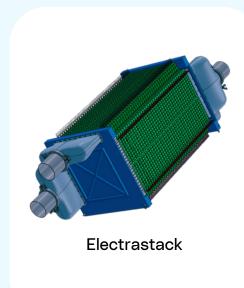

FROM SMELTERS TO SKIES: EFFICIENT CO2 CAPTURE

RepAir Carbon is redefining CO₂ capture with the only solid-state electrochemical system purpose-built for diluted sources (0-5%). Our solvent and liquid-free technology enables a straightforward, energy efficient, cost-effective approach to carbon capture. RepAir cuts energy use by 70% and delivers 98–99% pure CO₂ for permanent storage. At scale, our system achieves under \$100 per tonne, zero thermal inertia, and strong resilience to industrial impurities.

Serving two critical markets-industrial emitters with diluted CO₂ streams and organizations tackling hard-to-abate Scope 3 and distributed emissions-RepAir provides modular, scalable, integrated systems that seamlessly fit existing infrastructure. With multiple pilots already in operation, we are now scaling toward full commercialization.

HOW REPAIR CAPTURES CO2


At the core of RepAir's technology is a proprietary electrochemical cell architecture designed to capture CO₂ from low-concentration flue gas. Like a fuel cell, the system consists of two electrodes separated by a selective membrane. It operates purely on electricity-requiring no heat or water-and features a solid-state design that retrofits seamlessly into existing industrial systems.

As flue gas flows through the cathode compartment, hydroxide ions (OH-) react with CO2 to form bicarbonate and carbonate ions. These ions are transported across the membrane to the anode, where a controlled electric potential causes them to recombine into pure CO2. The CO2 is then released, ready for compression, storage, and/or utilization.

The system maintains continuous operation by regularly reversing cell polarity, enabling constant capture cycles with minimal energy loss.

VALIDATED RESULTS, COST- EFFECTIVE SCALE-UP

	DAC	Point Source
CO ₂ capture efficiency [%]	65 - 70	> 85
CO ₂ purity [%]	> 97 (low vacuum)	> 99 (no vacuum)
Energy consumption [MWh/tCO ₂]	~ 0.6	~ 0.4
Cost at scale [\$/t]	< 90	< 70
Vulnerability to Impurities	No performance loss	

TRUSTED & TESTED • Multiple patent portfolios covering core technology and system architecture

- DOE-backed technology development
- Successfully tested both in the lab and on-site at the aluminum smelter Selected for the Pelican DAC project in Louisiana with Shell and Mitsubishi
- Engineering studies completed with Tier 1 EPC companies

SCALABLE BY DESIGN

- Built from mass-manufactured, abundant & recycled materials
- No process waste generated

REPAIR'S SOLUTIONS

CDR credits

DACCS

High quality

solution.

low carbon aluminium

ALUMINIUM

feedstock GAS TURBINES

DACCU High purity CO₂

Asset decarbonization,

low carbon power

PARTNER WITH REPAIR

RepAir is currently looking for partners to implement and scale our field-tested carbon capture

Get in Touch! Amir Shiner, CEO, Co-founder amir@repair-carbon.com

www.repair-carbon.com