Zebrafish Cognitive Learning Interface (ZebCLI)

Shipei Huang

University of Washington 8/22/2024

Background:

- Neurological disorder: disorder of the nervous system and it can result in a range of symptoms. Diseases such as brain tumors, parkinson's disease and stroke.[1]
- Cognitive Deficits [2]
- Degenerative nerve diseases
- Depression
- Autism
- •

Background:

To study them, we need...

Animal models:

- Rodents: Rat and mice
- Rabbit
- Frog
- Primate
- Zebrafish

•

Why I chose Zebrafish?

- Zebrafish share 70% of human genes, and many of the genes and pathways required for these features are highly conserved between the two species
- Zebrafish and humans share similar physiological, emotional, and social behavioral patterns.
- Low costs (relatively)
- Rapid generation time
- Easy genetic engineering

Previous research:

Previous research 1 [3]:

Previous research 2 [4]:

If we already have these existing systems, why are you going to build another new one?

Because it's a requirement, I have to do some projects in order to graduate....

More importantly:

- No plagiarism
- Even though I want to do 'copy and paste', their papers are not even open-sources projects
- Current existing systems previous studies used are expensive

Product comparison:

	Cost	Efficiency	Conditional learning	Programmable (user-friendly)
#1	(Unknown)			
#2	(\$4,665.41)			
My expected design				

Need Statement:

My goal is to build a system to monitor and quantify the conditional learning behavior of zebrafist at early ife stages efficiently and at a low cost.

What my design looks like?

Demo (what I have built so far...):

Three challenging parts I will encounter:

Visual stimuli

LEDs Screen

Generating electroshocks:

The most challenging part
Haven't figured out yet
But here is a potential toy...

Video tracking:

Infrared Camera

Training Protocol:

Baseline period

Training period

Analyzing period

Data analysis:

Failure I had before:

Future plan:

Reference:

- [1] Gilmour, Gabriela S et al. "Management of functional neurological disorder." Journal of neurology vol. 267,7 (2020): 2164-2172. doi:10.1007/s00415-020-09772-w
- [2] Sheffield, Julia M et al. "Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective." Neuropsychology review vol. 28,4 (2018): 509-533. doi:10.1007/s11065-018-9388-2
- [3] Valente, André et al. "Ontogeny of classical and operant learning behaviors in zebrafish." Learning & memory (Cold Spring Harbor, N.Y.) vol. 19,4 170-7. 20 Mar. 2012, doi:10.1101/lm.025668.112
- [4] Joo, William et al. "A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping." Frontiers in behavioral neuroscience vol. 14 606900. 18 Jan. 2021, doi:10.3389/fnbeh.2020.606900

