
42448 IEEE SENSORS JOURNAL, VOL. 24, NO. 24, 15 DECEMBER 2024

Low-Power FPGA-Based Spiking Neural
Networks for Real-Time Decoding of

Intracortical Neural Activity
Luca Martis , Gianluca Leone , Luigi Raffo , Member, IEEE, and Paolo Meloni , Member, IEEE

Abstract—Brain–machine interfaces (BMIs) are systems
designed to decode neural signals and translate them into
commands for external devices. Intracortical microelectrode
arrays (MEAs) represent a significant advancement in this
field, offering unprecedented spatial and temporal resolu-
tions for monitoring brain activity. However, processing data
from MEAs presents challenges due to high data rates
and computing power requirements. To address these chal-
lenges, we propose a novel solution leveraging spiking
neural networks (SNNs) that, due to their similarity to biolog-
ical neural networks and their event-based nature, promise
high compatibility with neural signals and low energy con-
sumption. In this study, we introduce a real-time neural
decoding system based on an SNN, deployed on a Lattice iCE40UP5k FPGA. This system is capable of reconstructing
multiple target variables, related to the kinematics and kinetics of hand motion, from iEEG signals recorded by a 96-
channel MEA. We evaluated the system using two different public datasets, achieving results similar to state-of-the-art
neural decoders that use more complex deep learning models. This was obtained while maintaining an average power
consumption of 13.9 mW and an average energy consumption per inference of 13.9 uJ.

Index Terms— FPGA, low power, neural decoding, real time, spike detection, spiking neural network (SNN).

I. INTRODUCTION

BRAIN–MACHINE interfaces enable direct communica-
tion between the brain and external devices. These

interfaces are primarily dependent on a process commonly
called neural decoding, which involves the processing of
complex brain activity patterns, to convert thoughts or inten-
tions into actionable outputs, such as controlling a computer
cursor [1] or a prosthetic limb [2]. By bridging the gap
between the human brain and technology, BMIs hold immense
potential to restore lost functions [3], [4], [5], improve human
capabilities, and deepen our understanding of the brain.

Received 2 October 2024; revised 14 October 2024; accepted
15 October 2024. Date of publication 1 November 2024; date of cur-
rent version 13 December 2024. This work was supported in part
by the European Union’s Horizion 2020 Research and Innovation
Program under Grant Agreement GA 101140052 (H2TRAIN) and in
part by NextGenerationEU Mission 4, Component 2, Investment 1.5,
CUP B83C22002820006—Project METBIOTEL—Innovation Ecosys-
tem ECS 0000024 ROME TECHNOPOLE SPOKE 1, and SPOKE 6.
This is an expanded paper from the 2023 IEEE Biomedical Circuits
and Systems Conference (BioCAS), 2023, pp. 1–5 [DOI: 10.1109/Bio-
CAS58349.2023.10389037]. The associate editor coordinating the
review of this article and approving it for publication was Dr. Zhenghua
Chen. (Corresponding author: Luca Martis.)

The authors are with the Department of Electrical and Electronic
Engineering, University of Cagliari, 09123 Cagliari, Italy (e-mail: luca.
martis@unica.it; gianluca.leone94@unica.it; raffo@unica.it; paolo.
meloni@unica.it).

Digital Object Identifier 10.1109/JSEN.2024.3487021

An important evolutionary path in the landscape of BMIs
is provided by intracortical microelectrode arrays (MEAs),
a fast-evolving technology that enables the monitoring of
the brain activity with unprecedented spatial and temporal
resolutions [6], [7] to improve the accuracy of the decoding.
Several artificial intelligence (AI) algorithms have been shown
to be effective in analyzing the low-frequency components of
neural signals, commonly known as local field potential (LFP),
or electrical spikes implementing the interaction between neu-
rons, recorded in traces and referred to as multiunit activity
(MUA). However, these algorithms are hard to deploy on
embedded resource-constrained processing platforms, as real-
time execution of such complex processing steps must be
supported at very high rates, imposed by the typical sampling
frequency and electrode count in MEAs. Thus, fully embedded
neural decoding still needs to be further investigated, with the
aim of integrating brain signal processing with data acquisition
and on-site activation, improving responsiveness, reliability,
power/energy, and communication efficiency.

A promising solution to this technology gap is offered
by spiking neural networks (SNNs), a computational model
that draws inspiration from biological neural networks, pro-
viding reduced power consumption and high compatibility
with neural signals. SNNs are event-based algorithms: they
operate on binary spikes and, thus, limit computing effort to be
spent when actual activity happens, increasing power/energy
efficiency. Furthermore, event-based information encoding is

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0002-6501-9506
https://orcid.org/0000-0001-5265-0759
https://orcid.org/0000-0001-9683-009X
https://orcid.org/0000-0002-8106-4641


MARTIS et al.: LOW-POWER FPGA-BASED SPIKING NEURAL NETWORKS FOR REAL-TIME DECODING 42449

intrinsically compatible with the processing of MUA acquired
by MEAs.

The main goal of our research is to create an energy-
efficient, flexible, and affordable BMI decoding system
capable of extracting motor information from neural activity.
With this aim, we combine SNNs with low-power FPGAs to
achieve very low power consumption and, at the same time,
adaptability to different experiments.

We have developed an integrated processing system,
inspired by a base implementation proposed in [8], deployed
on a Lattice iCE40UP5k FPGA, capable of extracting MUA
from a 96-channel raw neural signal and decoding it in
real time to obtain multiple motion-related variables with an
adequately trained lightweight SNN. Our platform is the first,
to the best of our knowledge, end-to-end near-sensor neural
decoding system exploiting the potential of SNNs.

The main findings of this study can be summarized as
follows.

1) We demonstrate the usability of lightweight SNNs
for neural decoding, proposing an SNN that receives
MEA-acquired MUA as input and decodes multiple
target variables, related to the kinematics and kinetics
of hand motion, in real time.

2) We propose an integrated processing system that
includes, on the same low-power FPGA, the hardware
extracting MUA from intracranial EEG signals, an SNN
processor executing the SNN inference, and the circuitry
required for input/output and system management.

3) We evaluate the accuracy of the system on two different
datasets related to different decoding tasks, achieving
results comparable to state-of-the-art methods.

4) We evaluate the computational efficiency of our solution,
highlighting the potential of sparsity-aware on-FPGA
SNN processing on this task, measuring an average
power consumption of 13.9 mW.

The remainder of the article is organized as follows. Section II
provides a brief overview of related works. Section III
describes the two datasets used, the spike detection pipeline,
the architecture of the SNN employed, and the training process
along with the metrics used to evaluate the network’s decoding
accuracy. Section IV briefly outlines the hardware architecture
used. Section V presents the results in terms of decoding accu-
racy and hardware performance, while Section VI compares
these results with those of related works. Finally, Sections VII
and VIII are dedicated to future work and conclusion,
respectively.

II. RELATED WORKS

Using AI to decode neural signals is a very active topic in
the literature. Neural networks and deep learning algorithms
have been demonstrated to be very promising.

The studies [9], [10], [11], [12] have investigated different
deep learning-based algorithms demonstrating their reliability
in decoding motion intention using input features extracted
from neural signals, such as MUA, single-unit activity (SUA),
or entire spike activity (ESA).

The works [13] and [14] employ two new types of
algorithms for decoding motor intentions from MUA. The
work [13] achieves state-of-the-art accuracy, while the
work [14] that utilizes the dataset [15] and three from a

human with tetraplegia achieves state-of-the-art accuracy on
the dataset [15] but lower accuracy when decoding neural
signals from humans.

Studies [16], [17] utilized LFP signals to decode kinetics
information. Specifically, [16] employed regularized linear
discriminant analysis (RLDA) to classify four classes of grips
and linear ridge regression (LRD) to decode the intensity of
force. Meanwhile, [17] utilized partial least squares (PLS) for
decoding the intensity of force.

In all mentioned works, research efforts focus on training
and testing a decoding algorithm in offline settings, rather than
guaranteeing real-time functionality in its implementation.

Our work tries to close this gap and focuses on SNNs as a
prospective solution. Several works have used SNNs to reduce
resource and power utilization by exploiting the event-driven
nature of the task to allocate resources only when needed.

In [18] and [19], an SNN was used for classification tasks:
one for image classification and the other for surface roughness
classification. In both cases, the SNN achieved state-of-the-art
accuracy and demonstrated suitability for real-time inference
by leveraging the event-driven nature of the input.

These works only study the algorithm without analyzing its
deployment on hardware.

In [20], [21], [22], [23], and [24], SNN-based approaches
implemented on FPGA-based platforms are proposed, focus-
ing on learning capabilities and accuracy optimization. The
work in [20] deals with visual perception, in a task aimed
at decision-making, with a focus on online learning. The
approach presented in [21] also presents an online learning
mechanism, tested on the MNIST dataset. In [22], the authors
use SNNs to improve the performance of obstacle detection in
connected vehicles. The approach in [23] tries to emulate the
learning mechanism of hippocampus to show flexibility and
robustness. In work [24], they implement a large-scale biolog-
ically meaningful neural network with one million neurons,
capable of investigating the mechanisms of soma-to-dendritic
interactions that are essential in neural systems. None of
these works is, thus, specifically oriented to neural decoding.
All these works rely on SNN accelerators based on bigger
FPGAs, such as BiCoSS [25], deployed on a system composed
of 35 Cyclone IV FPGA system, or LaCSNN [26], targeting
Altera Stratix III, and, thus, do not focus on portability and
wearability.

In [27], [28], and [29], SNNs were also applied to the neural
decoding task. In [27], an SNN consisting of four dense layers
was used to decode the speed of a fingertip from the spiking
band power (i.e., the averaged intracortical signal in the 300–
1000-Hz frequency band). In [28], SNNs have been shown
to align with artificial neural networks and long short-term
memory (LSTM) in accuracy while ensuring lower computa-
tional complexity, in terms of operations performed, memory
accesses, and model size. Dethier et al. [29] have mapped a
Kalman Filter on an SNN for neural decoding, achieving good
task-related accuracy. However, in these studies, a practical
implementation of the algorithms on an embedded processing
system was not addressed.

Although numerous hardware solutions have been suggested
for real-time intracortical neural signal processing, most of
them only address spike sorting [30] or spike detection [31],
[32], [33].



42450 IEEE SENSORS JOURNAL, VOL. 24, NO. 24, 15 DECEMBER 2024

Fig. 1. General overview of the proposed approach. In the first step, we extract neural signals using an intracortical MEA. Next, we process the
raw neural signals to obtain MUA, which serves as the input for the SNN. The SNN consists of four dense layers of leaky LIF neurons, where
the membrane potentials of the network’s last neurons are used to track the target variables related to the kinematics or kinetics of the performed
movement.

To the best of our knowledge, only a few works offer a
complete neural decoding system on an embedded device.
The study presented in [34] introduces an ASIC that extracts
spiking band power from the raw neural signal and applies
a steady-state Kalman filter, enabling real-time prediction of
finger movements using data from 93 channels acquired from
a Utah MEA.

The works in [8], [35], [36], and [37] are the closest to ours.
A foundational work in this field is presented in [35],

where a dedicated ASIC circuit implements an SNN-based
decoder for a closed-loop experiment. However, despite the
advanced application, the decoder does not encompass the
entire processing chain, as feature extraction is offloaded to
an FPGA.

Liao et al. [36] use microcontroller units (MCUs) as the
target platform. Leveraging a mature and widely accessible
technology, this approach achieves favorable power efficiency
and offers broader adoption within the community compared
to custom ASICs. However, it comes at the cost of slower
execution times due to the limitations of general-purpose
processors for SNN inference.

In [37], a two-layer dense SNN was used to decode the
velocity displacement of a handle, moved by a monkey during
a delayed reach-to-grasp task. A single variable is monitored,
using a Zynq-7010 APSoC for implementation without more
specific detail on power figures and related optimization.

Our work extends [8], where a four-layer dense SNN was
utilized to decode not only the velocity displacement of the
handle but also the finger pressure applied by the monkey.
The system presented in [8] receives as input the raw neural
signal derived from a 96-channel MEA and performs online
spike detection, which will be the input for the SNN. The
study described in [8] utilizes an Artix-7 FPGA that con-
sumes 56.4 mW of power, leaving space for power efficiency
enhancements.

In our present study, we take the approach one step further.
We changed the platform from the Artix-7 FPGA to the
much smaller and resource-constrained Lattice iCE40UP5k
FPGA to achieve lower power consumption. To achieve this,
we redesigned our SNN accelerator to match the capabilities
of this low-power FPGA. We replaced the more complex
MicroBlaze softcore with a simpler SErial RISC-V, and
finally, we switched from 16- to 8-bit weight quantization.

By optimizing the design to fit within the iCE40, which
dissipates only a few milliwatts, comparable to a generic
microcontroller, we moved to a drastically reduced power
envelope. This shift opens entirely new possibilities for
exploiting the system in highly wearable configurations.

Moreover, we tested the effectiveness of the network
on an additional dataset related to a different motor task.
Within the assessment, we also explored different training
strategies, refining the achievable accuracy with minimal
performance/resource overhead.

III. METHODS

The objective of this study is to decode motor information
from neural activity. Our overall approach to neural decoding
is shown in Fig. 1.

The process followed a series of key steps. First, we selected
two public datasets containing raw neural signals acquired dur-
ing motor tasks. From these raw neural signals, we extracted
MUA through a process known as spike detection. The
extracted MUA will serve as the input for an SNN, which is
trained to decode variables related to the kinematics or kinetics
of the hand. The SNN was trained offline and evaluated using
two common decoding accuracy metrics widely employed in
the literature.

This section is organized according to the flow outlined
previously: we begin by describing the two selected datasets
(see Section III-A), followed by an explanation of the spike
detection method used to extract MUA (see Section III-B).
Next, we present the architecture of the SNN employed in our
study (see Section III-C), and finally, we detail the training
process of the SNN (see Section III-D), along with the metrics
used to evaluate decoding accuracy (see Section III-E).

A. Datasets
We used two public datasets as reference (dataset I: [38]

and dataset II: [15]) containing neural signals recorded during
motor tasks from Rhesus macaque monkeys, where, in both
cases, neural data were acquired using the Utah array [39],
a sensor consisting of 96 electrodes spaced 400 µm apart,
covering an area of 4 × 4 mm, and designed for intracortical
applications.

In Fig. 2, an overview is presented of the contents of the
two datasets, including the input, target, and the processing



MARTIS et al.: LOW-POWER FPGA-BASED SPIKING NEURAL NETWORKS FOR REAL-TIME DECODING 42451

Fig. 2. Representation of the steps for preparing the datasets for
training. On the left, the steps related to dataset I are illustrated, while,
on the right, the steps for dataset II are illustrated. The term MAF N
in the figure indicates filtering using an MAF of order N, while the first
derivative is obtained by subtracting adjacent samples.

TABLE I
RECORDING OF DATASET II USED

steps required to prepare the datasets for training. The steps
are similar and mainly differ in the order of filters used to
make the target variables smoother.

1) Dataset I: The dataset contains two recordings acquired
from two different monkeys, identified as L and N . For this
study, only the recording from Monkey N was used, which
lasted approximately 16 min and included 160 trials. Neural
signals were collected at a sampling rate of 30 kHz using the
previously mentioned sensor. The recordings were obtained
while the monkey performed an instructed delayed reach-to-
grasp task, which involved pulling a cuboid handle.

In addition to the neural signals, the dataset includes the
handle’s position and the four applied forces, sampled at
1 kHz. It also provides MUA and SUA signals extracted
using the methods described in [38]. In this study, neural
signals were subsampled to a frequency of 10 kHz, and before
the training phase, the handle position and the forces were
smoothed using a moving average filter (MAF) of order 64.
Finally, to calculate the handle velocity, we subtract adjacent
samples of the smoothed position and then apply a moving
average filter with an order of 16.

2) Dataset II: Data were acquired from two monkeys indi-
cated as I (“indy”) and L (“loco”). The dataset comprises
37 sessions from Monkey I (spanning approximately ten
months) and ten sessions from Monkey L (spanning around
one month). However, for this study, we analyzed only five
recordings, as indicated in Table I.

Neural signals were collected at a sampling rate of 24.4 kHz
using the same sensor as in Dataset I, positioned in the
primary motor cortex, while the monkey reached for targets
displayed as circles with a 5-mm radius on an 8 × 8 square
grid. In addition to the neural signals, the dataset includes
finger positions on the x- and y-axes and target locations,
sampled at 250 Hz. It also provides MUA and SUA signals
extracted using the methods described in [13]. In our study,
neural signals were subsampled at 12.2 kHz, and behavioral

data were resampled at 1 kHz. Before the training phase,
the positions were smoothed with an MAF of order 32, and
their first derivative was calculated by subtracting adjacent
samples to derive velocity. Subsequently, the velocities were
also smoothed using an MAF of order 8.

B. Spike Detection
The first step of the system is to convert the raw neural

signal into MUA to be used as the input for spike detection.
Each part of the algorithm was chosen to be as efficient as
possible in terms of resource utilization.

The spike detection pipeline can be summarized as follows.
1) Filter: A second-order moving average difference

(MAD) filter, described as follows, is applied to the raw
signal to remove the low-frequency components:

MAD (n) = x (n) −
1
2

[x (n − 1) + x (n − 2)] . (1)

We selected this filter for two primary reasons: first,
it can be implemented in a multiplierless way; second,
it is memory-efficient since only two samples need to
be stored.

2) Spike Emphasis: The absolute value of the filtered
signals is used to emphasize the shape of the spike and
enhance the detection reliability.

3) Threshold: The mean value of the rectified signal mul-
tiplied by 4 in the case of Dataset I and by 5 in the
case of Dataset II, is used as the threshold above which
a spike event is detected.

4) Threshold Update: The spike threshold is updated every
8912 samples.

5) Spike Detection: When the absolute value of the filtered
signal exceeds the threshold, a spike is produced.

6) Refractory Period: Following the detection of a spike,
a refractory period of 1 ms is implemented to prevent
multiple detections of the same spike.

7) Spike Bins: Spikes are counted over a specific time
interval of 1 ms for each channel.

In this configuration, the output frequency of the MUA is set
to 1 kHz. Moreover, when the refractory period is the same
as the bin window, the bins are limited to having values that
are strictly either 1 or 0.

C. SNN Architecture
To define the SNN topology to be used in this work, we have

performed a preliminary design exploration, comparing several
alternatives in terms of achievable accuracy and computa-
tional complexity. As a main constraint, we have considered
the memory availability on the target development platform.
The final selected network topology, as shown in Table II,
is the one reaching higher accuracy. Other more complex
alternatives did not provide additional improvements. The
chosen network is a feedforward SNN composed of four fully
connected layers of leaky integrate-and-fire (LIF) neurons,
which are modeled as follows:

U [t] = βU [t − 1] +

∑
ws [t] − Sout [t − 1] θ

Sout [t] =

{
1, if U [t] > θ

0, otherwise.
(2)



42452 IEEE SENSORS JOURNAL, VOL. 24, NO. 24, 15 DECEMBER 2024

TABLE II
NETWORK TOPOLOGY

In this model, U represents the neuron’s membrane potential,
β is the membrane potential decay rate, w denotes the synaptic
weights, s indicates the input spikes, Sout is the output spike,
and θ represents the neuron’s threshold. When the potential
exceeds the threshold value θ , a spike Sout is generated and a
reset mechanism is activated, subtracting the threshold value
from the potential. As mentioned, the input to the network is
MUA, while the membrane voltages of the neurons in the final
layer of the network are used as outputs. This allows the SNN
to predict continuous-valued target variables. For this purpose,
the number of neurons in the final layer Ntargets depends on the
number of variables to be decoded. Specifically, using Dataset
I, since we decode the speed and the four forces applied to
the handle, the number of neurons is five. Conversely, using
Dataset II, as we decode the speed along the x- and y-axes,
the topology includes two output neurons.

Since the potential of the last neurons directly serves as the
output of the network, the reset mechanism has been disabled
in the final layer.

D. Training Scheme
We used the snnTorch1 package [40] to train the network,

which utilizes backpropagation through time (BPTT) as the
training algorithm. The training strategy was also selected after
a preliminary exploration aimed at identifying the benefits
provided by different settings and hyperparameters.

Fig. 3 shows the different tests performed on a single
recording of Dataset II, which were conducted before arriving
at the final configuration, which was then used for all the
recordings of both datasets.

Specifically, eight different tests were performed.
1) w: only the synaptic weights have been trained.
2) w and β: The synaptic weights and the decay rate of

each neuron have been trained.
3) w and θ : The synaptic weights and the threshold of each

neuron have been trained.
4) w, θ , and β: The synaptic weights, the decay rate, and

the threshold of each neuron have been trained.
For each configuration, the voltage reset method was investi-
gated. Two approaches were tested: setting the voltage to 0 and
subtracting the threshold voltage from the prespike voltage.
Generally, it can be observed that the primary contribution
to accuracy improvement comes from making the decay rate
trainable. Conversely, making the threshold trainable does not
lead to significant improvements. It is also noticeable that
using a subtraction-based reset mechanism consistently yields
better results with the same trained parameters.

The final training strategy, therefore, involved making each
neuron’s membrane potential decay rate β trainable and uti-
lizing a reset method that subtracts the threshold value from
the potential, instead of resetting it to 0, while keeping the
threshold fixed at a constant value.

1https://snntorch.readthedocs.io/en/latest/

TABLE III
TRAINING SETTINGS AND PARAMETER QUANTIZATION

Fig. 3. Results of the exploration conducted to identify the best training
configuration.

During training, the loss function was defined as the mean
squared error (MSE) between the membrane potential of the
neurons in the last layer and the target variables. Adam is
chosen as the optimizer, and fast sigmoid is applied as a
surrogate function.

Each dataset is partitioned based on the number of tasks
performed by the subject, rather than the duration of the
recording. The training set comprises 80% of the tasks com-
pleted, while the validation set and test sets each contain 10%.
The number of epochs was set to 100, the batch size to 10,
and the learning rate to 1e−3.

After training, we selected the network that exhibited the
lowest loss in the validation set as our best model. Training
for each recording was performed by segmenting the training
set into windows using the indications provided in the dataset,
marking the beginning and end of a task. Thus, the starting
point of different windows corresponds to a zero crossing in
the target variable waveform. Finally, the network was tested
on continuous recordings without segmentation. It is possible
to access the algorithm used for training via the following
GitHub link https://github.com/LucaMartis00/SNN-Training-
scheme.git.

Once the model was trained, it was quantized to meet
the hardware constraints, as explained in more detail in
Section IV. Table III summarizes the relevant hyperparameters
utilized and the formats used to represent the network param-
eters. Specifically, the membrane potential is represented in a
32-bit fixed-point format to prevent saturation, while the decay
rates are stored in a 13-bit fixed-point format and the weights
in an 8-bit fixed-point format.

E. Metrics
To evaluate the performance of the network, we use two dif-

ferent metrics: Pearson’s correlation coefficient (CC) described



MARTIS et al.: LOW-POWER FPGA-BASED SPIKING NEURAL NETWORKS FOR REAL-TIME DECODING 42453

Fig. 4. System architecture is implemented on a Lattice iCE40UP5k FPGA and features an RISC-V softcore for system management and
control. Key components include a DFS module for selective hardware module gating, along with SPI and UART interfaces. The spike detection
module converts raw neural signals into MUA. The raw neural signal undergoes filtering and rectification, followed by threshold crossing for spike
identification. After detection, a 1-ms refractory period prevents further detections on the same channel. The binning module aggregates detected
spikes per millisecond on each channel, providing input to the SNN accelerator. The SNN accelerator performs inferences using a two-way parallel
SNN subprocessor. This subprocessor consists of a weight memory, a four-way synaptic adder for accumulating active synapse weights, and a
neuron module for updating the LIF neuron state. In addition, the SNN accelerator includes a spike memory to buffer partial results from layer
executions and a spike stack to keep track of the active spikes.

in (3) and the coefficient of determination (R2) described
by (4)

CC =

∑N
i=1 (yi − ȳ)

(
ŷi − ¯̂y

)
√∑N

i=1 (yi − ȳ)2

√∑N
i=1

(
ŷi − ¯̂y

)2
(3)

[2.5 mm] R2
= 1 −

∑N
i=1

(
yi − ŷi

)2∑N
i=1 (yi − ȳ)2

(4)

where N is the number of samples, yi are the target values, ȳ
is the mean of target values, ŷi are the predicted values, and ¯̂y
is the mean of predicted values. The metrics were computed
separately for each output variable: on velocity and four forces
for dataset I and on velocity on x any axis for dataset II.

IV. SYSTEM ARCHITECTURE

In order to prove the usability of an SNN-based approach to
neural decoding in real time and in a very low-power envelope,
coherent with wearable or prospectively implantable setups,
we have deployed the previously described decoding strategy
on an integrated processing system. The system architecture,
as shown in Fig. 4, is implemented on a Lattice iCE40UP5k
FPGA and comprises of the following:

1) an RISC-V softcore responsible for system management
and control;

2) a dynamic frequency scaling (DFS) module, enabling
selective gating of hardware modules;

3) SPI and UART interfaces;
4) spike detection and binning modules processing raw

iEEG signals to generate MUA-based bins;
5) an SNN accelerator receiving MUA bins as input and

decoding Ntargets variables (five in the case of Dataset I
and two in the case of Dataset II).

To evaluate real-time functionality and measure system power
consumption, we utilized a flash memory connected to the
SPI interface. This configuration emulates the acquisition of

sample data from a sensor array. Finally, the decoding results
were transmitted to a PC through the UART interface.

This section is divided into three subsections, each describ-
ing the main components of the system. In Section IV-A,
the architecture of the spike detection and binning module
is presented. In Section IV-B, the architecture of the module
implementing the SNN is detailed. Finally, Section IV-C
describes the processor used to manage the system.

A. Spike Detection and Binning Modules
Spike detection and binning are performed sequentially for

MEA channels: the former extracts intracortical spikes from
raw neural activity, and the latter sums the spikes in each
millisecond (binned activity).

Spike detection comprises raw neural signal filtering, rectifi-
cation, and comparison with a dynamic threshold to assess the
presence of a spike. After every spike detection, the channel
is set in a refractory period, inhibiting further detections for
1 ms. Finally, the spike binning module sums the spikes per
millisecond per channel generating the SNN decoder inputs.

Aiming for resource utilization reduction, the filter is
designed to be multiplierless, as well as all the other
modules of the spike detection and binning; therefore, the
low-frequency components are removed by using a MAD filter,
which subtracts from the input sample the output of a second-
order MAF, as in (1). The implementation only requires a
BRAM to store two successive samples per channel (Lattice
iCE40UP5K integrates 4-kb BRAM macros) and a few LUTs
for addition, subtraction, and right shift in (1).

This module is also in charge of computing threshold
adaptation, which is obtained by averaging the rectified signal
over windows of 8192 samples and multiplying them for an
integer constant using sums and shifts.

The channel insensitivity period that follows every spike
detection is implemented through BRAM-based counters that
keep track of time steps after a spike to deactivate the detection
for 1 ms.



42454 IEEE SENSORS JOURNAL, VOL. 24, NO. 24, 15 DECEMBER 2024

Since the refractory period is equal to the binning window,
the value of the bin cannot be higher than 1. Therefore, the
binning module comprehends a 96-bit register, where every
bit is associated with a channel, and a 4-bit counter to keep
track of the time (ten time steps). Bins are obtained with a
logical OR between the incoming spike and the bit associated
with the same channel in the 96-bit register. At the end of the
1 ms window, the bins register is streamed out to the SNN
accelerator and reset.

B. SNN Hardware Accelerator
The SNN accelerator is also designed to optimize resource

and energy efficiency. It executes inference by processing
the binned neural activity through a two-way parallel SNN
subprocessor. Each SNN subprocessor is reused over time,
in different clock cycles, to process all the LIF neurons in
the SNN computing (2). The SNN subprocessor comprises
a weight memory, accessed four words at a time, a four-
way synaptic adder used to accumulate the active synapse
weights, and two BRAM-based FIFOs that store, respectively,
the neuron potentials and the decay factors; finally, a neuron
module is used to update the LIF neuron state. Moreover, the
SNN accelerator embeds a spike memory and a spike stack,
which serve, respectively, as a buffer for storing partial results
derived from the layers’ execution and exploiting the sparsity
of the inputs.

1) SNN Subprocessor: The weight memories are mapped
in bigger memory macros, i.e., single-port RAMs (SPRAMs).
The target FPGA embeds four SPRAMs of 256 kb, with a
16-bit read/write port each. The size of the trained models does
not require using all the storage in the four macros; however,
using them in parallel permits to sustain a read throughput
of up to eight weights per clock cycle, four per weight
memory.

To achieve this reading throughput, it was necessary to
switch to an 8-bit fixed-point representation of the weights.
Thus, the SNN model was quantized to enable efficient
deployment on the designated hardware system and optimize
memory usage. We have reduced the weight resolution to 8 bits
by applying adequate observers during training to identify the
dynamics and the scaling factors to be used. Quantization did
not determine any significant accuracy loss.

Most of the processing load is carried out by the four-way
SIMDs synaptic adders, implemented using LCs, which com-
pute the synaptic current in input to the LIF neurons by
accumulating four synaptic weights per clock cycle each.
The two adders operate individually on different neurons of
the same layer. The currents are used to integrate the LIF
neurons in the LIF modules. Each LIF module stores the
neuron potentials and the decay factor in BRAM-based FIFO,
cyclically multiplies the potential value by the decay factor
employing a DSP-mapped 16 × 16 multiplier, and sums it to
the synaptic current. The membrane potential is represented
in a 32-bit fixed-point format to prevent saturation, caused by
decay rate values nearing 1, while decay rates are stored with
a 13-bit fixed-point representation.

Then, an LC-based comparator is used to verify if the
potential value exceeds the threshold. If this is true, the
threshold value is subtracted from the neuron potential, and
a spike is generated, following the rules stated by (2).

2) Spike Memory: The spike memory is implemented as a
dual BRAM-based buffer. Since it is read once per neuron of
the layer, its content must be stable for the whole inference
execution. Therefore, a double ping–pong buggering strategy
is used. To create a more compact implementation, two 4-kb
BRAMs have been used for this purpose.

3) Spike Stack: One of the primary features of an SNN
processing engine, as seen in most neuromorphic processors,
is the ability to take advantage of event sparsity by performing
necessary computations solely when spike events initiate them.
To implement this, we have added a stack unit, in charge
of monitoring spiking activity, at every time step, neuron
by neuron. During the integration of the LIF neurons, the
addresses of firing neurons are annotated in the stack. Thus,
during current computation, the stack keeps track of which
active weights need to be retrieved from the weight memory,
along with their respective addresses. Weights that are not
activated by previous events (i.e., corresponding to nonfiring
neurons) are excluded from the stack, thereby skipping the
corresponding computations and leveraging sparsity. The stack
is also implemented as a dual buffer to enable events to be
produced and consumed independently in different inference
steps. The saved processing cycles can be used to improve
energy efficiency by scaling the frequency to set the system
in idle mode.

C. RISC-V Softcore
In order to increase flexibility and ease of use, our platform

integrates an RISC-V processor softcore named SErial RISC-
V (SERV)2 into the architecture. SERV is designed to be small,
efficient, and simple; thus, its use enables us to keep resource
requirements compatible with low-power FPGAs. Consider-
ing that the core delegates the SNN accelerator for more
performance-hungry tasks, this parsimonious implementation
does not compromise the performance. SERV provides the
following capabilities.

1) Loading synaptic weights from the SPI flash drive and
storing them in the on-chip memory, this is very useful
to adapt to different SNN topologies without changing
the hardware configuration.

2) Loading the input samples from the SPI flash drive
in real-time enabling the acquisition system emulation
(using a programmable core for this purpose enables the
change of input data rates and formats via firmware).

3) Finely managing power consumption: the processor can
be used to set the system in low-power mode via clock
gating and frequency scaling, when required by the
application.

V. EXPERIMENTAL RESULTS

In this section, we present the results that we have achieved.
We have divided the section into three subsections.

Section V-A presents the accuracy achieved by the SNN in
neural decoding. We also analyze the effectiveness of our
spike detection method by comparing our results with the
accuracy obtained using the spike activity labeled in the
dataset. Section V-B discusses the model’s ability to exploit
spike sparsity, from both a software and hardware perspective.

2https://github.com/olofk/serv



MARTIS et al.: LOW-POWER FPGA-BASED SPIKING NEURAL NETWORKS FOR REAL-TIME DECODING 42455

TABLE IV
SNN DECODING ACCURACY

Finally, we present the hardware results in terms of FPGA
resource usage, throughput, and power dissipation.

A. Decoding Accuracy
The network was trained and tested using the result of

our spike detection. In addition, since other works focusing
solely on decoding utilize the spike detection included in the
datasets (GT), we trained and tested the network also using
the provided spike detection to ensure a fair comparison with
such works and to compare our spike detection, suitable for
our hardware, with a more sophisticated one.

Table IV presents the accuracy results obtained. Specifi-
cally, the first part displays the accuracy results achieved on
Dataset I, showing the accuracy value obtained for speed
and the average accuracy results across the four forces. The
second part reports the accuracy results obtained for individual
recordings from Dataset II. It includes the average speed
calculated separately for the x- and y-axes.

The accuracy results obtained from the SNN confirm the
validity of our spike detection. In most cases, the accuracy
achieved using our spike detection is comparable to or even
superior to the spike detection provided in the dataset, obtained
with more complex methods. The only case where it is
outperformed is the registration indy_20160630_01. However,
in this case, the registration seems to be particularly noisy
and difficult to decode. There is a noticeable decline in
performance compared to other registrations, a finding that
is also supported by other research [10], [11], [41].

Finally, in Fig. 5, the output of the decoder is compared
to the ground truth, illustrating that the decoder is capable of
reliably tracking target variables. A detailed comparison with
state-of-the-art overall accuracy is demanded in Section VI.

B. Sparsity Exploitation
In this section, we evaluate the capability of our system to

exploit the sparsity of spikes through the spike stack. Our
approach takes into account the event-driven nature of the
algorithm, performing additions and weight-memory accesses
only if needed. However, since, with the aim of limiting the
overhead introduced by the stack, inputs are grouped in sets
of four channels, partially active groups can occur, resulting
in some unnecessary operations and reducing the number
of operations saved compared to the ideal case, as shown
in Fig. 6. To quantify the effectiveness of this approach,
the number of operations saved was measured for each of
the trained models during the inference of the test set and
compared to the ideal case where all unnecessary operations
are skipped. On average, it was found that the mean number

Fig. 5. Comparison between the output of the SNN (inference) and
the target variables (target). On the left, the graph shows the five
outputs obtained from a portion of the test set of dataset I. Specifically,
from top to bottom, it illustrates the speed and the four forces applied
to the handlebar by the monkey. On the right, the graph shows the
two outputs obtained from a segment of the test set related to the
recording indy_20170124_01 of dataset II. Specifically, from top to
bottom, it illustrates the speed on the x-axis and the speed on the y -
axis.

Fig. 6. Number of unnecessary skipped operations computed during
test set inference.

TABLE V
RESOURCE USAGE ON LATTICE ICE40UP5K

of unnecessary skipped operations in the ideal case is 88.25%,
while, for our hardware, it is 65.84%. However, it is possible
to sort the neurons that generate spikes more frequently to
be adjacent, thereby reducing the number of unnecessary
operations performed. Considering this case, the mean number
of unnecessary skipped operations increases to 73.3%.

C. Hardware Performance
1) Resource Utilization: The Lattice iCE40UP5k FPGA con-

tains 5280 logic cells (LCs), each of which includes one
four-input lookup table (LUT4) and one flip-flop, 30 4-kbit
embedded block RAMs (BRAMs), four 256-kbit SPRAMs,
and eight DSPs.

Table V shows the hardware resources required by the
current configuration; 84% LCs are used, and all available
SPRAMs are used to store weights. However, it should be
noted that they are not full, as the total occupied memory



42456 IEEE SENSORS JOURNAL, VOL. 24, NO. 24, 15 DECEMBER 2024

Fig. 7. Power dissipated during inferences by the FPGA core.

is less than 20%. Four DSPs are used to accelerate neuron
integration during inference, and 22 BRAMs are used to store
the spikes generated, the membrane potential, the membrane
potential decay rates, and the softcore firmware. These uti-
lization figures highlight that our architecture exploits quite
effectively the target platform, using most of the available
resources and, thus, taking profit from most of its compu-
tational capabilities.

2) Inference Time: The implemented system supports up
to 128 input channels, with the decoder clock frequency set
at 22 MHz to ensure decoding times of less than 1 ms, thereby
guaranteeing the possibility of doing real-time decoding.

More specifically, input acquisition/preprocessing and out-
put transmission can overlap with SNN execution. Inside the
SNN accelerator, different modules can also be executed as
a pipeline, where the throughput is limited by the synap-
tic current computation. Since the hardware can perform
eight-synaptic additions per clock cycle, one inference can be
executed every Tinf, expressed as

Tinf =
Nsynapse

8
Tclk (5)

where Nsynapse is the number of active synapses and Tclk is
the clock period. In the worst case scenario, where all the
synapses are active, Tinf is equal to 0.13 ms. However, taking
into account the sparsity of spikes, it decreases to 0,03 ms.

3) Power Consumption: In the Lattice iCE40UP5k FPGA,
there are three power supplies: VCORE provides 1.2 V for the
internal FPGA components, while VCCIO0&1 and VCCIO2
supply 3.3 V for the I/O pins. Power dissipation was measured
by connecting a resistor with a nominal value of 3.3±0.033 �

to each power supply and measuring the voltage drop across
them. The overall dissipated power is found to be 13.9 mW,
with 10.1 mW dissipated by the core and 3.8 mW dissipated
by the I/O.

Fig. 7 illustrates the real-time power dissipation of the core,
recorded using a Digilent Analog Discovery 2 oscilloscope.
It is observable that the peak power repeats every millisecond
during inference. In contrast, during periods of SNN accel-
erator inactivity, the power dissipation is lower. The smaller
and more frequent peaks correspond to data transmission,
spike detection, and binning, occurring much more frequently,
every 0.1 ms.

Fig. 8. Measurement setup used. The image shows the measurement
of the voltage drop across the resistor connected to the core power
supply.

In particular, due to the overall low computational load of
the softcore and the embedded DFS module in the system,
we were able to dynamically gate the softcore, resulting in a
power savings of 1.9 mW.

Fig. 8 shows the measurement setup used, in particular the
measurement of the voltage drop across the resistor connected
to the core power supply. The reported power consumption
indicates that combining low-power FPGA and SNNs for neu-
ral decoding can be an effective solution. This approach can
meet the stringent power constraints associated with battery-
operated and highly portable implementations of this task.

VI. COMPARISON WITH STATE OF ART

In this section, we have compared our work with others in
the literature.

We divided the comparison into two subsections: the first
focuses solely on decoding accuracy, while the second eval-
uates hardware performance. Specifically, Table VI compares
our work with related approaches for the same task found in
the literature. The table is organized as follows: the first part
reviews works that utilize dataset I, the second part examines
works using dataset II, and the final part covers works that
use datasets different from ours. The table provides details on
the input signals, the decoding algorithms, the platforms used
for implementation, the model size (expressed in the number
of parameters), and the achieved accuracy. The accuracy is
reported as the mean CC for velocity (VCC), the mean CC for
force (FCC), the mean coefficient of determination for velocity
(VR2 ), and the mean coefficient of determination for force
(FR2 ).

Table VII further presents the main characteristics of the
hardware accelerator, including its power consumption, energy
per inference, and inference execution time.

A. Decoding Accuracy Comparison
Regarding the works that have used the dataset I, we can

see that using our spike detection, we achieve better results
compared to all other works, except in the case of [12], where
it is pertinent to note that their model uses 19 times the number
of parameters that we use. Furthermore, their system does not
function in real time and decodes only velocity, whereas we
decode both velocity and the four forces.

When considering the studies that used dataset II, compared
to [9], [10], [11], our performance appears slightly inferior.



MARTIS et al.: LOW-POWER FPGA-BASED SPIKING NEURAL NETWORKS FOR REAL-TIME DECODING 42457

TABLE VI
COMPARISON OF DECODING ACCURACY WITH RELATED WORKS

TABLE VII
COMPARISON OF HARDWARE IMPLEMENTATIONS

However, the complexity of our networks is significantly
lower. Moreover, as previously noticed, on this dataset, our
spike detection is less effective. If we apply our decoding
mechanism to the same spike detection results provided in the
dataset, we achieve similar or higher accuracy, except in [10],
when the QRNN is used.

Zhou et al. [28] complement the discussion by reporting
accuracy obtained by filtering the network output. However,
to permit a direct comparison with our algorithm, only the
accuracy result achieved using the network without the output
filter has been included in the table. Nonetheless, even after
implementing the output filter, R2 of 0.68 is obtained, slightly
surpassing the results from our spike detection method, but
still falling short in comparison to our network trained and
evaluated using the spike detection included in the dataset.
In addition, the filter utilized cannot operate in real time since
the whole waveform is needed before processing begins.

The work [41] provides six trained networks3 with six
different recordings from dataset II, specifically three related
to the monkey Indy, which we also used, and three belonging
to the monkey Loco. Since, for the monkey Loco, 192 are used
in input channels, which are not supported by our hardware,
we considered only the three recordings related to the monkey
Indy in the accuracy calculation, and the average of the
three obtained accuracy values was included in the table.
As observed, we achieve better accuracy whether using the
spike detection provided in the dataset or our spike detection
method. Compared to the work in [28] and [41], we achieve
better results using a larger network. However, it should be
noted that the size of our network was not chosen to be the
smallest possible, but rather the best network that fits the
capabilities of our hardware.

3https://github.com/NeuroBench/neurobench/tree/main/neurobench/
examples/primate_reaching/model_data

The work presented [12] reports a 10% higher accuracy
value. However, it is important to note that the network
architecture in such work is significantly larger, using 54 times
more parameters than ours.

The study [33] presents a hardware implementation for
real-time MUA extraction. However, the decoding algorithm,
based on LSTM, was implemented offline. A synthetic accu-
racy result is not provided, but, from the graphs, it appears
that the CC falls below 0.8. This is lower than the accuracy
achieved by our system, which implements both spike detec-
tion and the decoding algorithm in hardware.

Finally, although a direct comparison with the last two
studies is not possible, since they use a different dataset,
we can see that we achieve higher accuracy for both velocity
decoding and force decoding. Summarizing, comparison with
state-of-the-art approaches shows that our solution provides a
good tradeoff between power efficiency, implementability, and
accuracy. In general, the comparison suggests that our accu-
racy could benefit from a similarly affordable but more precise
spike detection, which will be the object of future work.

B. Hardware Performance Comparison
Compared to the work in [36], our system exhibits higher

power consumption, primarily because it employs a micro-
controller, which has been a well-established technology for
years and, in this case, utilizes a 22-nm process. However,
their system takes four times longer than ours to perform an
inference, which ultimately results in higher energy consump-
tion per inference compared to our solution. Compared to [34]
and [35], our system exhibits higher power consumption. How-
ever, since other metrics are not provided, a comprehensive
comparison is difficult. Moreover, the power consumption
reported in [35] accounts only for the SNN, excluding
the feature extraction, which is performed externally by an
FPGA.



42458 IEEE SENSORS JOURNAL, VOL. 24, NO. 24, 15 DECEMBER 2024

In summary, our approach leverages the capabilities of a
lightweight SNN that is optimally suited for the low-power
FPGA that we have chosen. This enables us to achieve
reduced energy consumption compared to our competitors
while maintaining high throughput and accuracy.

Preliminary exploration indicates that using larger networks
does not significantly improve accuracy. However, larger net-
works may be essential for processing larger MEAs. In such
cases, we can implement the system on bigger FPGAs, which
could impact power efficiency. Nevertheless, a more extensive
configuration of the SNN processor would enable greater par-
allelism, improving latency and potentially offsetting energy
consumption.

VII. FUTURE WORKS

While this study presents a promising foundation, sev-
eral limitations necessitate further investigation. The current
system’s accuracy, while encouraging, can be enhanced by
expanding the training dataset. However, the scarcity of
publicly available datasets and the computational demands
of larger models pose significant challenges. Furthermore,
assessing the generalizability of our approach across different
subjects is crucial for practical applications. Future studies
should focus on evaluating the system’s performance on
intersubject use cases and assessing its robustness to noise.
Integrating online learning into the system’s architecture could
allow for more dynamic adaptation to individual users and
evolving conditions, thereby enhancing both its versatility
and robustness. In terms of power consumption, still, the
approach still pays for a significant amount of quiescent
power, which derives, first, from FPGA technology and second
from a considerable contribution from IO and spike detec-
tion. Switching to an application-specific integrated circuit
(ASIC) implementation could potentially lead to significant
reductions in power consumption. In addition, optimizing
channel selection through offline calibration of the dataset
could help reduce power consumption by focusing on the most
informative channels and minimizing the processing required
for less relevant ones.

VIII. CONCLUSION

In this study, we have introduced a resource- and
power-efficient intracortical BMI designed for concurrent and
continuous neural decoding of multiple target variables asso-
ciated with the kinetics or kinematics of a hand. The system
is deployed on a Lattice iCE40UP5k FPGA and hosts a
multiplierless spike detection pipeline to extract intracortical
spikes, an SNN model that directly processes neural spikes
inferring the values of the target variables, and an RISC-V
softcore responsible for system management and control.
The system achieved accuracy comparable to other works in
the literature for a delayed reach-to-grasp task, for a free-
reaching task, and in decoding the finger forces applied to a
handle. While providing satisfying accuracy, the complexity
of our model is generally lower than that of state-of-the-
art approaches. Our event-based approach, combined with a
low-power technology target, brings the power consumption
on the chip to only 13.9 mW, paving the way to its use in a
wide scope of experiments requiring high portability and long
battery lifetime.

REFERENCES

[1] C. Pandarinath et al., “High performance communication by people with
paralysis using an intracortical brain-computer interface,” eLife, vol. 6,
Feb. 2017, Art. no. e18554.

[2] F. M. Petrini et al., “Six-month assessment of a hand prosthesis with
intraneural tactile feedback,” Ann. Neurol., vol. 85, no. 1, pp. 137–154,
Dec. 2018.

[3] X. Liu et al., “A fully integrated sensor-brain-machine interface sys-
tem for restoring somatosensation,” IEEE Sensors J., vol. 21, no. 4,
pp. 4764–4775, Feb. 2021.

[4] A. B. Ajiboye et al., “Restoration of reaching and grasping movements
through brain-controlled muscle stimulation in a person with tetraple-
gia: A proof-of-concept demonstration,” Lancet, vol. 389, no. 10081,
pp. 1821–1830, 2017.

[5] M. Śliwowski, M. Martin, A. Souloumiac, P. Blanchart, and
T. Aksenova, “Decoding ECoG signal into 3D hand translation
using deep learning,” J. Neural Eng., vol. 19, no. 2, Mar. 2022,
Art. no. 026023, doi: 10.1088/1741-2552/ac5d69.

[6] F. Boi et al., “Multi-shanks SiNAPS active pixel sensor CMOS
probe: 1024 simultaneously recording channels for high-density intra-
cortical brain mapping,” BioRxiv, Aug. 1024, Art. no. 749911, doi:
10.1101/749911.

[7] G. N. Angotzi et al., “SiNAPS: An implantable active pixel sensor
CMOS-probe for simultaneous large-scale neural recordings,” Biosen-
sors Bioelectron., vol. 126, pp. 355–364, Feb. 2019.

[8] G. Leone, L. Martis, L. Raffo, and P. Meloni, “Spiking neural networks
for integrated reach-to-grasp decoding on FPGAs,” in Proc. IEEE
Biomed. Circuits Syst. Conf. (BioCAS), Oct. 2023, pp. 1–5.

[9] N. Ahmadi, T. G. Constandinou, and C.-S. Bouganis, “Decoding hand
kinematics from local field potentials using long short-term memory
(LSTM) network,” in Proc. 9th Int. IEEE/EMBS Conf. Neural Eng.
(NER), Mar. 2019, pp. 415–419.

[10] N. Ahmadi, T. Adiono, A. Purwarianti, T. G. Constandinou, and
C.-S. Bouganis, “Improved spike-based brain-machine interface using
Bayesian adaptive kernel smoother and deep learning,” IEEE Access,
vol. 10, pp. 29341–29356, 2022.

[11] N. Ahmadi, T. G. Constandinou, and C.-S. Bouganis, “Robust and accu-
rate decoding of hand kinematics from entire spiking activity using deep
learning,” J. Neural Eng., vol. 18, no. 2, Apr. 2021, Art. no. 026011.

[12] S.-H. Yang, J.-W. Huang, C.-J. Huang, P.-H. Chiu, H.-Y. Lai, and
Y.-Y. Chen, “Selection of essential neural activity timesteps for intra-
cortical brain–computer interface based on recurrent neural network,”
Sensors, vol. 21, no. 19, p. 6372, Sep. 2021.

[13] J. G. Makin, J. E. O’Doherty, M. M. B. Cardoso, and P. N.
Sabes, “Superior arm-movement decoding from cortex with a new,
unsupervised-learning algorithm,” J. Neural Eng., vol. 15, no. 2,
Jan. 2018, Art. no. 026010, doi: 10.1088/1741-2552/aa9e95.

[14] X. Zhu, Y. Qi, G. Pan, and Y. Wang, “Tracking functional changes
in nonstationary signals with evolutionary ensemble Bayesian
model for robust neural decoding,” in Proc. Adv. Neural Inf.
Process. Syst., S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, Eds., vol. 35. Red Hook, NY, USA:
Curran Associates, 2022, pp. 22576–22588. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2022/file/8dcc306a2522
c60a78f047ab8739e631-Paper-Conference.pdf

[15] J. E. O’Doherty, M. M. B. Cardoso, J. G. Makin, and P. N. Sabes,
“Nonhuman primate reaching with multichannel sensorimotor cor-
tex electrophysiology,” Zenodo, Sabes Lab, Univ. California, San
Francisco, CA, USA, Tech. Rep., May 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3854034

[16] T. Milekovic, W. Truccolo, S. Grün, A. Riehle, and T. Brochier, “Local
field potentials in primate motor cortex encode grasp kinetic parameters,”
NeuroImage, vol. 114, pp. 338–355, Jul. 2015.

[17] A. Khorasani, N. H. Beni, V. Shalchyan, and M. R. Daliri, “Continuous
force decoding from local field potentials of the primary motor cortex
in freely moving rats,” Sci. Rep., vol. 6, no. 1, pp. 1–10, Oct. 2016.

[18] X. She and S. Mukhopadhyay, “SPEED: Spiking neural network with
event-driven unsupervised learning and near-real-time inference for
event-based vision,” IEEE Sensors J., vol. 21, no. 18, pp. 20578–20588,
Sep. 2021.

[19] C. Jiang, L. Yang, and Y. Zhang, “A spiking neural network with
spike-timing-dependent plasticity for surface roughness analysis,” IEEE
Sensors J., vol. 22, no. 1, pp. 438–445, Jan. 2022.

[20] S. Yang, H. Wang, Y. Pang, Y. Jin, and B. Linares-Barranco, “Integrating
visual perception with decision making in neuromorphic fault-tolerant
quadruplet-spike learning framework,” IEEE Trans. Syst., Man, Cybern.
Syst., vol. 54, no. 3, pp. 1502–1514, Mar. 2024.

http://dx.doi.org/10.1088/1741-2552/ac5d69
http://dx.doi.org/10.1101/749911
http://dx.doi.org/10.1088/1741-2552/aa9e95


MARTIS et al.: LOW-POWER FPGA-BASED SPIKING NEURAL NETWORKS FOR REAL-TIME DECODING 42459

[21] S. Yang, H. Wang, Y. Pang, M. R. Azghadi, and B. Linares-Barranco,
“NADOL: Neuromorphic architecture for spike-driven online learning
by dendrites,” IEEE Trans. Biomed. Circuits Syst., vol. 18, no. 1,
pp. 186–199, Feb. 2024.

[22] S. Yang, J. Tan, T. Lei, and B. Linares-Barranco, “Smart traffic navi-
gation system for fault-tolerant edge computing of Internet of Vehicle
in intelligent transportation gateway,” IEEE Trans. Intell. Transp. Syst.,
vol. 24, no. 11, pp. 13011–13022, Nov. 2023.

[23] S. Yang, J. Wang, B. Deng, M. R. Azghadi, and B. Linares-Barranco,
“Neuromorphic context-dependent learning framework with fault-
tolerant spike routing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 12, pp. 7126–7140, Dec. 2022.

[24] S. Yang et al., “Scalable digital neuromorphic architecture for large-
scale biophysically meaningful neural network with multi-compartment
neurons,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 1,
pp. 148–162, Jan. 2020.

[25] S. Yang et al., “BiCoSS: Toward large-scale cognition brain with
multigranular neuromorphic architecture,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 33, no. 7, pp. 2801–2815, Jul. 2022.

[26] S. Yang et al., “Real-time neuromorphic system for large-scale
conductance-based spiking neural networks,” IEEE Trans. Cybern.,
vol. 49, no. 7, pp. 2490–2503, Jul. 2019.

[27] J. Liao et al., “An energy-efficient spiking neural network for finger
velocity decoding for implantable brain-machine interface,” in Proc.
IEEE 4th Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2022,
pp. 134–137.

[28] B. Zhou, P.-S. V. Sun, and A. Basu, “ANN vs SNN: A case study
for neural decoding in implantable brain-machine interfaces,” 2023,
arXiv:2312.15889.

[29] J. Dethier, P. Nuyujukian, S. I. Ryu, K. V. Shenoy, and K. Boahen,
“Design and validation of a real-time spiking-neural-network decoder
for brain–machine interfaces,” J. Neural Eng., vol. 10, no. 3, Apr. 2013,
Art. no. 036008.

[30] G. Leone, L. Raffo, and P. Meloni, “ZyON: Enabling spike sorting on
APSoC-based signal processors for high-density microelectrode arrays,”
IEEE Access, vol. 8, pp. 218145–218160, 2020.

[31] J. Cheslet et al., “FPGA implementation of a spiking neural network for
real-time action potential and burst detection,” in Proc. IEEE Biomed.
Circuits Syst. Conf. (BioCAS), Oct. 2023, pp. 1–5.

[32] E. A. Vallicelli et al., “Real-time digital implementation of a principal
component analysis algorithm for neurons spike detection,” in Proc. Int.
Conf. IC Design Technol. (ICICDT), Jun. 2018, pp. 33–36.

[33] Z. Zhang and T. G. Constandinou, “Firing-rate-modulated spike detec-
tion and neural decoding co-design,” J. Neural Eng., vol. 20, no. 3,
May 2023, Art. no. 036003.

[34] H. An et al., “A power-efficient brain-machine interface system with
a sub-mw feature extraction and decoding ASIC demonstrated in non-
human primates,” IEEE Trans. Biomed. Circuits Syst., vol. 16, no. 3,
pp. 395–408, Jun. 2022.

[35] F. Boi et al., “A bidirectional brain-machine interface featuring a
neuromorphic hardware decoder,” Frontiers Neurosci., vol. 10, p. 563,
Dec. 2016.

[36] J. Liao et al., “A spiking neural network decoder for implantable
brain machine interfaces and its sparsity-aware deployment on RISC-
V microcontrollers,” 2024, arXiv:2405.02146.

[37] G. Leone, L. Raffo, and P. Meloni, “On-FPGA spiking neural
networks for end-to-end neural decoding,” IEEE Access, vol. 11,
pp. 41387–41399, 2023.

[38] T. Brochier et al., “Massively parallel recordings in macaque motor
cortex during an instructed delayed reach-to-grasp task,” Sci. Data,
vol. 5, no. 1, pp. 1–23, Apr. 2018.

[39] Utah Array. Accessed: Jun. 28, 2024. [Online]. Available: https://
blackrockneurotech.com/products/utah-array/#:~:text=What%20is
%20the%20Utah%20Array,degree%20of%20precision%20and
%20accuracy

[40] J. K. Eshraghian et al., “Training spiking neural networks using lessons
from deep learning,” Proc. IEEE, vol. 111, no. 9, pp. 1016–1054,
Sep. 2023.

[41] J. Yik et al., “NeuroBench: A framework for benchmarking neuromor-
phic computing algorithms and systems,” 2024, arXiv:2304.04640.

Luca Martis received the B.S. and M.S. degrees in electronics engi-
neering from the University of Cagliari, Cagliari, Italy, in 2021 and
2023, respectively, where he is currently pursuing the Ph.D. degree in
electronic and computer engineering.

His research interests include the development of custom hardware
systems for executing algorithms based on artificial intelligence, with a
particular focus on spiking neural networks.

Gianluca Leone received the B.S. degree in electronics engineering
from the University of Cagliari, Cagliari, Italy, in 2016, the M.S. degree in
electronics engineering from Politecnico di Torino, Turin, Italy, in 2019,
and the Ph.D. degree in electronics and computer engineering from the
University of Cagliari, in 2023.

Since 2023, he has been an Assistant Professor with the University of
Cagliari, where he teaches integrated systems design and mixed-signal
circuits and systems. His recent work includes the development of
FPGA-based systems for processing biosignals and SNN-type work-
loads in real time at the edge. His research interests include the design
and optimization of digital systems.

Luigi Raffo (Member, IEEE) received the Laurea degree in electronic
engineering and the Ph.D. degree in electronics and computer sci-
ence from the University of Genoa, Genoa, Italy, in 1989 and 1994,
respectively.

In 1994, he joined the Department of Electrical and Electronic Engi-
neering, University of Cagliari, Cagliari, Italy, as an Assistant Professor
and an Associate Professor in 1998, where he has been a Full Pro-
fessor of electronics with the Department of Electrical and Electronic
Engineering, University of Cagliari, since 2006. He teaches courses on
system/digital and analog electronic design and processor architectures
for the courses of studies in electronic and biomedical engineering.
He was a Coordinator of the project EU IST-FET-IST-2001-39266-BEST
and the MADNESS EU Project (FP7/2007-2013), a Unit Coordina-
tor of the project EU IST-FETSHAPES-Scalable Software Hardware
Architecture Platform for Embedded Systems, and a Local Coordinator
of industrial projects in the field (among others: ST-Microelectronics-
Extension of ST200 architecture for ARM binary compatibility and
ST-Microelectronics-Network on Chip). He is responsible for the coop-
eration programs in the field of embedded systems with several other
European Universities. He was also a Local Coordinator of the ASAM
(ARTEMIS-JU) and ALBA projects (national founded project) and RPCT
(regional founded project).

Paolo Meloni (Member, IEEE) is currently an Associate Profes-
sor with the University of Cagliari, Cagliari, Italy, where he teaches
microcontroller-based systems and advanced embedded systems. He is
the author of a significant track of international research papers. His
research activity is on the development of advanced digital systems
on the application-driven design and programming of multicore on-chip
architectures and FPGAs.

Open Access funding provided by ‘Università degli Studi di Cagliari’ within the CRUI CARE Agreement


