracy 

that MaxYield™ has in removing noise artifacts and correctly labelling waves and sections of the 

ECG, which is essential for diagnosing cardiac events. 

 



Table 1: RMSE Rank Table  

Analyst Mean RMSE Mean RMSE Rank 

Expert 1 11.852382 1 

MaxYield™ 13.469676 2 

Expert 2 13.599225 3 

Expert 3 14.038519 4 

Expert 4 14.425222 5 

Expert 5 15.612630 6 

Expert 6 15.734446 7 

Expert 7 15.798977 8 

Expert 8 16.165228 9 

Expert 9 16.226465 10 

Expert 10 16.970178 11 

MaxYield™ (With Noise) 17.445167 12 

Expert 11 20.039835 13 

Expert 12 20.385723 14 

Expert 13 23.468058 15 

Expert 14 27.027354 16 

Expert 15 30.422535 17 

 

The Median error and IQR were calculated to better understand the accuracy of each analyst in 

labeling the P-wave, QRS complex, and T-wave compared to MaxYield™; the results are 

detailed in Table 2, Table 3, and Table 4.  

Table 2 shows that MaxYield™ has a very low Median error and IQR compared to the other 

experts. MaxYield™’s lower IQR indicates its ability to label P-wave onsets and offsets 

consistently. Only two experts had a lower IQR, indicating that MaxYield™ has high accuracy in 



detecting P-wave onsets and offsets. It should be noted that though MaxYield™ (with noise) had 

a higher IQR, it was still lower than some of the experts. It also had a lower Median error, which 

further shows the accuracy of MaxYield™ in detecting P-waves even with noise treatment not 

active. 

Table 3 shows that MaxYield has a low Median error, outperforming 11 experts, and a low IQR, 

outperforming all experts. This indicates that MaxYield™ has a high accuracy and consistency in 

detecting QRS complexes, which is essential for detecting heartbeats and intervals to help 

diagnose arrhythmias if present. MaxYield™'s (with noise) algorithm has a low IQR and 

outperforms all experts, second to MaxYield™, further showing the accuracy of MaxYield™ in 

identifying onsets and offsets of QRS complexes. 

Table 4 shows that MaxYield™ has a very low Median error, outperforming all but one expert, 

and a low IQR outperforming all other experts. This shows that MaxYield™ has a high accuracy 

and consistency in detecting T-waves, which helps with cardiac event diagnoses. MaxYield™'s 

(with noise) algorithm has a low IQR that outperforms all but one expert, further showing the 

accuracy of MaxYield™ in identifying onsets and offsets of T-waves. 

 



Table 2: Median Error and IQR Table for P-Wave 

Analyst P-Wave Onset P-Wave Offset 

Median Error IQR Median Error IQR 

Expert 1 -3.2 12.4 0.3 11.5 

Expert 2 5.6 12.3 -3.2 12.9 

Expert 3 6.6 12.8 -8.5 12.3 

Expert 4 4.0 9.6 -4.5 11.3 

Expert 5 10.4 14.0 -6.0 14.7 

Expert 6 -4.8 14.6 -3.1 17.1 

Expert 7 -4.3 15.5 6.9 15.2 

Expert 8 -6.7 12.8 2.1 12.5 

Expert 9 -0.3 11.7 -3.5 11.7 

Expert 10 8.0 14.3 -2.0 19.6 

Expert 11 9.1 11.0 -11.5 15.7 

Expert 12 0.0 17.1 10.0 20.4 

Expert 13 -4.7 12.3 1.9 11.2 

Expert 14 -8.0 20.6 12.6 16.8 

Expert 15 -5.9 16.3 -5.3 21.8 

MaxYield™ -1.1 10.7 -1.7 10.9 

MaxYield™ 
(With Noise) 

-0.5 14.3 -2.4 13.0 

 



Table 3: Median Error and IQR Table for QRS Complex 

Analyst QRS Complex Onset QRS Complex Offset 

Median Error IQR Median Error IQR 

Expert 1 -4.1 8.8 5.3 10.1 

Expert 2 3.1 9.6 -5.0 10.1 

Expert 3 2.5 9.1 -4.3 9.6 

Expert 4 4.0 7.6 -0.8 9.1 

Expert 5 4.9 9.3 -2.9 12.0 

Expert 6 0.9 11.6 -2.9 12.5 

Expert 7 -2.4 11.7 5.3 13.6 

Expert 8 0.3 8.5 -5.3 8.4 

Expert 9 2.9 7.4 -8.0 8.0 

Expert 10 0.6 14.1 4.0 19.9 

Expert 11 6.4 8.0 -10.9 8.9 

Expert 12 5.6 13.9 -4.8 15.7 

Expert 13 -0.8 7.9 0.8 8.3 

Expert 14 -17.9 17.6 28.0 18.9 

Expert 15 -3.7 12.3 -5.3 12.4 

MaxYield™ -2.0 6.8 -5.3 7.9 

MaxYield™ 
(With Noise) 

-1.7 7.5 -5.6 8.7 

 

 



Table 4: Median Error and IQR Table for T-Wave 

Analyst T-Wave Onset T-Wave Offset 

Median Error IQR Median Error IQR 

Expert 1 3.2 17.7 0.3 13.1 

Expert 2 11.2 19.5 -7.5 15.4 

Expert 3 -13.0 19.9 -0.5 15.2 

Expert 4 1.3 21.3 0.0 14.8 

Expert 5 15.1 18.1 -8.0 15.4 

Expert 6 8.0 23.2 1.1 17.1 

Expert 7 10.8 20.6 -2.3 18.7 

Expert 8 -18.7 25.6 0.0 15.5 

Expert 9 10.9 15.1 -5.7 12.3 

Expert 10 8.3 22.9 0.2 22.9 

Expert 11 21.6 17.6 -10.0 14.2 

Expert 12 17.1 20.1 -6.1 18.7 

Expert 13 -40.3 29.5 17.4 19.5 

Expert 14 -5.3 28.3 17.9 25.6 

Expert 15 -7.2 34.6 -7.2 20.3 

MaxYield™ -1.6 12.4 -5.1 10.5 

MaxYield™ 
(With Noise) 

-0.5 15.6 -6.5 12.9 

 

The analysis to estimate the accuracy with which the experts and MaxYield™ could identify 

P-waves in ECG files was calculated, and the results are shown in Table 6. MaxYield™ had a 

lower agreement percentage than most of the experts, specifically Expert 2, who was ranked 3rd 

in Table 1 and had low error scores depicted in Tables 2 to 5. This shows that MaxYield™’s 

noise cleaning algorithm accurately cleans data and labels true P-wave onsets and offsets when 



they occur. 

Table 6: P-waves labelled agreement 

Analyst Agreement 

Expert 12 92.7% 

Expert 5 91.9% 

MaxYield™ with noise 91.4% 

Expert 14 90.9% 

Expert 13 88.6% 

Expert 8 88.5% 

Expert 9 86.7% 

Expert 7 86.4% 

Expert 1 85.2% 

Expert 4 85.0% 

MaxYield™ 84.9% 

Expert 15 83.1% 

Expert 2 82.0% 

Expert 11 78.1% 

Expert 3 77.9% 

Expert 10 76.2% 

Expert 6 70.7% 

 

 

 

 

 



6.​ Conclusion 

The results demonstrate that MaxYield™ consistently achieved low Median and IQR errors 

across all tests compared to human experts, underscoring its high accuracy and consistency in 

identifying the onsets and offsets of P-waves, QRS complexes, and T-waves. These features are 

fundamental to ECG analysis and essential for interpreting cardiac events and diagnosing 

arrhythmias and other cardiovascular diseases. 

This level of accuracy, combined with MaxYield™’s ability to process extended ECG recordings 

(up to 14.5 days), enables the reliable detection of numerous cardiac events, particularly 

paroxysmal or intermittent arrhythmias that are often missed in short-duration assessments. 

While this study focused on the precision of P-wave, QRS complex, and T-wave annotation, 

MaxYield™’s ability to correctly identify these complexes after noise and artifact removal is 

expected to substantially increase the probability of capturing critical abnormalities (e.g., 

prolonged pauses, various types of heart block, short atrial fibrillation episodes, sustained SVT, 

or ventricular tachycardia). This precision also reduces the false positives that contribute to 

technician “alarm fatigue.” 

Accurate detection of P-waves and QRS complex onsets and offsets further supports the 

diagnosis of not only pauses but also their underlying nature (e.g., second-degree AV block, 

third-degree AV block, sinus pauses). Although T-wave onset and offset are not always central to 

routine Holter reporting, their accurate identification by MaxYield™ can provide important 

clinical insights in specific cases requiring comprehensive cardiac assessment. Future studies 

focused on direct arrhythmia event detection will further validate these benefits. 

In addition, MaxYield™ demonstrated superior robustness in the presence of noise, significantly 

outperforming traditional algorithms. Its noise-canceling capability effectively removes artifacts 

while preserving critical ECG morphology, ensuring data integrity for downstream analysis. 

These capabilities position MaxYield™ as a next-generation platform for precise ECG analysis, 

delivering clean signals and accurately detected PQRST features over long-duration recordings. 

This foundation facilitates faster post-processing, streamlines technician workflows, and 

supports timely detection of a wide spectrum of cardiac events. 
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