

Table of Contents

1​ Executive Summary...3

1.1.​ Project Objective.. 3

1.2.​ Scope & Timeframe.. 3

1.3.​ User Accounts provided by Organization... 3

1.4.​ Vulnerability Summary... 4

1.5.​ Summary of Business Risks...4

1.6.​ Standards Followed.. 5

2​ Technical Details.. 6

2.1.​ Methodology.. 6

2.2.​ Terminology and score... 6

2.3.​ Security tools used... 7

3​ Finding Details... 8

3.1​ Summary of Findings.. 8

3.2​ Critical Severity Findings...8

3.2.1​Vulnerability: Session Hijacking via Insecure Session Management... 8

3.3​ High Severity Findings.. 12

3.4​ Medium Severity Findings.. 12

3.4.1​Vulnerability: Missing Security Headers.. 13

3.4.2​Vulnerability: Browser Cache Weakness... 12

3.4.3​Vulnerability: Improper Error Handling & SQL Validation Issues...14

3.4.4​Vulnerability: Clickjacking.. 16

3.4.5​Vulnerability: Cross-Site Request Forgery Token Manipulation.. 18

3.5​ Low Severity Findings... 20

3.5.1​Vulnerability: CORS Misconfiguration..22

3.5.2​Vulnerability: TLS Cookie without Secure Flag Set.. 23

3.5.3​Vulnerability: Expired Token still valid... 24

3.6​ Security status according to OWASP Top 10...25

4​ Tests Performed.. 28

5​ Conclusion...33

1

Document Confidentiality

This document contains sensitive information which needs to be shared with appropriate personnel of

the Organization on a purely need to know basis. The following recommendations are issued with

respect to distributing this document

●​ Distribute to authorized personnel only
●​ Comply with the appropriate security measures according to the classification level

of the document

Version History

Version Author Comment Date

1.0 Ananth Nandyala Web App VAPT 10 March 2025

2

1.​Executive Summary

1.1.​ Project Objective
Our primary goal within this project was to provide the Organization with an understanding of the

current level of security in the web application and its infrastructure components. We completed

the following objectives to accomplish this goal:

●​ Identifying application-based threats to and vulnerabilities in the application
●​ Comparing Organization current security measures with industry best practices
●​ Providing recommendations that Organization can implement to mitigate threats and

vulnerabilities and meet industry best practices

1.2.​ Scope & Timeframe
The section defines the scope and boundaries of the project.

I.​ Constraints and Limitations

The assessment was performed with the knowledge shared by the Company Onboarding team

about the target. Pragya Cyber conducted the assessments, and the result(s) / finding(s) made

are highly subjective to target system(s) and service(s) visibility and availability at that given

point of time.

II.​Target Scope

Identify weaknesses that might be exploited by adversaries who have authorized or
unauthorized access to Company Technical Skill Test and underlying infrastructure:

●​ Test access credentials were provided. It was a Grey-Box Testing.
●​ The objective is to mimic an adversary and identify the threats and vulnerabilities.

The following application was in the scope of the penetration test. Automated as well as

manual security testing was conducted

Sr.no Application Type URL/IP/Domain

1 Web application (Organization) https://xxxxxxxxx.com/

1.3.​ User Accounts provided by Organization

3

URL/IP/API Username

https://xxxxxxxxx.com/ ●​ Username: xxxxxxxx
Password: xxxxxxxx

1.4.​ Vulnerability Summary

1 0 5 3 9

Critical High Medium Low Total

1.5.​ Summary of Business Risks

4

Vulnerability Business Risk Criticality

Session Hijacking via

Insecure Session

Management

Attackers can hijack user sessions to gain

unauthorized access to company’s systems,

leading to data breaches, financial fraud, or

disruption of digital services. This can result in

regulatory penalties, reputational damage,

and loss of customer trust.

CRITICAL

Missing Security

Headers

Lack of security headers increases exposure to

attacks like XSS and clickjacking,

compromising patient data

security.

MEDIUM

Browser Cache

Weakness

Storing sensitive information in cache may

lead to data leaks if an attacker gains access

to a shared or compromised device.

MEDIUM

Improper Error

Handling & SQL

Validation Issues

Unhandled errors and weak SQL validation may

expose database structures, leading to data

breaches or injection attacks.

MEDIUM

Clickjacking Attackers can trick users into performing

unauthorized actions, potentially leading to

data manipulation or financial fraud.

MEDIUM

Cross-Site Request

Forgery (CSRF) Token

Manipulation

Exposure of server details increases the risk

of targeted attacks by providing attackers

with insights into system configurations and

weaknesses.

MEDIUM

CORS Misconfiguration Misconfigured CORS can allow unauthorized
access to internal APIs, exposing sensitive
business logic and patient data

LOW

TLS Cookie Without

Secure Flag Set

Cookies transmitted over HTTP can be

intercepted, leading to session hijacking

and unauthorized system access.

LOW

Expired Token Still Valid Reuse of expired tokens can allow

unauthorized access, bypassing authentication

and leading to data

integrity risks.

LOW

1.6.​ Standards Followed

●​ OWASP

●​ OSSTMM

●​ PTES

●​ WASC-TC

5

2. Technical Details

2.1 Methodology
●​ Penetration Testing Execution Standard (PTES)

●​ OWASP Top 10 Application Security Risks

●​ OWASP Web Security Testing Guide

●​ Open-Source Security Testing Methodology Manual (OSSTMM)

●​ Web Application Security Consortium Threat Classification (WASC-TC)

2.2 Terminology and score
CVE - is a dictionary of publicly known information security vulnerabilities and exposures. CVE’s

common identifiers enable data exchange between security products and provide a baseline

index point for evaluating coverage of tools and services. An information security "vulnerability"

is a mistake in software application, configuration or operating system that can be directly used

by a hacker to gain access to a system or network.

Vulnerability - A weakness which allows a hacker to break into / compromise a system's security.

Exploit - Code which allows an attacker to take advantage of a vulnerable system.

Payload - Actual code which runs on the system after exploitation.

CWE - Common Weakness Enumeration is a tangible set of software weaknesses that

6

http://www.pentest-standard.org/index.php/Main_Page
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/
https://www.isecom.org/OSSTMM.3.pdf
http://projects.webappsec.org/w/page/13246978/Threat%20Classification

2.3 Security tools used
●​ Manual testing: Burp Suite Pro

●​ Vulnerability scan: Nessus, Wapiti, nikto, ZAP, commix

●​ Directory enumeration: gobuster, dirsearch

●​ Injection testing tools: DOM Invader, SQLmap

●​ Encryption: sslscan

7

3. Finding Details

3.1 Summary of Findings

3.2 Critical Severity Findings

3.1.1 Vulnerability: Session Hijacking via Insecure Session Management

Description

Session hijacking was identified during penetration testing, where an attacker could manipulate

session- related values such as loggedinusertype and userinfo to escalate privileges. The

application does not enforce strict session validation, allowing a lower-privileged admin to modify

session attributes and impersonate a higher-privileged admin.

Specifically, by altering the values of cookies, loggedinusertype, and userinfo, the session was

successfully elevated without requiring authentication or revalidation. This indicates a flaw in the

session handling mechanism, where the server trusts client-side session parameters instead of

verifying them securely on the server.

Impact

●​ Privilege Escalation: Attackers can gain unauthorized admin access.
●​ Data Exposure: Sensitive information accessible only to higher-privileged users can be

compromised.
●​ Account Impersonation: Attackers can act as legitimate users or admins.
●​ Compliance Risks: Violates security best practices (OWASP A07:2021 - Identification and

Authentication Failures).
CVSS Score

●​ 9.1

8

Severity

●​ Critical

Mitigation

Enforce Server-Side Session Validation:

o​ Never trust or rely on client-side session attributes (e.g., loggedinusertype, userinfo).

o​ Maintain session state and privilege levels securely on the server.

Use Strong Session Tokens:

o​ Generate and validate cryptographically secure session tokens on every request.

o​ Use JWT (JSON Web Tokens) with proper signing and expiration or server-stored
session IDs.

Regenerate Session IDs on Privilege Changes:

o​ When a user’s privilege level is changed, invalidate old sessions and generate a new

session ID.

Restrict Direct Access to Sensitive Variables:

o​ Ensure loggedinusertype and userinfo are never stored or modifiable on the client side.

o​ Validate user roles and permissions on the server-side for every request.

Implement Role-Based Access Controls (RBAC):

o​ Enforce strict role validation on sensitive endpoints.

o​ Implement least privilege access to minimize exposure.

Session Monitoring & Anomaly Detection:

o​ Log session activities, including privilege escalations and user role changes.

o​ Use multi-factor authentication (MFA) for administrative access.

Evidence

Highest admin on left, lesser privileged admin on right

9

-​ In the above fig, we can see that the highest privileged admin has the access to add

organisations and access it while the lesser privileged admin does not have organisation access.

Local session storage

-​ Navigate to inspect element -> Application -> Local storage.

10

Replace the content in the box

-​ Replace the contents in the box such as loggedinUserType, token, userinfo and UserPermissions

from higher privileged to lesser privileged admin.

Gained session of highest privileged admin

11

-​ We can see that now on the right-hand side, we have access to the organisation and can modify

the organisation data.

-​ Hence, Session Hijacking is present in the application.

3.3 High Severity Findings
 NONE

3.4 Medium Severity Findings

3.4.1 Vulnerability: Missing Security Headers

Description

Security headers are essential HTTP response headers that enhance web application security by

mitigating various threats, including Cross-Site Scripting (XSS), Clickjacking, MIME type sniffing,

and insecure transport mechanisms. The absence or misconfiguration of these headers can

expose applications to client- side attacks, unauthorized content embedding, and data leakage.

Key security headers include:

●​ Content-Security-Policy (CSP): Restricts resource loading to prevent XSS and data injection

attacks.
●​ X-Frame-Options: Mitigates Clickjacking by controlling frame embedding.
●​ Strict-Transport-Security (HSTS): Enforces secure HTTPS communication to prevent SSL

stripping attacks.
●​ X-Content-Type-Options: Prevents MIME-type sniffing to block content-type spoofing attacks.
●​ Referrer-Policy: Regulates the amount of referrer data sent with requests to prevent

information disclosure.

Impact

●​ Increased Attack Surface: Without proper security headers, web applications are more

susceptible to a wide range of attacks such as XSS, clickjacking, and code injection.

●​ Sensitive Data Exposure: Lack of security headers like Strict-Transport-Security can lead to

the interception of sensitive data.

●​ Content Spoofing: Missing headers can allow attackers to manipulate the MIME type of
content, leading to content spoofing attacks.

●​ Cross-Site Scripting (XSS): Absence of Content-Security-Policy increases the risk of
XSSattacks.

●​ Reputation Damage: Successful exploits due to missing security headers can damage the

reputation of the organization.

12

CVSS Score

●​ 4.3

Severity

●​ Medium

Mitigation

●​ Implement Content Security Policy (CSP):

●​ Define a CSP to control resources the user agent is allowed to load.

●​ Example: Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline'

●​ Use X-Frame-Options Header:

●​ Prevent clickjacking by restricting framing.

●​ Example: X-Frame-Options: SAMEORIGIN

●​ X-Content-Type-Options:

●​ Prevent MIME type sniffing.

●​ Example: X-Content-Type-Options: nosniff

●​ Referrer-Policy:

●​ Control the amount of referrer information sent with requests.

●​ Example: Referrer-Policy: no-referrer-when-downgrade

●​ Permissions-Policy:

●​ Control which features and APIs can be used in the browser.

●​ Example: Permissions-Policy: geolocation=(self), microphone=()

Evidence

Headers missing

-​ Hence, Security headers are missing in this application.
13

3.4.2 Vulnerability: Browser Cache Weakness

Description

The application fails to properly manage session expiration and caching policies, allowing

unauthorized access to protected pages. After logging in, if a user copies the URL and opens it in a

new tab or even after closing and reopening the browser, the application directly loads the

dashboard without re- authentication.

This issue arises due to the lack of proper cache-control headers and session expiration

mechanisms, which results in sensitive pages being stored in the browser cache and served

without verifying the active authentication state.

Impact

●​ Unauthorized Access: Users who should be logged out may still access restricted pages.
●​ Session Persistence Risks: If a user leaves a shared or public system without logging out,

another person could access their session.
●​ Data Leakage: Sensitive information remains accessible even after the user session is closed.
●​ Compliance Risks: Violates security best practices such as OWASP A3:2021 - Sensitive Data

Exposure and A7:2021 - Identification and Authentication Failures.
CVSS Score

●​ N/A

Severity

●​ Medium

Mitigation

●​ Prevent Browser Caching of Sensitive Pages:

Configure the application to instruct browsers not to store authenticated pages. Set

response headers that prevent caching of protected content.

●​ Enforce Session Expiry and Reauthentication:

Ensure that each request to the dashboard validates an active session on the server.

Implement session expiration policies and force users to re-authenticate after a certain

period of inactivity.

●​ Invalidate Sessions on Logout or Browser Closure:

Ensure that once a user logs out, the session is immediately invalidated on the server.

Configure session cookies to expire when the browser is closed.

●​ Implement Server-Side Authentication Checks:

Do not rely on cached authentication states; instead, enforce session validation on every
request.

●​ Monitor and Log Session Activities:

Implement session timeout policies and log out inactive users. Track session activity to

detect abnormal login behaviour.

14

Evidence

Dashboard view of the application

-​ After authentication, the above fig shows the dashboard view.

-​ Let’s close the tab and open a new tab by copying the dashboard URL.

Paste the URL in a new tab

15

-​ In the above fig, we can see that the dashboard view has opened without any authentication in

place.

-​ The URL should technically be redirected to the login page instead of directly opening the

dashboard page.

-​ Hence, Browser cache weakness is present in the application.

3.4.3 Vulnerability: Improper Error Handling & SQL Validation Issues

Description

During penetration testing, it was observed that the application exposes detailed SQL error messages
in the HTTP response. When an invalid or malicious payload was injected, the server returned a 500
Internal Server Error, along with database query details, including table names, column names, and
constraints.

This occurs due to improper error handling and lack of input validation, which allows attackers to

gather sensitive database information. Additionally, the application does not sanitize SQL inputs,

making it susceptible to SQL injection attacks.

Impact

●​ Information Disclosure: Attackers can gather critical database details (table names, column

names, constraints).
●​ SQL Injection Risks: If inputs are not properly validated, attackers may exploit SQL injection to

manipulate or exfiltrate data.
●​ System Stability Issues: Unhandled exceptions can lead to crashes or performance degradation.
●​ Compliance Violations: Violates security best practices such as OWASP A9:2021 - Security

Logging and Monitoring Failures and A3:2021 - Injection Attacks.

16

CVSS Score

●​ Can vary(3.8 - 7.0)

Severity

●​ Low

Mitigation

●​ Implement proper error handling to return generic messages instead of SQL errors.
●​ Use parameterized queries and input validation to prevent SQL injection.
●​ Suppress detailed database errors in production environments.
●​ Monitor logs for suspicious SQL queries and enforce security controls.

Evidence

500 error with SQL error disclosure

-​ The application exposes detailed SQL error messages, revealing database structure and internal

query logic.

-​ The application fails to handle exceptions properly, leading to direct SQL error disclosure.

17

3.4.4 Vulnerability: Clickjacking

Description

Clickjacking, also known as UI redressing, is an attack where a malicious actor tricks a user into

clicking on something different from what the user perceives, thereby performing actions without the

user’s intent. This is typically achieved by overlaying or embedding a transparent or opaque layer

over a legitimate webpage element, causing the user to interact with the concealed element.

Impact

●​ Compromised Security: Clickjacking can lead to unintended actions such as changing user

settings, initiating financial transactions, or downloading malicious software.

●​ Information Disclosure: Attackers can gain unauthorized access to sensitive information.

●​ Session Hijacking: Attackers can exploit user sessions, leading to unauthorized access to

accounts.

●​ Reputation Damage: Users may lose trust in the affected website or service if they are tricked

into performing unintended actions.
CVSS Score

●​ 5.4

Severity

●​ Medium

Mitigation

●​ Set X-Frame-Options Header: Use DENY or SAMEORIGIN to prevent unauthorized framing of

the web page.
●​ Implement Content Security Policy (CSP): Use frame-ancestors 'self' to restrict iframe

embedding to trusted domains.
●​ Use JavaScript Frame Busting: Detect if the page is loaded inside an iframe and force it to

break out.
●​ Perform Regular Security Testing: Conduct penetration tests and security audits to detect

potential clickjacking vulnerabilities.

Evidence

18

-​ Paste the code in the inspect elements console.

-​ Let’s click on the marked button in the above fig to observe the results.

-​ After clicking, the page has been re-directed to some other URL.

19

clickjacking not possible in google

-​ Hence, clickjacking is present in the application.

3.4.5 Vulnerability: Cross-Site Request Forgery Token Manipulation

Description

CSRF tokens are used to prevent unauthorized actions from being performed on behalf of

authenticated users. If an attacker can modify, remove, or predict the CSRF token, they may be able

to bypass CSRF protection and perform malicious actions.

Impact

●​ Unauthorized actions on behalf of a legitimate user, such as:

●​ Changing account details

●​ Performing transactions

●​ Modifying permissions

●​ Potential compromise of sensitive user data

●​ Account takeovers if combined with other vulnerabilities

CVSS Score

●​ Can Vary(3 - 8)

Severity

●​ Medium

20

Mitigation

●​ Use Strong CSRF Tokens: Generate cryptographically secure, random, and unique tokens for

each session or request.
●​ Enforce Server-Side Validation: Ensure that every sensitive request includes a valid CSRF token

and reject requests with missing or altered tokens.
●​ Bind CSRF Tokens to User Sessions: Associate tokens with user sessions to prevent reuse

across different sessions.
●​ Implement HTTP-Only and Secure Cookies: Store CSRF tokens in HTTP-only cookies and send

them via headers to prevent client-side manipulation.
●​ Set the SameSite Cookie Attribute: Use SameSite=Strict or SameSite=Lax to prevent

unauthorized cross- site requests.
Evidence

-​ Here, we can modify the token or completely remove the token in the request page. The

response will still be 200.

21

3.5 Low Severity Findings

3.5.1 Vulnerability: CORS Misconfiguration

Description

Cross-Origin Resource Sharing (CORS) is a security feature implemented by web browsers to prevent

unauthorized cross-origin requests. A misconfigured CORS policy may allow unauthorized websites to

interact with a web application’s resources, leading to data theft, unauthorized actions, or other

security risks.

Impact

●​ Unauthorized API Access: Attackers can make unauthorized requests on behalf of authenticated
users.

●​ Sensitive Data Exposure: Leaking confidential information due to overly permissive CORS
policies.

●​ Account Takeover (if combined with other attacks): Exploiting CORS misconfigurations along

with session hijacking or CSRF to take over user accounts.
●​ Client-Side Code Injection: If Access-Control-Allow-Origin: * is set and combined with JSONP

endpoints, attackers can execute malicious scripts.
CVSS Score

●​ Can Vary(3.5-7)

Severity

●​ Low

Mitigation

●​ Avoid Using Access-Control-Allow-Origin: *: Restrict allowed origins to trusted domains only.
●​ Use a Proper Allowlist: Define specific, trusted domains instead of allowing all origins.
●​ Restrict HTTP Methods: Allow only necessary HTTP methods (e.g., GET, POST) and avoid

exposing sensitive operations.
●​ Disable Credential Sharing: Set Access-Control-Allow-Credentials: false unless necessary,

preventing unauthorized websites from using user sessions.

Evidence

22

3.5.2 Vulnerability: TLS Cookie without Secure Flag Set

Description

Cookies are often used to store session tokens, authentication credentials, and other sensitive data. If

a cookie is set without the Secure flag, it can be transmitted over unencrypted HTTP connections.

This allows attackers to intercept the cookie using Man-in-the-Middle (MitM) attacks, potentially

leading to session hijacking and unauthorized access.

Impact

●​ Session Hijacking: Attackers can steal authentication cookies and impersonate users.
●​ Data Exposure: Sensitive information stored in cookies can be accessed over unsecured

connections.
●​ Increased Risk of MITM Attacks: An attacker can capture cookies on unsecured public networks

(e.g., Wi-Fi hotspots).
●​ Bypassing Authentication Protections: Attackers may reuse stolen cookies to access user

accounts without needing credentials.
CVSS Score

●​ N/A

Severity

●​ Low

Mitigation

●​ Ensure all authentication and session cookies have the Secure attribute set, forcing them to be

transmitted only over HTTPS.
●​ Ensure web servers (e.g., Apache, Nginx, IIS) are configured to enforce HTTPS and apply the

Secure flag to cookies.

●​ Use SameSite=Strict or SameSite=Lax to restrict how cookies are sent with cross-site requests.

Evidence

Cookies and session id leaked in response

23

3.5.3 Vulnerability: Expired Token still valid

Description

Session tokens are used to authenticate users and maintain active sessions. If an application fails to

properly invalidate expired session tokens, an attacker or legitimate user can reuse old, expired

tokens to gain unauthorized access. This typically occurs due to improper session management, weak

token expiration enforcement, or lack of server-side validation.

Impact

●​ Unauthorized Access: Attackers can reuse expired session tokens to log in as legitimate users.
●​ Session Hijacking: If an attacker captures an expired token, they can exploit it to maintain

persistent access.
●​ Bypassing Logout Mechanisms: Users who log out expecting their session to be terminated may

still be vulnerable if the expired token remains valid.
CVSS Score

●​ N/A

Severity

●​ Low

Mitigation

●​ Implement proper session expiration on the server side and reject expired tokens.
●​ Ensure that logging out completely destroys session tokens, both on the client and server.

●​ Issue short-lived access tokens and require reauthentication or refresh tokens to continue

sessions.

Evidence

24

-​ In the above fig, the request was sent with an expired token and the response has been 200.

-​ The issue is categorized as a low-level severity because the time taken for the expired token to

work is less

.

3.6 Security status according to OWASP Top 10

Vulnerability Description Status

A01
Broken Access

Control

Access controls enforce policies so that users

cannot act outside of their intended

permissions. Failures typically lead to

unauthorized information disclosure or

modification, destruction of data, or performing

a business function outside the user’s limits.

Fail

(Refer to
3.2.1)

A02
Cryptographic

Failures

Cryptographic Failures involve protecting data

in transit and at rest. This includes passwords,

credit card numbers, health records, personal

information, and business secrets that require

extra protection, especially if that data falls

under privacy laws such as GDPR or regulations

like PCI Data Security Standard (PCI DSS) for

financial data.

Pass

A03 Injection

An application is at risk when user-supplied

data is not validated, filtered, or sanitized by

the application; dynamic queries or

non-parameterized calls without context-aware

escaping are used directly in the interpreter;

hostile data is used within object-relational

Pass

25

mapping (ORM) search parameters to extract

additional, sensitive records; or when hostile

data is directly used or concatenated.

A04 Insecure Design

According to OWASP, “Secure design is a culture

and methodology that constantly evaluates

threats and ensures that code is robustly

designed and tested to prevent known attack

methods. Secure design requires a secure

development lifecycle, some form of secure

design pattern or paved road component library

or tooling, and threat modelling.”

Fail

(Refer to
3.4.3)

A05

Security

Misconfiguration

This category includes such things as missing

security hardening across any part of the

application stack, improperly configured

permissions on cloud services, any unnecessary

features that are enabled or installed, and

unchanged default accounts or passwords. The

former category XML External Entities (XXE) is

now included in Security Misconfiguration.

Fail

(Refer to
3.4.1,3.4.2,3.4

.4,3.

5.1)

A06

Vulnerable and

Outdated

Components

This category includes any software that is

vulnerable, unsupported, or out of date. If you

do not know the versions of your components –

including all direct and indirect dependencies –

or you do not regularly scan and test your

components, you are likely at risk.

Pass

A07

Identification and

Authentication

Failures

Security risk occurs when a user’s identity,
authentication, or session management is not
properly handled, allowing attackers to exploit
passwords, keys, session tokens, or
implementation flaws to assume users’
identities temporarily or permanently.

Fail

(Refer to
3.2.1,3.4.5,3.5

.2,3.5.3)

A08
Software and

Data Integrity

Failures

This includes software updates, critical data,

and CI/CD pipelines that are implemented

without verification. An example of this

includes objects or data encoded or serialized

into a structure that an attacker can modify.

Another example is an application that relies

upon plugins, libraries, or modules from

untrusted sources. Insecure CI/CD pipelines

that can introduce the potential for

unauthorized access, malicious code, or system

compromise also fit into this category. Lastly,

applications with auto-update functionality, in

which updates are downloaded without

N/A

26

sufficient integrity verification and applied to a

previously trusted application, are considered

software and data integrity failures because

attackers could infiltrate the supply chain to

distribute their own malicious updates.

A09

Security Logging

​ and

Monitoring

Failures

This category includes errors in detecting,

escalating, and responding to active breaches.

Without logging and monitoring, breaches

cannot be detected. Examples of insufficient

logging, detection, and monitoring include not

logging auditable events like logins or failed

logins, warnings and errors that generate

inadequate or unclear log messages, or logs

that are only stored locally. Failures in this

category impact visibility, incident alerting, and

forensics.

N/A

A10
Server-Side

Request Forgery

Server-Side Request Forgery occurs when a web

application fetches a remote resource without

validating the user-supplied URL. An attacker

can coerce the application to send a crafted

request to an unexpected destination, even

when protected by a firewall, VPN, or another

type of network ACL. Though SSRF shows a

relatively low incidence rate in the data OWASP

reviewed, this category was added based on the

industry survey results; users are concerned

that SSRF attacks are becoming more prevalent

and potentially more severe due to increased

use of cloud services and the complexity of

architectures

Pass

27

4. Tests Performed

Test name Pass Fail N/A

Information Gathering

Conduct Search Engine Discovery Reconnaissance for

Information Leakage

Yes

Fingerprint Web Server Yes

Review Webserver Metafiles for Information Leakage
Yes

Enumerate Applications on Webserver
Yes

Review Webpage Content for Information Leakage Yes

Identify Application Entry Points Yes

Map Execution Paths Through Application Yes

Fingerprint Web Application Framework
Yes

Fingerprint Web Application Yes

Map Application Architecture Yes

Configuration & Deployment Management Testing

Test Network Infrastructure Configuration

Yes

Test Application Platform Configuration

Yes

Test File Extensions Handling for Sensitive Information
Yes

Review Old Backup and Unreferenced Files for Sensitive

Information

Yes

Enumerate Infrastructure and Application

Admin Interfaces

Yes

Test HTTP Methods Yes

Test HTTP Strict Transport Security Yes

Test File Permission Yes

Test Cloud Storage Yes

Testing for Content Security Policy Yes

28

Test Path Confusion Yes

Identity Management Testing

Test Role Definitions Yes

Test User Registration Process Yes

Test Account Provisioning Process Yes

Testing for Account Enumeration and Guessable User

Account
Yes

Testing for Weak or Unenforced Username Policy Yes

Authentication Testing

Testing for Default Credentials Yes

Testing for Weak Lock Out Mechanism Yes

Testing for Bypassing Authentication Schema
 Yes

Testing for Vulnerable Remember Password
Yes

Testing for Browser Cache Weaknesses
 Yes

Testing for Weak Password Policy Yes

Testing for Weak Security Question Answer

Yes

Testing for Weak Password Change or

Reset Functionalities

 Yes

Testing for Weaker Authentication in Alternative Channel

Yes

Testing Multi-Factor Authentication (MFA)

Yes

Authorization Testing

Testing Directory Traversal File Include
 Yes

Testing for Bypassing Authorization Schema Yes

29

Testing for Privilege Escalation Yes

Testing for Insecure Direct Object References Yes

Testing for OAuth Weaknesses Yes

Testing for OAuth Authorization Server Weaknesses

Yes

Testing for OAuth Client Weaknesses

Yes

Session Management Testing

Testing for Session Management Schema Yes

Testing for Cookies Attributes Yes

Testing for Session Fixation Yes

Testing for Exposed Session Variables
Yes

Testing for Cross Site Request Forgery Yes

Testing for Logout Functionality Yes

Testing Session Timeout Yes

Testing for Session Puzzling Yes

Testing for Session Hijacking Yes

Testing JSON Web Tokens Yes

Testing for Concurrent Sessions Yes

Input Validation Testing

Testing for Reflected Cross Site Scripting Yes

Testing for Stored Cross Site Scripting Yes

Testing for HTTP Parameter Pollution
Yes

Testing for SQL Injection Yes

Testing for Oracle Yes

Testing for MySQL Yes

Testing for SQL Server Yes

Testing PostgreSQL Yes

30

Testing for MS Access Yes

Testing for NoSQL Injection Yes

Testing for ORM Injection Yes

Testing for Client-side Yes

Testing for LDAP Injection Yes

Testing for XML Injection Yes

Testing for SSI Injection Yes

Testing for XPath Injection Yes

Testing for IMAP SMTP Injection Yes

Testing for File Inclusion Yes

Testing for Command Injection Yes

Testing for Format String Injection Yes

Testing for Incubated Vulnerability Yes

Testing for HTTP Splitting (Protocol downgrade) Yes

Testing for HTTP Incoming Requests
Yes

Testing for Host Header Injection Yes

Testing for Server-side Template Injection

Yes

Testing for Server-Side Request Forgery Yes

Testing for Mass Assignment Yes

Testing for Error Handling

Testing for Improper Error Handling Yes

Testing for Weak Cryptography

Testing for Weak Transport Layer Security
 Yes

Testing for Padding Oracle Yes

Testing for Sensitive Information Sent via

Unencrypted Channels

 Yes

Testing for Weak Encryption Yes

Business Logic Testing

Test Business Logic Data Validation
Yes

Test Ability to Forge Requests Yes

Test Integrity Checks Yes

31

Test for Process Timing Yes

Test Number of Times a Function Can Be Used Limits Yes

Testing for the Circumvention of Work Flows Yes

Test Defences Against Application Misuse Yes

Test Upload of Unexpected File Types Yes

Test Upload of Malicious Files Yes

Test Payment Functionality Yes

Client-Side Testing

Testing for DOM-Based Cross Site Scripting Yes

Testing for Self-DOM Based Cross-Site Scripting Yes

Testing for JavaScript Execution Yes

Testing for HTML Injection Yes

Testing for Client-side URL Redirect Yes

Testing for CSS Injection Yes

Testing for Client-side Resource Manipulation Yes

Testing Cross Origin Resource Sharing Yes

Testing for Cross Site Flashing Yes

Testing for Clickjacking Yes

Testing WebSockets

Testing Web Messaging

Testing Browser Storage Yes

Testing for Reverse Tabnabbing Yes

32

5. Conclusion

During the penetration testing of Organization’s web application, multiple security vulnerabilities

were identified, ranging from critical to low severity issues. The most severe finding, Session

Hijacking via Insecure Session Management, poses a significant risk as it allows attackers to hijack

user sessions and gain unauthorized access. Additionally, CSRF token manipulation and expired

token reuse indicate weaknesses in authentication mechanisms that could lead to session

persistence and unauthorized actions. The presence of SQL validation issues and improper error

handling further exposes the application to potential injection attacks and information disclosure.

Furthermore, medium to low-severity findings, such as missing security headers, clickjacking, and

CORS misconfigurations, indicate areas where security best practices are not fully implemented.

These vulnerabilities could be leveraged by attackers to exploit other weaknesses in the system.

Addressing these issues promptly by implementing secure session management, strict input

validation, enforcing HTTP security headers, and improving error handling mechanisms will

significantly enhance the security posture of Organization’s web application, ensuring the protection

of sensitive patient and organizational data.

33

	
	
	Document Confidentiality
	Version History

	1.​Executive Summary
	1.1.​Project Objective
	1.2.​Scope & Timeframe
	I.​Constraints and Limitations
	II.​Target Scope

	1.3.​User Accounts provided by Organization
	1.4.​Vulnerability Summary
	1.5.​Summary of Business Risks
	1.6.​Standards Followed

	2. Technical Details
	2.1 Methodology
	2.2 Terminology and score
	2.3 Security tools used

	3. Finding Details
	3.1 Summary of Findings
	3.2 Critical Severity Findings
	3.1.1 Vulnerability: Session Hijacking via Insecure Session Management
	Description
	Impact
	CVSS Score
	Severity
	●​Critical

	Mitigation
	Enforce Server-Side Session Validation:
	Use Strong Session Tokens:
	o​Use JWT (JSON Web Tokens) with proper signing and expiration or server-stored session IDs.
	Regenerate Session IDs on Privilege Changes:
	Restrict Direct Access to Sensitive Variables:
	Implement Role-Based Access Controls (RBAC):
	Session Monitoring & Anomaly Detection:

	Evidence

	3.3 High Severity Findings
	 NONE

	3.4 Medium Severity Findings
	3.4.1 Vulnerability: Missing Security Headers
	Description
	Impact
	
	
	CVSS Score
	Severity
	●​Medium

	Mitigation
	●​Implement Content Security Policy (CSP):
	●​Use X-Frame-Options Header:
	●​X-Content-Type-Options:
	●​Referrer-Policy:
	●​Permissions-Policy:

	Evidence

	3.4.2 Vulnerability: Browser Cache Weakness
	Description
	Impact
	CVSS Score
	Severity
	●​Medium

	Mitigation
	●​Prevent Browser Caching of Sensitive Pages:
	●​Enforce Session Expiry and Reauthentication:
	●​Invalidate Sessions on Logout or Browser Closure:
	●​Implement Server-Side Authentication Checks:
	●​Monitor and Log Session Activities:

	Evidence

	3.4.3 Vulnerability: Improper Error Handling & SQL Validation Issues
	Description
	Impact
	
	
	
	
	
	CVSS Score
	Severity
	●​Low
	Mitigation
	Evidence

	3.4.4 Vulnerability: Clickjacking
	Description
	Impact
	CVSS Score
	Severity
	●​Medium

	Mitigation
	Evidence

	3.4.5 Vulnerability: Cross-Site Request Forgery Token Manipulation
	Description
	Impact
	CVSS Score
	Severity
	●​Medium

	Mitigation
	Evidence

	3.5 Low Severity Findings
	3.5.1 Vulnerability: CORS Misconfiguration
	Description
	Impact
	CVSS Score
	Severity
	●​Low

	Mitigation
	Evidence

	
	3.5.2 Vulnerability: TLS Cookie without Secure Flag Set
	Description
	Impact
	CVSS Score
	Severity
	●​Low

	Mitigation
	Evidence

	
	3.5.3 Vulnerability: Expired Token still valid
	Description
	Impact
	CVSS Score
	Severity
	●​Low

	Mitigation
	Evidence

	3.6 Security status according to OWASP Top 10

	4. Tests Performed
	
	
	
	
	
	5. Conclusion

