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Wearable Epilepsy Seizure Detection on FPGA with
Spiking Neural Networks

Paola Busia, Gianluca Leone, Andrea Matticola, Luigi Raffo, Paolo Meloni

Abstract—The development of epilepsy monitoring solutions
suitable for everyday use is a very challenging task, where
different constraints should be combined, resulting from the re-
quired accuracy standards, the unobtrusiveness of the monitoring
device, and the efficiency of real-time operation. Considering
the time-varying nature of the electroencephalography signal
(EEG), Spiking Neural Networks (SNNs) represent a promising
solution to model the evolution of the brain state based on the
history of the previously processed signal. This work proposes
an extremely lightweight SNN-based seizure detection solution,
utilizing a simple encoding scheme to ensure high levels of
sparsity. Despite the reduced complexity, the model provides
a detection performance comparable with the state-of-the-art
SNN-based approaches on the evaluated data from the CHB-
MIT dataset, reaching a 96% area under the curve (AUC)
and allowing 99.3% average accuracy, with the detection of
100% of the examined seizure events and a false alarm rate
of 0.3 false positives per hour. The suitability for real-time
inference execution on wearable monitoring devices was assessed
on SYNtzulu, demonstrating 0.5 µs inference time with 4.55 nJ
energy consumption.

Index Terms—Electroencephalography, Spiking Neural Net-
works, Wearable

I. INTRODUCTION

The World Health Organization estimates that 50 million
individuals worldwide suffer from epilepsy, making it the most
prevalent chronic brain condition [1]. People with epilepsy
suffer from sudden seizure events, compromising the normal
electrical activity of the brain and resulting in danger even
during normal life activities. Due to this reason, both patients
and caregivers have a great interest in the development and
optimization of reliable remote monitoring solutions.

The standard diagnostic reference is represented by the elec-
troencephalography (EEG) signal, which is typically analyzed
by expert physicians to recognize the onset of seizure events.
However, artificial intelligence approaches to automate EEG
processing have been thoroughly explored in the literature,
resulting in remarkable accuracy in the seizure classifica-
tion [2] and seizure prediction tasks [3], but reaching adequate
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standards in the low-power wearable domain is still an open
research challenge.

Recently, due to the developments in neuromorphic com-
puting, epilepsy monitoring solutions based on Spiking Neu-
ral Networks (SNNs) have been proposed, as an extremely
energy-efficient approach for real-time long-term monitoring.
The SNN mechanism offers an interesting opportunity to
model the signal amplitude and frequency information with
optimal efficiency, thanks to the inherent time-dependency in
the network evolution, allowing us to consider the context of
previously processed inputs. Furthermore, the binary encoding
of the data removes the workload associated with multiplica-
tion execution, thus SNN inference mainly involves addition
operations. Due to these reasons, SNNs represent a perfect
candidate for low-power wearable monitoring solutions, which
are gaining increasing interest [4]–[7].

Nonetheless, most of the spiking solutions addressing
epilepsy monitoring overlook relevant issues, such as the
need to reduce the acquisition setup to a low-count subset of
unobtrusive channels, minimizing the stigma of a monitoring
device to be used in normal life, or the need to reduce the
number of false alarms, in order to improve the reliability and
avoid provoking unnecessary stress to the patient. Furthermore,
full utilization of the sparsity and efficiency of spiking models
requires specialized neuromorphic hardware [8], [9].

In this work, we propose an extremely lightweight SNN-
based epilepsy monitoring solution to address these relevant
issues, by using only acquisition from the 4 temporal channels
and offering a classification accuracy compatible with the
detection of all the occurred seizure events, with a reduced
number of false alarms. Considering accessibility as a key
objective, we exploit SYNtzulu [10], a tiny low-power SNN
processor design that can be squeezed on low-cost and limited-
resources FPGAs such as the Lattice iCE40UP5K, which
was previously considered as a target for real-time biological
signal processing [11], [12]. The main contributions can be
summarized as follows:

• a spiking solution for seizure detection from the raw EEG
signal, leveraging a simple and effective encoding scheme
and a lean SNN, ensuring the detection of 100% of the
tested seizure events, with 99.3% segment-level accuracy
and 0.3 false-positives-per-hour (FP/h);

• the customization of SYNtzulu’s encoding and decoding
slots for the implementation of the proposed approach;

• demonstration of suitability for real-time monitoring, with
inference time and power consumption measurements on
the target hardware, resulting in 0.5 µs and 4.55 nJ per
inference.
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The organization of the paper includes a summary of related
work in literature in Section II. The proposed seizure detection
approach is described in Section III, whereas the classification
performance assessment is reported in Section IV-A. Section V
summarizes the real-time inference performance evaluation,
whereas Section VI discusses the comparison with the state-
of-the-art in spiking solutions for epilepsy monitoring.

II. RELATED WORK

A comprehensive survey about SNNs for epilepsy moni-
toring is presented in [13], reporting works targeting seizure
prediction and classification. The prediction task requires some
assumptions to be made on the reference datasets, as an
indication of the onset of a preictal state is often missing.
For example, the authors of [14] define a 30-minute preictal
interval and a prediction horizon of 5 minutes, exploiting
a spiking model with 10k parameters to recognize preictal
from interictal samples in the CHB-MIT dataset. In our work,
we focus on the simpler classification problem, targeting
the recognition of ictal samples against normal portions of
the EEG recordings. The literature provides several relevant
references, presenting different processing and classification
solutions while targeting the same open-source dataset [15]–
[21].

The authors of [15] propose an SNN model integrating three
convolutional and two dense layers, applied on the Short-
time Fourier Transform of one-second EEG segments, after
filtering out the power line noise and the DC component. A
combination of SNN and Support Vector Machine (SVM) is
proposed in [16], where the execution of SNN inference is
conditioned to a pre-detection mechanism based on a power
threshold. The network is applied to power spectrum features,
frequency-encoded into spikes considering 50 temporal steps
for each new item to be classified. The energy efficiency of
these solutions is assessed considering the required energy per
synaptic operation on the Loihi platform [15], or the typical
50 pJ energy consumption for the emission of a spike, and
147 pJ for spike transfer on 28nm technology [16]. These
approaches require the computation of Fourier transform or
spectrum power prior to SNN inference, while, in our work,
we consider raw EEG signals, to reduce the complexity of the
processing.

A solution based on raw EEG was previously exploited in
other works, such as [17], presenting a hardware implemen-
tation of a seizure detection system, exploiting level-crossing
ADC applied to the raw signal and Poisson rate encoding, fed
to a convolutional SNN model. Similarly, the work of [18]
proposed a spiking version of the VGG network, applied on
rate-coded EEG segments of 4-second length, whereas [19]
presented a spiking transformer model with embedding based
on temporal convolutional layers applied to 5s segments of
the raw EEG signal and evaluated on both classification and
prediction problems.

Despite being extremely efficient in terms of power and
computational demands, the SNN models in [15]–[19] rely
on complete acquisition setups, accessing 18-23 acquisition
channels, designing a remarkably accurate but quite obtrusive
system.

On the contrary, it is common, when focusing on wear-
able devices, to refer to a reduced set of electrodes. Coher-
ently, solutions oriented to long-term monitoring outside the
Epilepsy Monitoring Units (EMUs) should focus on seizure
detection by accessing a limited number of acquisition chan-
nels, compatible with a reduced wearable setup, minimally
impacting the normal life of the patients, and avoiding social
stigma. This strict constraint is considered in recent works,
such as [22] and [23], presenting a tiny transformer and a
simple Convolutional Neural Network (CNN) for seizure de-
tection based on acquisition limited to the temporal channels,
and [24], proposing a self-supervised CNN evaluated based
on two bipolar acquisition channels. The unobtrusiveness of
the acquisition device represented a design constraint for these
solutions, which demonstrated complexity and efficiency com-
patible with wearable monitoring devices, yet not exploiting
the advantages of spiking computation.

As a direct reference for performance comparison, we
consider two different works presenting SNN-based solutions
leveraging access to only two acquisition channels, [20]
and [21]. Both these models enable a high detection rate,
leaving some room for reducing the false alarm rate, to
improve the quality of user experience. With this work, we
aim to improve the energy efficiency of the state-of-the-
art SNN-based alternatives, with an extremely lightweight
model reaching competitive detection accuracy and requiring
no additional feature extraction, thanks to a simple encoding
scheme capturing the most relevant EEG information and
ensuring high levels of sparsity. The quantitative comparison
with the alternatives from the literature is discussed in detail
in Section VI.

III. METHOD

This section describes the proposed seizure detection mech-
anism, presenting the target dataset, as well as the encoding
scheme and the network model. Finally, we include the de-
scription of the necessary modifications to SYNtzulu’s archi-
tecture for real-time signal encoding, inference, and output
decoding execution.

A. Dataset

The optimization and assessment of the proposed seizure
detection approach targeted the open-source CHB-MIT Scalp
EEG dataset [25], [26], curated by the Children’s Hospital
Boston and the Massachusetts Institute of Technology. The 23
pediatric patients included in the dataset presented intractable
epilepsy, and were monitored during medication withdrawal.
The dataset includes a list of scalp EEG records of different
durations, typically one hour, annotated by experts who re-
ported the start time and end time of seizure events. The data
was collected with a 256 Hz sampling frequency, including a
variable number of acquisition channels, ranging from 18 to
23.

This work targets the development of wearable systems
for continuous monitoring in everyday life, we thus consider
unobtrusive acquisition setups, limited to the four temporal
channels compatible with behind-the-ear acquisition, namely
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Fig. 1: Proposed encoding scheme, applied to one acquisition channel. The plot refers to an EEG excerpt from record chb01 03.
The signal amplitude is mapped into 16 input synapses, emitting a spike when the amplitude falls within the corresponding
region. A single spike is produced on one of the amplitude levels for each newly acquired sample, with a 256 Hz acquisition
frequency.

TABLE I: Composition of the considered data from the CHB-
MIT dataset.

Subject Seizure Seizure Seizure Tested
records events time hours

chb01 7 7 7 min 22 s 6 h 40 min
chb02 3 3 2 min 52 s 2 h 15 min
chb03 7 7 6 min 42 s 7 h
chb05 5 5 9 min 18 s 5 h
chb07 3 3 5 min 25 s 9 h
chb08 5 5 15 min 19 s 5 h
chb09 3 4 4 min 36 s 9 h 30 min
chb10 7 7 7 min 27 s 14 h
chb11 3 3 13 min 26 s 2 h 50 min

Tot 43 44 1 h 12 min 27 s 61 h

F7-T7, T7-P7, F8-T8, T8-P8, according to the 10-20 inter-
national system. Based on the documented results in liter-
ature about inter-patient EEG variability [27], we focused
on patient-specific epilepsy monitoring, selecting a subset of
subjects including patients ranging from 1 to 11, and excluding
patient chb04, due to a prolonged signal instability observed in
record chb04 05, and patient chb06, as in [24], due to the very
short duration of the seizure events recorded. No additional
considerations were made for the selection of the subset of
patients considered for the appropriate evaluation of the model,
resulting from the order of the numbering in the dataset.
Finally, considering the importance of accounting for the
variability of different seizure events for the same patient, we
referred to the leave-one-record-out cross-validation approach,
to test the detection of seizure events completely unseen
during the learning phase. For the training and test of the
models, we consider only records including a seizure event.
The composition of the data is summarized in Table I.

B. Encoding

EEG signal amplitude and frequency are usually especially
affected by the occurrence of seizure events. Based on this
consideration, we selected an encoding approach capable of
highlighting the amplitude variations with time on each of
the considered EEG channels, as represented in the scheme in
Figure 1. The instantaneous amplitude of the signal is mapped
on one of 16 different amplitude levels, defined based on the
(partial) maximum and minimum value of the signal observed

during the first 5 minutes from one of the training records. The
amplitude levels are equidistant, with a step defined based on
the partial maximum and minimum for each channel, which
are matched to levels 2 and 13, leaving four additional external
representation levels for the increased signal amplitude usually
observed during seizure occurrence. The amplitude of the
signal acquired on each channel is thus encoded at every time
step into 16 one-hot values.

Combined with the timing of the spikes, encoding the
frequency-related features, this encoding scheme captures well
the amplitude-related information needed for the discrimina-
tion of seizure events, as can be observed by comparing the
resulting representation of normal and seizure portions of the
signal, reported in Figure 2. For each acquisition channel,
the plots summarize the input spike count observed on each
encoding level for seizure and non-seizure windows, for one
reference subject, namely chb01. As can be noticed, there is
significant discrimination in the input spike distribution, with
nonseizure windows resulting in a spiking activity limited to
low-amplitude levels (central levels, from 6 to 9), and seizure
windows showing noticeable activity in levels corresponding
to an increased amplitude.

This intuitive encoding scheme, combined with the simplic-
ity of the proposed classifier, provides an easily interpretable
classification, based on the distribution of the input signal
amplitude. It is also especially suitable for real-time imple-
mentation, as it only requires the comparison of the current
amplitude value with the 16 reference levels considered.
Furthermore, it enables a significant amount of sparsity in the
inference computational workload, as on each temporal step
only one amplitude level for each channel can receive a spike
in input.

C. Network Model

The detection of seizure events on the EEG signal is
performed through an extremely lightweight SNN model. The
model integrates the Leaky-Integrate-and-Fire (LIF) neuron,
which evolves based on the current membrane voltage value,
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Fig. 2: Average spike count obtained for the input signal in the reference encoding levels, considering the available data from
the seizure records of subject chb01. Spike count is evaluated on windows of 8-second length.

TABLE II: Topology and parameters of the proposed SNN
model.

Layer Synapse Neuron Parameters OPS
Dense Layer 1 64 8 520 520
Dense Layer 2 8 1 9 9

v(t), and based on the input current received in input, as
reported in Equation 1:

ṽ(t + 1) = α · v(t) +
∑

w · sin(t + 1) (1)

where sin(t+1) is the input train of spikes, w are the synaptic
weights assigned to the input connections, and α is a decay
factor. Based on the current value of the membrane voltage,
the neuron produces an output spike sout when a threshold
value θ is reached, according to Equation 2. Finally, whenever
an output spike is fired, the membrane voltage is reset by
subtracting the threshold value, as reported in Equation 3.

sout(t + 1) =

{
1, if ṽ(t + 1) ≥ θ

0, otherwise
(2)

v(t + 1) =

{
ṽ(t + 1), if ṽ(t + 1) < θ

ṽ(t + 1) − θ, otherwise
(3)

The lightweight architecture considered in this work integrates
an input layer of 64 synapses, each representing the input
spikes produced on each amplitude level by the signal acquired
from the temporal channels. This set of input synapses is
fully connected to a hidden layer including eight neurons, and
finally to a single output neuron. The network architecture is
summarized in Table II.

The network is trained to encode the classification between
the normal and seizure classes in the firing rate of the output
neuron, evaluated on a window of x temporal steps. The
output rate is thus the sum of the spikes emitted by the output
neuron during the x temporal steps required to process an
input segment of length x. As will be detailed in Section
IV.A, the typical value of x selected for training is 2048,
corresponding to an input segment of length 8 s, whereas for
real-time execution it is 4096.

The model’s training leveraged the Pytorch framework, and
particularly the SnnTorch library [28] for the LIF neuron
implementation. Training is performed with backpropagation
through time and aims at learning the correct output firing
rate of the output neuron for each of the training segments,
considering a target low rate of 0.03 for normal segments, and
a target high rate of 0.35 for seizure segments. The supervised

training routine iterates over the training batches, evaluating
backward propagation based on the training loss, measured as
the mean squared error between the output firing rate obtained
on the output neuron and the target firing rate for the target
class based on the annotations on the dataset. The training
is configured to complete a maximum of 500 epochs, with
Adam optimizer, batch size 32, and initial learning rate 0.001.
The best model is updated based on the loss evaluated on the
validation set: after 20 epochs of patience where the model
is not updated, the learning rate decays with a factor of 0.3.
On average, training required 430 epochs. Model training was
performed on Google Colaboratory.

D. Target Hardware

The proposed method has been implemented on the ultra-
low-power SYNtzulu accelerator [10], shown in Figure 3.
SYNtzulu is an open-source end-to-end SNN accelerator de-
signed for tiny FPGAs1. It efficiently processes dense spiking
layers, handling 8 synapses and 2 neurons per cycle on two
parallel cores, while leveraging spike sparsity. The system
includes a compact bit-serial RISC-V microcontroller2 that
initializes the accelerator at system start-up and manages the
I/O data flow through the SPI and UART modules. Moreover,
the softcore gates the system when idle and automatically
wakes it up when a new set of samples is available, relying
on a memory-mapped timer.
The clock generation system includes both a high-frequency
oscillator and a low-frequency oscillator. The only module
connected to the low-frequency oscillator is the memory-
mapped timer. To put the system to sleep, the processor simply
turns off the high-frequency oscillator. The oscillator and the
system are woken up by the timer at the appropriate time.
Moreover, SYNtzulu hosts two application-specific config-
urable modules named encoding and decoding slots, that
serve the purpose of encoding sensors’ data into spikes and
output spikes into the result of the classification at hand.
In this work, we designed two new encoding and decoding
slots to efficiently map the presented encoding and decoding
algorithms in hardware.
The encoding slot implementation is a folded lightweight
module that leverages the SPI communication latency to carry

1https://github.com/gianlucaleone/SYNtzulu
2https://github.com/olofk/serv
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Fig. 3: SYNtzulu’s architecture.

out the encoding computation. The incoming samples, pre-
sented every 32 clock cycles at the input port of the encoding
module, undergo a series of comparisons. A BRAM-based
memory holds the minimum channel amplitude levels and the
step values. Initially, the input sample is compared with the
first amplitude level; if it is smaller, the amplitude level is
identified; otherwise, the level is increased by the step value
until the condition is satisfied. A four-bit register keeps track of
the number of iterations. When the amplitude level is found, a
4 to 16 decoder generates the encoded spike set, which is then
written in four entries of the SNN accelerator spike memory
in four consecutive clock cycles.
The decoding slot computes the running sum over 4096 output
inferences. To achieve this, the module incorporates a BRAM-
based memory organized as 1×4096, which stores spike values.
At each network iteration, the spike count is updated according
to the new spike produced by the SNN and the oldest spike
discarded from the BRAM.

IV. EXPERIMENTAL RESULTS

In this section, we summarize the seizure detection results
obtained in the leave-one-record-out tests of the targeted sub-
jects, including the description of the performance assessment
method and the analysis of the accuracy drop connected to the
parameters’ quantization.

A. Classification Performance Assessment

For each subject, having N EEG records showing at least
one seizure episode, we trained N different models, to be
tested on the left-out record. For the training of the model,
we segmented the EEG signal into windows of 8 s length,
that is 2048 samples, representing 2048 (x) time steps. The
selection of 8 s as the window length follows the findings
of previous studies on real-time seizure detection [22], [27],
demonstrating a higher accuracy compared to 2 s, 4 s, and 16 s

window length. A single inference run is performed to process
each newly acquired sample from the temporal channels, and
after 2048 steps classification is produced based on the output
spike rate in the 2048 window.

While training data is randomly shuffled, for the real-time
seizure detection assessment we consider the test record in
chronological order, and let the network evolve for l time
steps, corresponding to the whole record length. Real-time
detection is evaluated for each newly acquired sample after
the first x samples have been processed. The output firing
rate is evaluated with a sliding window approach, referring
to the x − 1 previous time steps, and it is compared with
a patient-specific threshold to discriminate between normal
and seizure segments. A common solution exploited in the
literature to filter out isolated false alarms is to post-process
the output with context-aware approaches, such as majority
voting [22], [27]. In this work, we consider a similar solution,
with the aim of reducing the impact of isolated spikes in the
output rate. Instead of considering the classification output
of n consecutive windows, we exploit the output firing rate
definition extended to a larger segment of 4096 samples,
corresponding to 16 s.

The detection results obtained are summarized in Table III.
We first report the performance metrics referred to segment-
level classification, considering accuracy, sensitivity, speci-
ficity, and the area under the Receiver Operating Character-
istic (ROC) curve (AUC), evaluated based on their typical
definition, where true positives (TP) are correctly recognized
seizure segments, true negatives (TN) are correctly recognized
normal segments, while false positives (FP) and false negatives
(FN) are respectively mis-classifications of normal and seizure
segments, and a segment is a sliding window of size x. We
also include event-level metrics, considering as a TP event
a seizure event detected in any portion, and as a FN event
a seizure event that is not detected at all. The FP/h rate was
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Fig. 4: Output firing rate and classification obtained executing
leave-one-out inference on a) chb08 02 and b) chb02 19
record.

TABLE III: Classification Performance Assessment targeting
the CHB-MIT dataset, considering 32-bit floating point model.

Subject Segment-level Event-level
Acc Sens Spec AUC Sens FP/h

chb01 99.4% 68.7% 100% 97.6% 100% 0
chb02 99% 68.6% 99.7% 95.9% 100% 0.88
chb03 99.6% 76.6% 99.9% 97.7% 100% 0.14
chb05 98.8% 60.6% 100% 91.3% 100% 0
chb07 99.8% 75.1% 100% 99.6% 100% 0
chb08 98.1% 63.2% 100% 97.3% 100% 0
chb09 99% 58.8% 99.4% 96.7% 100% 1
chb10 99.7% 70.3% 99.99% 98.7% 100% 0.1
chb11 99.5% 95.4% 99.8% 98.6% 100% 0.7

Average 99.3% 72.2% 99.88% 97% 100% 0.3

obtained by considering sequences of FPs having less than 10-
second distance as a single false alarm event. The maximum
duration observed for an FP event is 2 minutes and 42 seconds,
while the average duration is 16 seconds.

In order to display the discrimination capabilities of the
model, we considered the ROC curve obtained on each of
the tests performed and reported the average AUC value
evaluated for each subject. As can be noticed, the AUC reaches
values well beyond 90% for all of the considered subjects.
The numbers in Table III refer to a working point resulting
from the selection of the discrimination threshold applied
to the output firing rate. The general aim is a reduction of
false alarms, to improve acceptance of the monitoring device
by eligible patients while ensuring the detection of all the
annotated seizure events [29]–[31]. A suitable selection of the
discriminating threshold was possible based on the training
data and a limited 5-minute real-time observation period on
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Fig. 5: a) Output firing rate and classification obtained execut-
ing leave-one-out inference on chb09 06. b) Detail of input
EEG signal around minute 24 of chb09 06 record.

each test record. As can be observed, accuracy numbers exceed
98% for each targeted subject, with perfect specificity in half
of the subjects, and a sensitivity value ranging from 58% to
95%. We do not consider this variability to have a significant
practical impact on the model’s reliability, given the 100%
detection rate of the evaluated seizure events. As a result,
the main concern would be represented by a possible delay
in the detection of the seizure. However, a certain amount
of uncertainty in the onset annotation is in general to be
accounted for [32]. The event-level metrics also report an
average 0.3 FP/h rate, evaluated over 61 hours of the recorded
signal.

Figure 4a shows an example of effective discrimination
between the normal and seizure periods. The plot highlights
the start time and end time of the annotated seizure. The output
of the network provides an easily interpretable and explainable
classification mechanism: seizure detection, highlighted in
green, is obtained when the firing rate is higher than the
threshold, represented by the blue horizontal line. FNs within
the seizure periods are highlighted in yellow. As the EEG
signal typically remains unstable for a while after seizure
occurrence, we consider a tolerance period of 15 minutes,
where any detection is neglected and does not result in an
FP, as in [22]. A similar outcome was obtained for most of
the records tested.

The FP/h metric is especially affected by the performance
obtained on one of the test records for subjects chb02 and
chb09. Figure 4b shows the detail of the classification obtained
on record chb02 19: as can be noticed, most of the FPs occur
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TABLE IV: Classification Performance Assessment targeting
the CHB-MIT dataset, considering 8-bit model.

Subject Sample-level Event-level
Acc Sens Spec AUC Sens FP/h

chb01 99.4% 69.2% 100% 97.6% 100% 0
chb02 98.97% 66.6% 99.7% 95.9% 100% 1.3
chb03 99.5% 74% 99.9% 97.4% 100% 0.14
chb05 98.8% 60.6% 100% 91% 100% 0
chb07 99.7% 73.6% 100% 99.6% 100% 0
chb08 98.1% 62.8% 100% 97.3% 100% 0
chb09 99% 58.5% 99.4% 96.3% 100% 1
chb10 99.7% 69.5% 99.99% 98.8% 100% 0.1
chb11 99.5% 96.1% 99.8% 98.6% 100% 0.7

Average 99.3% 71.8% 99.88% 96.9% 100% 0.3
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Fig. 6: Design points explored for the design of the proposed
SNN model. The top x axis reports the overall neuron-count
of the model, while computational requirements are reported
in the bottom x axis.

a few minutes before the onset of the seizure. On the contrary,
the detail of the classification output on record chb09 06
is shown in Figure 5a, highlighting several minutes of FPs
at the beginning of the record and far from the onset of
the ictal event. We investigated the possible reason for this
poor performance and observed an abrupt change of the EEG
signal acquired compared to the first minutes of the record,
as represented in Figure 5b, showing the detail of the change
around minute 24. This highlights a limitation in the robustness
of our proposed model. Our work does not directly tackle
artifact detection, however, literature proposes solutions that
can be used to assist seizure detection for this purpose, such
as the use of a combined model as proposed in [33].

B. Post-Quantization Assessment

As anticipated in Section III-C, the proposed model is
extremely lightweight, with only 529 parameters. Nonethe-
less, efficient execution on the specialized ultra-low-power
accelerator targeted requires parameters’ quantization to 8-bit
representation. We thus repeated the classification performance
assessment with the quantized model, summarizing the results
in Table IV. The analysis demonstrates a limited drop in
sample-level sensitivity.

C. Topology Exploration

This section analyses the design choices defining the pro-
posed network topology. Considering the strict memory and

computational constraints resulting from the wearable de-
ployment scenario and the interest in an easily interpretable
classification outcome, we focused on a two-layer topology,
including a hidden layer of processing neurons and a single
output neuron, whose firing rate provides the final classifica-
tion.

To assess the optimality of the proposed topology in Ta-
ble II, we include in the following the results of a design
exploration on the width of the hidden layer, summarized in
Figure 6. The evaluated design points exploit a number of
hidden neurons selected from the set {4, 8, 16}. The plot
reports the sensitivity and AUC obtained on two different tests
performed on seizure records from patient 1 of the CHB-MIT
dataset. The results of both tests, reported in different colors,
demonstrate the drop in the seizure detection performance
resulting from reducing the number of hidden neurons below
8. On the contrary, the advantages of further increasing it to
16 are not consistent, as can be observed based on the results
of test 1, despite a factor 2× increase in the computational
requirements. The candidate 9-neurons topology was thus
selected for the study, considering the advantages in terms of
required inference time and energy consumption in real-time.

D. Seizure Detection Generalization

Using other datasets to assess the generality of the methods
is not straightforward, as alternative datasets use other data
collection and partitioning approaches that do not match well
our training strategy. For example, the Temple University
Hospital EEG Seizure Corpus (TUSZ) [34], [35] reports much
shorter tracks with limited non-ictal sections. On the other
hand, our approach relies on more data for training. This is
easily achievable, in real life, with long patient-specific record-
ing and monitoring sessions, as in CHB-MIT. Despite these
unfavorable conditions, we tested our approach on different
sources, to generally assess the capability of the encoding
approach and of the network to discriminate seizures. We thus
applied the presented training and classification process to two
additional open-source epilepsy datasets, the TUSZ dataset and
the Bonn dataset [36].

The TUSZ dataset reports EEG recordings and seizure
annotations for several subjects, acquired at varying sampling
frequencies, e.g. 250 Hz and 400 Hz. For the assessment
described in the following, we considered 6 of the available
subjects selected based on two main criteria: 1) having at
least three seizure records, providing at least two independent
seizure examples for training, and one for a leave-one-out test;
2) presenting a suitable balance between the available normal
and seizure data, and no prevalence of records reporting
extremely frequent and short seizures. These criteria match
the practical application scenario we imagine for the proposed
system, trained in a subject-specific manner on a given amount
of normal and seizure recordings.

As we did on the CHB-MIT dataset, we only considered
the information acquirable through the 4 temporal channels,
resampled to a common 250 Hz frequency. We performed
6 independent trainings and tested the models on a left-out
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TABLE V: Assessment of subject-specific seizure detection
performance on the TUSZ dataset.

Subject Sample-level Event-level
Acc Sens Spec AUC Sens FP/h

aaaaaaac 94.94% 92.4% 100% 98% 100% 0
aaaaaalq 48.29% 34.73% 93.5% 65% 100% 0.02
aaaaabms 90.96% 43.69% 100% 68% 100% 0
aaaaabnn 62.22% 7 % 100% 89% 100% 0
aaaaadno 74% 27.3% 100% 84% 100% 0
aaaaadpj 75.77% 67.1% 100% 84% 100% 0
Average 62.4% 41.9% 97.8% 100% 0.01

seizure record. The results of the assessment are summarized
in Table V. As can be observed, the proposed method enables
the detection of 100% of the annotated seizure events in the
records tested, despite a segment-level accuracy and sensitivity
demonstrating values below those obtained on the CHB-MIT
dataset. Due to the shorter duration of the test records, the post-
ictal tolerance was reduced to only 60 seconds, nonetheless,
perfect specificity was obtained on most of the tests. The
proposed model can thus be applied successfully for the EEG
monitoring of diverse patients, even if reaching different clas-
sification performance based on the subject and the available
data.

The second reference resource is the Bonn dataset, col-
lecting five subsets of single-channel EEG data acquired
with surface or intracranial setups: subsets A and B include
recordings from healthy subjects, with eyes open or closed;
subsets C and D include recordings of epileptic patients during
seizure-free activity, whereas set E includes recordings of
seizure events. Each subset includes 100 segments of 23.6
s duration, acquired with 173.61 Hz sampling frequency and
stored in separate records.

For the assessment of our proposed model, we considered
subsets C, D, and E, related to the epilepsy monitoring
problem, enforcing a 70:10:20 training-validation-test split on
each subset to ensure the isolation of the test set, which thus
includes 20 segments from subset E, labeled as normal, 20
segments from subset F, labeled as normal, and 20 segments
from subset E, labeled as seizure. The organization of the
data per subject, in fact, is not disclosed. The considered
topology only differs from the one summarized in Table II
because of the number of input synapses in the first layer,
reduced to 16 due to the single channel data acquisition.
The test of the trained model, after 300 epochs of train-
ing, demonstrated a classification accuracy of 92.6%, with
segment-level sensitivity and specificity of respectively 78.9%
and 100%. An event-level sensitivity of 95% was evaluated
considering the 20 recordings from subset E as 20 distinct
seizure events. The summary of the detection performance is
reported in Figure 7, reporting the output firing rate throughout
the set, and the discriminating threshold selected based on the
training data. As can be observed, the test set was organized
with the seizure records at the end of the set. Successful
detection is highlighted in green, whereas missed detection
is indicated in yellow. Overall, the assessment on the Bonn
dataset demonstrated promising generalization capabilities,
with 0 FP/h observed.
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Fig. 7: Output firing rate and classification obtained on the
Bonn dataset, for 70:10:20 training-validation-test split.

V. DEPLOYMENT

This section summarizes the key hardware performance
figures evaluated considering real-time inference execution on
the SYNtzulu hardware target, including sparsity evaluation
and inference time and power consumption measurements.

A. Implementation

The design has been implemented on the Lattice
iCE40UP5K FPGA, a tiny computing canvas that counts 5,280
logic cells (LCs) composed of one LUT and one FF, 8 DSPs
including a 16x16 bit multiplier and a 32-bit accumulator,
30 4-kb dual-port block RAMs (BRAMs), and 4 256-kb
single-port RAMs (SPRAMs). The FPGA also embeds two
oscillators; the former can generate a low-frequency clock of
10 kHz, and the latter can be configured to work at 24, 12, 8,
or 4 MHz.
The resource requirements for our implementation are sum-
marized in Table VI.

TABLE VI: Resource requirements of SYNtzulu on the Lattice
iCE40UP5K FPGA.

LC DSP BRAM SPRAM
System 3271 (61%) 2 (25%) 14 (46%) 4 (100%)

Encoding 163 (3.0%) 0 (0%) 1 (3.3%) 0 (0%)
Decoding 85 (1.6%) 0 (0%) 1 (3.3%) 0 (0%)

B. Sparsity

One of the key advantages of spiking computation, along
with the possibility of replacing multiplications with additions,
is the sparsity introduced by the binary encoding of network
spikes, allowing computations to be executed only when an
input spike is received. To assess the typical workload of in-
ference execution based on our proposed model, we evaluated
the percentage of active spikes resulting on average from the
processing of the test data, which is only 7.3%. This result
is aligned with expectations based on the selected encoding
scheme, as only 1/16 of the input synapses can spike at each
given time step. This maximum theoretical gain resulting from
the nature of the input data, of 92.7%, can be defined as
software sparsity.

To what extent this amount of sparsity can be exploited
in terms of efficiency gain depends on how well sparse
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TABLE VII: Inference time and core power consumption on
SYNtzulu.

Energy component Power consumption Time
Inference (Pinf, Tinf) 9.1 mW 0.5 µs

Idle (Pidle, Tidle) 0.25 mW 3.89 ms

computations can be mapped on the target hardware. In the
case of SYNtzulu [10], the integration of 4 adjacent synapses is
executed in parallel. Therefore, we also evaluated the available
hardware sparsity, considering at each time step the organiza-
tion of the input synapses into groups of 4, and accounting for
a contribution of 4 active spikes to the computations performed
whenever the group includes at least one active spike. With this
constraint, the percentage of average active operations grows
to 17.2%, resulting in a hardware sparsity of 82.8%. This
value resulted from the average count of active quartets of
spikes monitored through dedicated counters during inference
on the test set. The organization of consecutive spikes in
quartets emulated the scheduling of computations performed
in hardware. For each active quartet, a contribution of 4 active
spikes was considered.

C. Real-time Inference Performance

When the monitoring device is working in real-time, a new
classification output will be produced in a streaming manner
with a single inference run, after the first window of size 4096
considered for the firing rate computation is fully computed.
As anticipated in Table II, the execution of one inference run
on a newly acquired set of synapses at a given time step
requires 529 accumulate OPS, which rounds up to 556 OPS
due to the size of the parallelism on the target platform. This
number represents the higher bound of required operations,
as on average, due to the available sparsity, only 96 OPS per
inference need to be performed.

The on-hardware performance evaluated on SYNtzulu, ob-
tained according to the methodology described in [10] and
considering 24 MHz working frequency, is reported in Ta-
ble VII. The table refers to an inference execution frequency
of 256 Hz, based on the sampling frequency of the EEG data
from the CHB-MIT dataset. The resulting core power profile is
reported in Figure 8, demonstrating a core energy consumption
per inference of 4.55 nJ, given an average inference execution
time of 0.5 µs. The measurement setup is shown in Figure 9.

To minimize the energy/resource cost of the encoding, the
encoding module is designed to complete an encoding of a
newly acquired signal sample during its SPI signal acquisition.
Once the spikes on the 4 channels are obtained, the SNN
inference is evaluated. Its active time is minimized by exploit-
ing sparsity at best, except for the waste in parallel exploita-
tion quantified as hardware sparsity. Communication-related
efficiency is also improved, by setting the host processor to
only transmit an output alert when a seizure is detected, thus
making the output transmission payload negligible. Therefore,
in-place processing enables a dramatic reduction of required
communication bandwidth, with respect to an acquisition
system transmitting raw data, requiring 16 kB/s for 4 channels,
sampled at 256 Hz frequency with 16-bit precision.
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Fig. 8: Real-time core power consumption on SYNtzulu.

Fig. 9: Power measurement setup.

VI. DISCUSSION

Table VIII reports the comparison with the seizure detection
performance achieved on the CHB-MIT dataset by SNN
approaches from the state of the art. As a first general con-
sideration, the listed works target seizure detection based on
different acquisition setups, ranging from full montage [15]–
[19], to unobtrusive minimal setups [20], [21]. The signs of
seizure occurrence can be detected more easily with access
to full acquisition setups, as is demonstrated by the excellent
performance achieved especially in [18] and [19], showcasing
95% sensitivity with over 99% specificity, however, similar
monitoring devices would not be suitable for continuous mon-
itoring outside the EMUs, where more unobtrusive solutions
should be favored. Nonetheless, despite the constraints on the
acquisition setup, our seizure detection system surpasses the
solution in [15], providing an improved specificity compared
to [16] and [17], based on the tests performed.

Additionally, the referenced works select different trade-
offs between the sensitivity and specificity of the detection.
Our choice results from the need to ensure as low a number
of false alarms as possible, while enabling the detection of
100% of the seizure events, as this balance is crucial for
the practical use of a monitoring device [29]–[31]. From
this perspective, the leave-one-record-out test approach we
considered closely resembles the real-time practical scenario,
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TABLE VIII: Seizure detection based on SNNs on the CHB-MIT dataset.

Model Channels Features Segment-level Event-level OPS MemorySens Spec AUC Sens FP/h
[15] 22 STFT N.R. N.R. 90.5% N.R. N.R. 304 k*** 484 kB ***

[16] 23 power spectrum 88.4% 84.6% N.R. N.R. N.R. 6 k ** 14 kB ***

[17] 23 raw 92.2% 97.3% N.R.* 100% N.R. 1.5 - 0.2 M ** 9.75 kB
[18] 22 raw 95.06% 99.45% N.R. N.R. N.R. 58.4 M *** N.R.
[19] 22 raw 94.9% 99.3% N.R. N.R. N.R. 0.32 M 9.9 kB
[20] 2 raw filtered 90.4% 96.7% N.R. N.R. N.R. N.R. 2.4 kB
[21] 2 raw 78.7% 76.9% N.R. N.R. N.R. 57 k** 69 kB***

this 4 raw 71.8% 99.88% 96.9% 100% 0.3 529 529 B
* Not Reported.
** Accounting for observed sparsity.
*** Estimated from the paper.

where a model is trained on a set of seizure events and
then is asked to recognize independent ones, that have not
been seen in any portion during the learning phase, resulting
in a lower classification accuracy than the one achievable if
the chronological separation between training and test seizure
events is not ensured.

Despite the possible differences resulting from the test
approach, the comparison with the two works leveraging
a reduced acquisition setup [20], [21] suggests our model
provides a higher specificity level, which does not hinder the
ability of the monitoring system to detect all the evaluated
seizure events. However, to enable a more direct comparison
of the achievable performance with the results documented in
the literature, we considered the ROC curve of our proposed
model and evaluated the classification metrics resulting from
a subset of working points with comparable specificity. With
a threshold selection resulting in 97.3% average specificity,
as reported in [17], the sensitivity of our model increases to
87.1%, and up to 88.2% when the specificity is 96.7%, as
in [20]. Lastly, further reducing the specificity to 84.6%, such
as in [16], the resulting sensitivity is 96%.

Finally, a clear advantage of our proposed approach, high-
lighted by the analysis in the Table, is a significant reduction
of the required number of operations per inference and of
the memory requirements for the storage of the network
parameters. For all of the listed works, we assumed 8-bit
representation whenever not explicitly stated differently.

VII. CONCLUSIONS

In this work, we presented an efficient spiking solution
for epilepsy monitoring in everyday life, considering the
constraints resulting from the necessary unobtrusiveness of
a similar device. We designed an encoding scheme aiming
at capturing the signal frequency and amplitude information
without the need for complex feature extraction and combined
it with a lean SNN model performing classification between
normal and seizure segments based on the firing rate of the
output neuron. The assessment on the open-source CHB-MIT
dataset shows a 96% AUC, enabling a 100% seizure event
detection rate in the considered subjects, with a limited 0.3
FP/h rate, which is competitive with the alternative SNN-based
approaches evaluated on reduced acquisition setups. Further-
more, the computational complexity is significantly reduced,
with only 96 accumulate operations required on average for
a new classification, resulting in 0.5 µs and 4.55 nJ core

energy consumption per inference. This analysis thus provides
significant advancements in the EEG long-term monitoring
problem, creating a solid base for further improvements in the
generalization capabilities and the reduction of false alarms,
to encourage final practical use.
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