
Simulating Scale-Up: A critical 
step in AI infrastructure design
The importance of Large Language Models (LLMs) and Generative AI is pushing 
networking engineers to incorporate the role of scale-up fabrics in their 
networking simulations.  Accurately simulating these tightly coupled, high-
bandwidth, low-latency interconnects (such as UAlink or NVLink) is critical for 
understanding how the AI will perform in the real world network.

This white paper explores the significance of scale-up fabrics and explains how 
network engineers, infrastructure architects, and silicon designers can benefit 
from including scale-up in their network simulations to improve their design and 
deployment decisions. It also showcases that Scala Computing’s simulation 
platform enables high-fidelity modeling across the full AI network stack at 
datacenter scale.  

Why we need to Simulate Scale-Up
Modern AI workloads, particularly LLM training and inference, push the limits of 
compute, memory bandwidth, communications bandwidth and networking. The 
costs of training and inferencing make it well worth understanding how to optimize 
performance and network utilization.  

AI workloads are too large for a single node. The compute and memory required is 
achieved by networking a number of nodes together.  For best performance, those 
nodes must be connected together closely enough to operate as one unit.  This 
tight grouping is called “Scale-Up” and becomes essential when AI workloads 
require tightly coupled processing or microsecond-scale inter-GPU 
communication.  

Scale-up fabrics can also extend across chassis and racks. In these cases, 
network performance bottlenecks within a node or between a small group of 
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nodes can have a disproportionate impact on application performance.  
Understanding these complex interactions, at scale, is difficult in a lab. 

As Scala Computing is focused on simulating real world LLM workloads, it also 
needs to focus on simulating the Scale-Up Fabrics to match the behaviors of the 
real network.  LLMs and Generative AI have dramatically increased the 
complexity, need, and value of high-fidelity Scale-up simulations.

Complexity is increasing: In order to represent real-world networking, 
simulations must now include the scale-up fabrics, GPU communication 
patterns, sharding strategies, and multi-model orchestration that are operating 
in the real world.  

Need is intensifying: Entire data centers are being dedicated to AI training and 
inference with most endpoints being expensive GPU/accelerator 
heterogeneous systems. In addition to the increasing scale of the 
infrastructure, Generative AI models are growing and evolving (Transformers, 
Dense Models, MoEs, etc.) resulting in changes to how the algorithms are 
mapped to clusters and how they interact with RAG (Retrieval Augmented 
Generation) pipelines, and agentic environments. 

Value is growing: GPU infrastructure investment (CAPEX and OPEX) must now 
translate into tangible performance metrics like tokens per second, training 
time, and model quality, all of which are influenced by nuanced network 
behaviors.    

Network Simulations to understand scale-up networking are increasingly critical 
for tightly coupled GPU workloads where latency and memory locality directly 
affect performance.  With billions of dollars at stake, the need to optimize both 
data centers and LLMs is growing.  The value of Simulation increases with the 
complexity of the problem that needs to be solved. With so many nuanced 
interactions, Simulation is the only practical method to explore these variables 
before deployment.  

Modeling the Full Network Stack
Modern AI infrastructure involves three interrelated networks:

1. Data Center Network; storage, orchestration, control plane
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2. Scale-Out Network; inter-node GPU collectives and communication

3. Scale-Up Network or Fabric; intra-node or intra-cluster GPU-to-GPU 
interconnects

Historically, simulations modeled only the scale-out network, assuming intra-node 
communication was fast enough to be ignored. The Scale Up fabric was 
rudimentarily modeled by assuming GPU chassis as the unit of deployment with 
very large bandwidth between GPUs (generally 8 per chassis). The goal was 
providing consistent low tail latencies for the ML training workload collectives, so 
that the network would not gate GPU performance and that performance is as 
close as possible to the optimal, based on the link speeds and switch topology. In 
these exercises the Data Center network was not modeled at all, except to 
confirm if it could be collapsed into the same Scale Out Network gear with no 
detrimental impact on metrics.

Today, accurate performance modeling of modern LLM workloads requires 
accurately simulating both scale-out and scale-up networks in combination, at 
data center scale, to capture:

The bandwidth ratio between scale-up and scale-out paths

The latency sensitivity of key collectives and inference steps or workloads

The topology options for each network fabric, including oversubscription, re-
order capable multi-pathing, rail optimized bandwidth, and flatter topologies at 
lower per MAC speeds

Critical Simulation Choices 
Simulation enables exploration and evaluation of key architecture and deployment 
decisions:

Transport Layer Options
Traditional RoCE with strict packet ordering

UET (Ultra Ethernet Transport) with spray-based load balancing

Encapsulated Load/Store protocols for scale-up fabrics
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Topology Design
Non-blocking vs. oversubscribed Clos designs

One-hop Rail-optimized scale-up interconnects

Use of highest possible MAC layer speed vs. lane-optimized throughput

Map Sharding Dimensions to Networks
Use Scale-up for Latency-sensitive parallelization dimensions (e.g., 
tensor/model parallelism) 

Use Scale-Out for All-to-all or reduction collectives

Scale-Up Technology Selection
NVLink for scales up to a rack or a few racks, but limited to a single vendor

UAlink for flit-level scheduling with high predictability

UAlink mapped to Ethernet as proposed by Broadcom SUE or AMD Infinity 
over Ethernet

Each choice affects latency, throughput, congestion response, and collective 
performance in different ways. Simulation is required to validate the impact at 
scale with LLM workloads.

Effective Scale-Up Simulation
To simulate scale-up effectively for AI workloads, platforms must support:

Low-latency transport modeling (RoCE, UET, NVLink, UAlink)

In some cases, approximations or variations of these transports may be 
sufficient

Lossless Ethernet features, such as PFC, ECN, buffer tuning, and headroom 
sizing

PCIe and GPU fabric topologies, including NUMA effects and link contention

Packet-level collective communication patterns, with fine-grained latency 
modeling
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Scalable workload integration using real-world traces (e.g., Chakra from 
MLCommons)

The Scala Compute Platform (SCP) is focused on providing these features, at 
data center scale, allowing researchers, operators, and vendors to simulate their 
real-world network behavior with high fidelity.

Why Scale-Up matters
Infrastructure Optimization
Operators, System Designers, and Silicon Designers can increase GPU utilization 
and reduce costs associated with purchasing GPUs and Networking equipment.  
They can design solutions that allow Generative AI infrastructure to operate 
efficiently for both Training and Inference purposes without the need for artificial 
infrastructure partitioning.  

Protocol and Device Simplification
Simulations reveal which protocol and device features truly impact performance, 
and which can be eliminated, enabling simpler, more interoperable networks.  
Fewer required features translated into a wider and more flexible selection of 
vendors and reduced CAPEX and OpEX.

Clear Fabric Tradeoffs
Simulation results improve understanding of the tradeoffs and critical technology 
choices associated with emerging non-Ethernet protocols, and quantify the 
benefits.  High-frequency interactions that require challenging speed and latency 
performance may be worth the cost of scale-up protocols and network 
components (e.g. GPUs), while independent parallel parts may be best handled by 
cost-effective and flexible scale-out network fabric topologies.  

Workload Optimization
Simulation results can guide smarter workload optimization and improvements to 
collective libraries and workload distribution strategies, reducing incast, improving 
convergence and boosting utilization.
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Simulating for the Future of AI
Being a leader in AI infrastructure hinges on the ability to simulate scale-up 
behavior. With billions of dollars being spent on developing the algorithms and 
hardware and assembling and operating the datacenters, the need to optimize is 
critical.  Without modeling Scale-Up fabrics, like UAlink, on the Scala Compute 
Platform, engineers risk overspending for AI that will underperform.  

Simulation empowers operators, system architects, and silicon designers to 
virtually explore performance outcomes with high fidelity before investing in 
expensive hardware.  AI Engineers can improve their models to better utilize the 
networking hardware they will run on.  

Scala Computing’s simulation platform offers the fidelity, flexibility, and AI 
workload integration needed to guide your next generation infrastructure 
decisions.

About Scala Computing
Scala Computing provides advanced network simulation for AI-centric workloads 
at data center scale. Our Scala Compute Platform (SCP) enables accurate 
modeling of LLM training and inference workloads across transport protocols, 
topologies, device behavior, and scale-up fabrics, empowering infrastructure 
teams to design with confidence.
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