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ABSTRACT Automatic sleep spindles are hallmark EEG features of non-REM stage 2 sleep and
play a crucial role in maintaining sleep stability, consolidating memory, and promoting neurocognitive
development. Accurately detecting these oscillations is essential for clinical diagnostics and neuroscience
research. Background: Over the past years, the landscape of automatic sleep spindle detection has evolved
from traditional signal processing techniques to machine learning and deep learning techniques. This change
has been driven by the growing availability of large EEG datasets and the demand for automated, reproducible
analysis methods. Despite the significant progress, inconsistencies in detection standards, dataset limitations,
and model interpretability remain open challenges. Research Aim: This survey aims to systematically
review, classify, and compare state-of-the-art techniques for automated sleep spindle detection. Key research
questions on methodological evolution, performance metrics, dataset utilisation, and future development
needs guide the survey. Research Methodology: A structured methodology was followed, including a
keyword-based search across major academic databases, inclusion/exclusion criteria, and a four-step paper
selection process. Result: Our analysis categorised detection methods into three main approaches: traditional,
ML-based, and DL-based, with a comparative evaluation based on accuracy, sensitivity, F1-score, and dataset
generalizability. Benchmark datasets such as MASS, DREAMS, and Sleep-EDF are discussed in detail.
The discussion section comprehensively summarises the survey from the perspectives of interpretability,
generalizability and clinical implementation. Conclusion and Future Research: This survey concludes that
while DL techniques currently yield the highest detection performance, they lack interpretability and require
large labelled datasets. Future work will focus on implementing and benchmarking ML-based approaches
on standardised EEG datasets like MASS and DREAMS to enhance practical usability and generalisation.

INDEX TERMS Sleep spindles, electroencephalography, REM sleep, sleep disorders, neurophysiological,
machine learning, deep learning.

I. INTRODUCTION

Sleep spindles are momentary bursts of oscillatory brain
motion in the sigma frequency between 11 and 16 Hz that
predominantly occur in stage N2, such as non-rapid eye
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movement (NREM) sleep [1], [2]. They typically last for at
least 0.5 seconds and fall within a frequency range of 11 to
16 Hz [3], although this range can vary depending on factors
like the age of the individuals studied [4]. According to the
American Academy of Sleep Medicine (AASM) [3] Manual
for the Scoring of Sleep and Associated Events, a sleep
spindle is formally defined as “a train of distinct waves
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with a frequency of 11-16 Hz (most commonly 12-14 Hz),
with a duration of >0.5 seconds, and typically maximal in
amplitude over the central regions of the scalp.” A higher
spindle density—defined as the number of spindle events
per hour of N2 and N3 sleep—has been linked to greater
resistance to stress-induced insomnia [5], as well as stronger
cognitive abilities [6], [7] and improved overnight memory
retention [8]. These periodic patterns are of considerable
interest in sleep and neuroscience studies due to their
importance in memory consolidation, brain development,
cognitive functions, and synaptic plasticity. Identifying,
understanding and precisely detecting sleep spindles is
essential for advancing scientific research in brain-state-
dependent interventions, neurodevelopmental conditions,
and sleep disorders. However, the inter-individual variability,
transient nature, and overlapping with other EEG waveforms
present significant challenges in developing precise and
robust detection methodologies.

Additionally, notable changes in spindle characteristics
have been reported in individuals with conditions such as
sleep apnea [9], Alzheimer’s disease [10], and schizophre-
nia [11]. Collectively, these associations suggest that spindles
play key roles in sustaining sleep, supporting intellectual
development, aiding memory consolidation, and promoting
brain plasticity.

Sleep spindles were initially characterised by [12] as
rhythmic brainwave patterns in the 12-14 Hz range, lasting
between 0.5 and 3 seconds and exhibiting a waning and
waxing morphology [13]. These oscillations generally appear
in full-term infants around 6 to 8 weeks of age [14].
As children grow, notable developmental changes in spindle
characteristics occur, making them valuable indicators of
functional brain maturation [6]. Researchers have suggested
that sleep spindles reflect early central nervous system
development [15] and may play a role in neuroplasticity
during infancy [16]. Furthermore, they are closely asso-
ciated with memory processes [17]; for instance, higher
spindle density in the left frontocentral region has been
linked to improved overnight verbal memory retention [8].
Consequently, disruptions in standard spindle patterns could
serve as early markers of atypical neurodevelopment. Despite
their clinical relevance, manual spindle detection in infant
EEG recordings remains labour-intensive, and progress in
automated detection methods for this population has been
limited [18], [19].

In the past, sleep spindle detection depended on expert
manual annotation, which was time-consuming, subjective,
and prone to inconsistencies [20]. On the other hand,
traditional automated methods have primarily leveraged
frequency-domain, time-domain, and time-frequency domain
characteristics to identify sleep spindles [21]. The emer-
gence of machine learning (ML) and deep learning (DL)
approaches provides more accurate and scalable solutions.
This research survey comprehensively compares classical and
modern sleep spindle detection methodologies, highlighting
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their strengths, limitations, challenges and future research
directions.

A. IMPORTANCE OF SLEEP SPINDLES IN NEUROSCIENCE
AND SLEEP STUDIES

Sleep spindles function as essential markers of cognitive
functioning and sleep stability. Several research studies have
linked sleep spindles to neuroplasticity, memory consolida-
tion, and learning enhancement. Existing research suggests
that spindle movement has been correlated with intelligence
measures, suggesting a role in learning efficiency and
cognitive performance. Moreover, sleep spindles facilitate
communication between the cortex and thalamus, promoting
long-term synaptic potentiation, a process essential for
memory formation.

In addition to cognitive functions, sleep spindles are
associated with psychiatric and neurological disorders [22].
Unusual spindle movement has been detected in conditions
such as autism spectrum disorder (ASD), schizophrenia, and
Alzheimer’s disease, which highlights their capability and
assists in biomarkers for early-stage diagnosis and treatment
monitoring [23]. In the case of schizophrenia, spindle
shortfalls have been correlated to disrupted thalamocortical
connectivity and impaired cognitive function. Correspond-
ingly, spindle modifications in neurodevelopmental disorders
are associated with brain maturation processes. Considering
its importance and significance, identifying and detecting
sleep spindles in EEG recordings is essential for advancing
clinical applications and fundamental neuroscience [24].

Figure 1 provides an overview of the different segments of
the sleep cycle, highlighting their categories and descriptions.
Understanding these stages is crucial for recognizing the
importance of sleep in overall health and well-being. N1:
Category: Light Sleep is the transitional sleep stage between
wakefulness and sleep. During this phase, the body begins
to relax, and brain activity starts to slow down. It typically
lasts only a few minutes and is characterized by a light level
of sleep where one can be easily awakened. N2: Category:
Light Sleep represents the largest portion of the sleep cycle.
This stage is characterized by the presence of sleep spindles
and K-complexes, which are bursts of brain activity that help
protect sleep and aid in memory consolidation. N2 plays
a vital role in preparing the body for deeper sleep stages.
N3: Category: Deep Sleep, also known as slow-wave sleep,
N3 is crucial for physical restoration and recovery. During
this stage, the body undergoes significant repair processes,
including tissue growth and muscle recovery. It is the deepest
stage of sleep, making it difficult to awaken someone in
this phase. REM (Rapid Eye Movement): Category: Vivid
Dreaming is characterized by rapid movements of the eyes
and is critical for memory consolidation and emotional
processing. This stage is where most vivid dreaming occurs,
and it plays a significant role in cognitive functions and
emotional regulation.
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FIGURE 1. The Sleep Cycle.

The study [25] introduces MuRAt-CAP-Net, a deep
learning model designed for automatic detection of Cyclic
Alternating Pattern (CAP) A-phase and its subtypes (Al,
A2, A3). Unlike manual scoring, which is complex and
reliant on experts, MuRAt-CAP-Net uses a multi-input
residual attention architecture that processes signals from
four EEG channels simultaneously. Attention mechanisms
are incorporated to emphasise the most relevant features.
In [26], the authors present a comprehensive review of
36 studies (2013-2020) that applied deep learning (DL) mod-
els for automatic sleep stage classification using overnight
polysomnogram (PSG) recordings. The review highlights that
the study emphasises that DL-based programmed diagnostic
tools (PDTs) show strong potential for the timely and
accurate detection of sleep disturbances. However, future
systems must integrate multimodal PSG data rather than EEG
alone to ensure robustness for clinical deployment. Sleep
spindle detection is not only pivotal for understanding core
neurocognitive functions, such as memory consolidation and
brain plasticity [27], but also serves as a biomarker for sleep
quality and neurological health [28]. Furthermore, alterations
in spindle characteristics are increasingly recognised in the
diagnosis and monitoring of neuropsychiatric and neurode-
generative disorders [29]. Beyond its diagnostic relevance,
spindle detection underpins a diverse range of clinical
and research applications [30], including the evaluation
of therapy, the development of brain-computer interfaces,
and sleep-based cognitive enhancement strategies. Table 1
presents a comprehensive summarized version of all of the
discussed neuroconnitive functions from the perspective of
sleep spindles detection.

B. OVERVIEW OF TRADITIONAL AND MODERN
APPROACHES (ML AND DL)

The advancement of sleep spindle detection methodologies
can be classified into traditional and modern artificial
intelligence-based (machine and deep learning) methods.
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TABLE 1. Sleep Spindles Detection: Neurocognitive Functions, Biomarker
for Sleep Quality and Brain Health, Diagnosis and Monitoring of
Neurological Disorders, and Clinical and Research Applications.

Aspect | Details
Neurocognitive Functions
Memory Consolidation Sleep spindles play a crucial role in consol-
idating both declarative (factual) and proce-
dural (skill-based) memories. Higher spindle
density often correlates with better memory
performance [31].
In children and adolescents, spindle activity
correlates with brain maturation and cogni-
tive abilities such as reasoning and problem-
solving [32].
Spindle-rich sleep periods are crucial for in-
tegrating new learning into long-term mem-
ory, especially following intensive training
or study sessions [27].

Biomarker for Sleep Quality and Brain Health.
Sleep Architecture Spindles are markers of N2 sleep stage sta-
bility and quality. Their presence indicates
a healthy progression through sleep stages
[33].
Spindle dynamics are linked with synaptic
plasticity—the brain’s ability to adapt and
reorganise itself [34].
Spindle density declines with age, reflecting
natural ageing or early signs of cognitive
decline (e.g., Mild Cognitive Impairment,
Alzheimer’s Disease) [35].

Diagnosis and Monitoring of Neurological Disorders.
Schizophrenia Reduced spindle density and coherence [11].
Depression Altered spindle patterns; disrupted sleep ar-
chitecture [36].

PTSD Faster spindle frequency; altered density
linked to emotional dysregulation [37].
Fragmented, reduced spindle activity [38].
Decreased spindle activity correlates with
cognitive deficits.

Cognitive Development

Learning Enhancement

Brain Plasticity

Age-Related Changes

Insomnia
Neurodegenerative
Disorders (Alzheimer’s,
Parkinson’s)

Clinical and Research Applications.
Polysomnography Used to assess sleep quality and detect
anomalies in clinical practice [39].

Spindle modulation could become a thera-
peutic target, for example, via non-invasive
brain stimulation [40].

Sleep spindle changes can serve as biomark-
ers for evaluating the effects of medications,
such as sedatives and antidepressants [41].
Real-time spindle detection could optimize
cognitive enhancement technologies during
sleep [42].

Neurofeedback and
Therapy

Pharmacological Trials

Brain-Computer
Interfaces (BCIs)

1) TRADITIONAL METHODS

Traditional detection methods depend on handcrafted charac-
teristics extracted from frequency-domain, time-domain, and
time-frequency domain analyses [43]. Frequency-domain-
based methods influence spectral power within the sigma
band to distinguish spindles from background activity. Time-
domain-based detection methods use spindles’ duration,
amplitude, and root mean square (RMS) thresholds to
categorize spindles. Furthermore, time-frequency domain-
based methods, such as Teager Energy Operators (TEO) and
wavelet transforms, offer enhanced resolution in detecting
transient spindle oscillations. The discussed traditional meth-
ods, while effective, struggle with inter-individual variability
and suffer from reliance on predefined parameters.

182823



IEEE Access

W. Ahmed et al.: Toward Sleep Spindle Detection: A Comparative Survey

2) MACHINE LEARNING-BASED METHODS

ML-based methods enhance traditional sleep spindle detec-
tion by automatically learning discriminative features from
the electroencephalogram (EEG) signal. Random Forests
(RF), Support Vector Machines (SVM), and k-nearest
Neighbors (k-NN) have been implemented to detect sleep
spindles using features extracted from multichannel EEG
recordings [44]. ML-based methods improve classification
accuracy but do not generalize well to different datasets and
require manual feature engineering.

3) DEEP LEARNING-BASED METHODS

Deep learning (DL)-based methods, particularly Recurrent
Neural Networks (RNNs) and Convolutional Neural Net-
works (CNNs), have proved to perform exceptionally well in
spindle detection. The U-Net framework has been exception-
ally efficient, utilizing encoder-decoder structures to enhance
spindle segmentation accuracy. CNNs extract hierarchical
features directly from raw EEG signals to reduce the need
for extensive feature engineering [45]. Hybrid RNN-CNN
models and attention-based transformers further enhance
temporal modeling, improving spindle classification [46].
Furthermore, Multiple Instance Learning (MIL)-based CNN
models address label uncertainty by treating EEG signal
segments as bags of instances, improving detection in weakly
labeled datasets.

This survey highlights the progress in spindle detection
by systematically comparing these methods and identifying
future research directions for developing robust, generaliz-
able, and interpretable Al-driven sleep analysis systems.

C. CHALLENGES IN DETECTING SLEEP SPINDLES AND
PURPOSE OF THE SURVEY

Regardless of their waveform characteristics and apparent
frequency, sleep spindles exhibit significant intersubject vari-
ability in duration, amplitude, and density, which complicates
their automatic detection. Furthermore, spindles frequently
intersect with other EEG oscillations, such as alpha waves
and K-complexes, leading to possible misclassification.
Traditional techniques to detect the spindle depend on
manually identified thresholds, which can fail to generalize
across varied EEG datasets and recording conditions [47].
Additionally, EEG datasets labeled by experts show rational
inter-rater agreement (Cohen’s kappa = 0.52), representing
the subjective nature of manual spindle annotations [48].
In [49], authors determined the heritability of various sleep
spindle characteristics using a twin study framework (40 DZ
and 58 MZ twin pairs) and compared eight automated spindle
detection algorithms to evaluate consistency in detecting
spindle features such as duration, density, frequency and
amplitude.

Considering the above-discussed challenges, there is a
requirement for generalizable, robust, and interpretable
frameworks for the detection of sleep spindles in EEG
datasets. The proposed research survey aims to overcome the
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gap between traditional and modern spindle detection tech-
niques, presenting a comparative evaluation of conventional
feature-based and emerging ML/DL-based techniques. The
survey also discussed their strengths, limitations, method-
ological foundations, and potential for clinical integration.
By integrating findings from the latest advancements, this
research contributes to developing a more robust, scalable,
and accurate spindle detection framework for research and
clinical applications.

D. RESEARCH MOTIVATION

Existing research reviews have examined automated spindle
detection methods, but most have been limited in scope.
For instance, current surveys mainly focus on traditional
signal processing techniques or ML models, often lacking
a systematic approach or quantitative analysis. More recent
reviews have started to include DL. Still, they tend to be
mainly descriptive and do not fully incorporate benchmark
datasets, performance metrics, or comparative evaluations
across different methodological groups. This research gap
underscores the need for a comprehensive and systematic
review that not only summarises past methods (traditional,
ML and DL) but also critically assesses their strengths,
limitations, and potential for real-world application.

E. RESEARCH AIM AND CONTRIBUTIONS

This survey aims to systematically review, compare, and
synthesize current automated spindle detection approaches,
highlight challenges, and recommend future directions. The
proposed survey will provide a valuable reference for
researchers, clinicians, and developers in the sleep science
and neurotechnology communities. The following are the
research contributions:

o We systematically identify and classify state-of-the-art
methodologies used for automated sleep spindle detec-
tion, including traditional signal processing, machine
learning, and deep learning.

« In the survey we evaluated and compared peer-reviewed
papers published between 2010 and 2024, based
on standardized set of performance metrics (Recall,
F1-score, Accuracy, Sensitivity, Specificity, FPR, FNR).

o We performed a state-of-the-art literature review and
comparative analysis using public EEG datasets such as
DREAMS, MASS, and Sleep-EDF, which are readily
available and widely used in the domain.

« To address the critical need for robust and interpretable
sleep spindle detection systems in clinical diagnostics
and neuroscience research, with a focus on real-world
implementation the research survey identified the
current challenges and formulated future research
directions.

F. RESEARCH QUESTIONS
The following key research questions guide the survey:
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RQ1: What are the most commonly used traditional,
machine learning, and deep learning approaches used for the
detection of automated sleep spindles in EEG recordings?

RQ2: How do the identified detection approaches compare
in terms of computational efficiency, accuracy, generalizabil-
ity, and interpretability?

RQ3: What state-of-the-art evaluation metrics and EEG
datasets are used to assess spindle detection algorithms?

RQ4: What are the current limitations and open challenges
in automated sleep spindle detection?

RQS5: What are the promising future directions to improve
the scalability, reliability, and clinical applicability of spindle
detection methods?

G. RESEARCH METHODOLOGY

This section presents the systematic approach to identify-
ing, selecting, and analysing state-of-the-art sleep spindle
detection techniques. The methodology follows a structured
literature review strategy with well-defined inclusion and
exclusion criteria, a targeted keyword search plan, and a
multi-step paper selection process. The approach aims to
ensure comprehensiveness, relevance, and scientific rigor.

1) INCLUSION AND EXCLUSION CRITERIA

In the survey, we included research papers published
between 2015 and 2024 in reputable scientific journals
or peer-reviewed conference proceedings, reported at least
one standard evaluation metric such as accuracy, precision,
recall, Fl-score, specificity, sensitivity, or AUC, focused
on signal processing, ML, or DL-based methodologies,
focused on automatic sleep spindle detection in EEG signals,
used standard benchmark EEG datasets, such as MASS,
DREAMS, or Sleep-EDF and studies reported inter-rater
reliability with Cohen’s K greater then or equal to 0.75,
ensuring consistency across annotated datasets. Where K
was not explicitly available, studies were excluded under
our criteria. Research studies were excluded which are
non-English publications or non-peer-reviewed content (e.g.,
theses, technical reports), focused solely on sleep staging
or other EEG events (e.g., K-complexes) without addressing
spindle detection, studies using proprietary or inaccessible
datasets that prevent reproducibility and papers lacking
methodological clarity or evaluation on standard datasets.

2) KEYWORD SEARCH STRATEGY

A comprehensive systematic search was conducted using
academic databases such as SpringerLink, ScienceDirect,
IEEE Xplore, PubMed, and Google Scholar. To ensure
comprehensiveness, Boolean operators and specific keyword
combinations were used. The search strings were adjusted for
each database to improve the relevance and coverage of the
results. The following are the search criteria:

o “Signal processing” AND “‘spindle event detection”
o “Automatic spindle detection” OR ‘“‘automated detec-
tion of sleep spindles”
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o “Sleep spindle detection” AND “EEG”
o “Sleep EEG” AND “machine learning”
« “Spindle detection using deep learning”

3) RESEARCH PAPER SELECTION PROCESS

The selection of studies followed a multi-step process
designed to screen and refine the corpus of literature system-
atically. Figure 2 represents the PRISMA flow diagram of the
survey.

H. PAPER STRUCTURE

The proposed research survey is structured to provide a
thorough and progressive understanding of automated sleep
spindle detection. Section I introduced the biological and
neurological importance of sleep spindles, their clinical
relevance, and the motivation behind developing automated
detection systems. Section II summarises existing literature
reviews and surveys in the domain, highlighting their scope,
methodologies, and contributions, and compares the current
study in relation to previous work. Section III explores the
physiological mechanisms, types, EEG characteristics, and
cognitive roles of sleep spindles, including their relevance
to neurological and psychiatric conditions. Section V cate-
gorizes and details the technical approaches into traditional
signal processing, classical machine learning, and deep
learning-based methods. Section VI presents a strengths—
weaknesses—feasibility assessment of each approach, offer-
ing implementation notes and outlining clinical applicability
challenges. Section IV discusses standardized performance
metrics (e.g., accuracy, recall, Fl-score) and highlights
benchmark datasets such as MASS, DREAMS, and Sleep-
EDF. Section VII comprehensively discussed the survey
paper from the perspectives of interpretability, generalizabil-
ity and clinical implementation. Section VIII identifies key
challenges such as dataset limitations, label inconsistencies,
lack of interpretability in DL models, and the difficulty of
generalization across subjects, whereas Section IX proposes
future research opportunities, including personalized models,
explainable Al, real-time deployment, few-shot learning,
and domain adaptation. Section X concludes the paper by
summarising the key findings, reflecting on their implications
for clinical and research domains, and outlining the next
steps for implementing ML-based solutions on benchmark
datasets. Table 2 highlights the proposed survey paper’s major
sections and key points, and Figure 3 highlights the structure
of the survey paper.

Il. SURVEYS ON SLEEP SPINDLES

In [26], the authors present a systematic review of DL
techniques (2013-2020). The paper reviews 36 key studies
that applied deep learning to classify sleep stages using
overnight PSG (polysomnographic) recordings. It organises
models by the DL architecture (CNN, RNN/LSTM, hybrid,
autoencoders) and datasets used. Provides a comprehensive
benchmark of performance metrics (accuracy) across models
and datasets, including Sleep-EDF, MASS, SHHS, and
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RISMA Flow Diagram

% Identification
175 records from databases + 35 from other sources = 210 total.

i&a Duplicates Removed
200 unique records

Screening
200 titles/abstracts screened,

20 excluded.

@ Eligibility
180 full-texts assessed, 65 excluded
(30 not spindle-related, 25 insufficient methodology, 10 non-English).

&

53 Included in
,o\'o\ Qualitative
Synthesis

FIGURE 2. PRISMA Flow Diagram.

TABLE 2. Survey Major Sections and Key Points.

Section
Introduction

Highlights

Defines sleep spindles, importance, chal-
lenges, overview of evolution.

Positions this survey against others (e.g., DL
reviews, sleep staging).

Physiology of sleep spindles, EEG features,
cognitive relevance.

Categorized into Traditional, ML-based, and
DL-based approaches.

Inter-rater variability, dataset scarcity, label
noise, generalization issues.

Personalized models, XAI, few-shot learn-
ing, domain adaptation, edge computing.
Metrics: Precision, Recall, F1, Specificity,
FPR, FNR. Datasets: MASS, DREAMS,
Sleep-EDF, CAPSLPDB.

Strengths and weaknesses of Traditional,
ML, DL approaches.

DL leads performance-wise, but lacks inter-
pretability; future work needed for clinically
trusted systems.

Related Surveys

Biological Background

Detection Techniques

Challenges

Future Directions

Evaluation Metrics &
Datasets

Comparative Analysis

Conclusion

ISRUC. They also suggest a cloud-based sleep stage classi-
fication system using EEG signals as future work. In [50],
the authors review 114 studies from 95 articles published
between 2010 and 2021, following PRISMA methodology,
and covered eight sleep disorders. They traced the evolution
from ML to DL in sleep disorder detection and provided a
broader scope than prior reviews (e.g., focused only on apnea
or insomnia).
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62 Included in
+00, Quantitative
Meta-Analysis

In [51], the authors conducted a PRISM A-based systematic
review (2016-2019) on automated sleep stage classification
(ASSC) using deep learning (DL). They reviewed 14 major
DL-based studies, all using raw PSG signals or spectrograms
for multi-class sleep stage classification. In [52], authors
review traditional, ML, and DL methods for automated
sleep spindle detection and classify state-of-the-art works
published between 2010 and 2024 using performance metrics
such as accuracy, Fl-score, precision, recall, specificity,
and sensitivity. They discussed the biological generation
(e.g., thalamocortical loop), classification (slow vs fast spin-
dles), and topographic EEG characteristics. Unlike previous
literature that broadly examined EEG activity or sleep
oscillations, [1] uniquely focuses on sleep spindle oscillations
in adults diagnosed with sleep disorders. It includes 37 studies
across insomnia, hypersomnia, and sleep-related movement
disorders (like parasomnias). In [10], the authors focus on the
alterations of sleep spindle characteristics in Alzheimer’s dis-
ease (AD) and AD-related dementia rather than general sleep
disturbances. Table 3 represents a comprehensive comparison
of the proposed survey with the existing surveys and reviews.

IIl. SLEEP SPINDLES: BIOLOGICAL AND NEUROLOGICAL
BACKGROUND

Sleep spindles are transient oscillatory events in the sigma
band (11-16 Hz, usually 12-14 Hz) lasting at least
0.5 seconds, produced by thalamocortical circuits and most
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Conclusion

Summarizes key
findings and implications.

Future Research
Directions

Suggests potential
areas for further study.

Highlights unresolved & = ©
questions and
obstacles.

Offers insights and interpretations of
research findings.

806
~ &

Evaluation Metrics

and Datasets
Defines standards for
assessing research
outcomes.

FIGURE 3. Survey Paper Flow Diagram.

TABLE 3. Comparison of the Proposed Survey with the Existing Surveys and Reviews.

Introduction

Sets the stage with
Q%iﬂ research aims and methodology.

Explores current survey
data on sleep spindles.

Biological and
Neurological Background

Provides the scientific
foundation of sleep spindles.

% State-of-the-Art Techniques

Showcases advanced
methods for detecting
sleep spindles.

Comparative
Analysis
Compares different
approaches to sleep
spindle detection.

Characteristics Our Survey [26] [50] [52] [51] [53] [54]
Comparison with existing work v v

Medical Background v v v v v v v
Traditional approaches v v v

ML-based approaches v v v v v
DL-based approaches v v v v v

Comparative analysis v

Evaluation Metrics v v v v v v
Benchmark datasets v v v v v v v
Current challenges v

Future directions v v v v

prominent in central EEG leads examples [55]. Spindles
are most prominent in the central area of the brain and are
often observed through EEG recordings on channels like C3
and C4. They are regarded as biomarkers of healthy sleep
physiology and are closely linked to processes such as neuro-
plasticity, memory consolidation, and cognitive performance.
Abnormalities in spindles have been linked to neurological
and psychiatric conditions, including schizophrenia, epilepsy,
and neurodegenerative diseases (see Tables 1 for an outline of
their functional roles and clinical associations). There are two
types of sleep spindles: slow spindles and fast spindles [56].
o Slow spindles (11-13 Hz), usually dominant in the
frontal brain regions.
o Fast spindles (13-16 Hz), typically found in the centro-
parietal regions.

due
tems
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Sleep experts traditionally perform manual spindle detec-
tion according to guidelines from the AASM [3]. However,

to inter-rater variability, automatic detection sys-
using time-frequency analysis (e.g., Hilbert envelope,

wavelet transform) and machine learning models are being
increasingly employed to ensure consistent and objective
identification [39]. In EEG analysis, sleep spindles are iden-
tified based on specific time, frequency, and morphological
features [57]:

Amplitude: Often exceeds 12—-15 microvolts.
Frequency: Spindles typically occur in the 11-16 Hz
range. Slow and fast spindles are distinguished within
this band.

Topography: Most commonly detected in central and
parietal EEG leads.
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« Waveform shape: Characterized by a waxing and

waning amplitude pattern.

e Duration: A valid spindle lasts between 0.5 and

2 seconds.

For automated detection, the biological characteristics of
spindles are essential. Their unique morphology and spectral
features underpin traditional thresholding methods; however,
variability between individuals and the effects of sleep stage,
age, and pathology necessitate more adaptable, data-driven
algorithms. Therefore, understanding spindle physiology
not only places them within the wider context of sleep
research but also underscores the need for developing robust
automated detection techniques that can consistently identify
these clinically significant events. These factors directly
influence the methodological approaches discussed in the
following sections.

IV. EVALUATION METRICS AND BENCHMARK DATASETS
A range of evaluation metrics and benchmark datasets are
commonly employed to assess the performance of sleep spin-
dle detection algorithms. These evaluation metrics provide
quantitative insight into classification accuracy, sensitivity,
and error rates, while datasets ensure reproducibility and
standardization across studies.

A. STANDARD EVALUATION METRICS

Evaluation metrics are crucial for quantifying the perfor-
mance of detection systems. In sleep spindle detection,
standard metrics include Precision, Accuracy, Fl-score,
Recall, False Positive Rate (FPR), and False Negative Rate
(FNR).

1) PRECISION, ACCURACY, F1-SCORE, RECALL
Let TP, FP, TN, and FN represent True Positives, False
Positives, True Negatives, and False Negatives, respectively.
The most frequently used metrics are defined as follows:
o Precision (Positive Predictive Value) indicates how
many of the predicted spindles were correct:

. TP
Precision = —
TP + FP
o Accuracy measures the proportion of correct predic-
tions:
TP + TN
Accuracy =

TP+ TN + FP + FN
o F1-score is the harmonic mean of Precision and Recall:

2 x Precision x Recall
F1-score =

Precision + Recall

« Recall (Sensitivity or True Positive Rate) measures the
proportion of actual spindles correctly detected:

TP
TP + FN

These metrics are widely used to evaluate binary classifiers
and detection-based models in spindle research.

Recall =
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2) FALSE POSITIVE RATE (FPR) AND FALSE NEGATIVE RATE
(FNR)
Additional error-focused evaluation metrics include:

« False Positive Rate (FPR) measures the proportion of
non-spindles incorrectly classified as spindles:

FP

FPR = —
FP+TN

« False Negative Rate (FNR) measures the proportion of
missed spindle events:

FN

FNR = —
FN + TP

These error rates are significant in clinical applications
where false alarms or missed detections may impact diagnosis
or treatment decisions.

B. COMMONLY USED EEG DATASETS

Benchmark datasets are critical in enabling fair comparisons
across spindle detection algorithms. They offer standardized
EEG recordings, expert annotations, and consistent evalua-
tion protocols.

1) SLEEP-EDF AND MASS (MONTREAL ARCHIVE OF SLEEP
STUDIES)

Sleep-EDF (Sleep European Data Format) is popular
dataset released by PhysioNet [58]. It includes whole-night
EEG polysomnography recordings, primarily annotated for
sleep stages and occasionally used for spindle detection. EEG
channels typically include Fpz-Cz and Pz-Oz, with sampling
rates of 100 or 200 Hz. Although primarily designed for sleep
staging, its accessibility and data quality have led to its use in
spindle-related studies.

MASS (Montreal Archive of Sleep Studies) is another
comprehensive EEG dataset, comprising multiple subsets
(SS1-SS5) with recordings from over 200 subjects [59]. The
SS2 subset is widely used for spindle detection due to its
high-quality annotations by multiple expert scorers. EEG
signals are recorded at 256 Hz from central derivations (C3,
C4, Cz) and follow the AASM scoring standard.

2) OTHER CLINICAL OR PUBLICLY AVAILABLE DATASETS
Several other datasets have contributed to the advancement of
spindle detection methods:

« CAPSLPDB — A database for studying Cyclic Alter-
nating Pattern (CAP) sleep events, including annotations
for multiple EEG micro-events, including spindles, K-
complexes, and arousal [60].

« DREAMS — A curated dataset for evaluating spin-
dle detection algorithms, containing manually scored
segments from 20 subjects with expert consensus
annotations [61].

« NSRR (National Sleep Research Resource) — A
repository that aggregates multiple annotated sleep
study datasets, such as SHHS and MrOS, and sup-
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ports large-scale validation of automated scoring algo-
rithms [62].

« Wisconsin Sleep Cohort (WSC) — Offers a large and
demographically diverse population with overnight PSG
data, used in some recent studies for validating deep
learning-based spindle detectors [63].

Using these datasets and unified evaluation metrics
ensures reproducibility and facilitates benchmarking across
traditional, machine learning, and deep learning approaches.

V. STATE-OF-THE-ART SLEEP SPINDLES DETECTION
TECHNIQUES

Sleep spindle detection has evolved substantially from man-
ual detection to advanced computational models. This section
categorises the state-of-the-art approaches into three primary
paradigms: traditional signal processing-based, classical
machine learning-based, and modern deep learning-based
approaches. Each category reflects a distinct methodological
evolution in terms of feature extraction, classification preci-
sion, scalability, and adaptability to various EEG datasets.
The goal is to systematically analyze these approaches,
highlighting their working principles, strengths, limitations,
and performance metrics to guide future research and
practical deployment in clinical environments.

A. OVERVIEW-SYNTHESIS OF TRENDS

Three consistent trends emerge from the research papers
reviewed in Tables 4, 5, and 6. First, the field has
shifted from traditional thresholding and time—frequency
methods to data-driven learning, with DL making its latest
contribution and achieving the highest benchmark scores
on MASS and DREAMS datasets. Second, the choice of
dataset significantly influences performance: results trained
and evaluated on MASS generally outperform those on
DREAMS or mixed clinical sets, emphasising the importance
of annotation density, channel montage, and sampling rate.
Third, although DL models often achieve the top FI
scores, ML methods remain competitive and are often
more practical in small-data or resource-limited settings.
Traditional signal-based approaches continue to provide low-
latency, interpretable baselines suitable for embedded or bed-
side applications. These patterns underpin the comparative
guidance in Section VI and the deployment considerations
(real-time, interpretability, generalisability) discussed later.

B. TRADITIONAL SIGNAL PROCESSING-BASED
APPROACHES

The traditional signal processing-based sleep spindle detec-
tion approach primarily relies on handcrafted signal process-
ing techniques, which are divided into frequency, time, and
time-frequency domain analyses. These techniques examine
the features of sleep spindles, including duration, amplitude,
and spectral content, by applying fixed or adaptive thresholds
to isolate spindle events. While these techniques have laid
the foundation for automated detection, they often struggle
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with noise sensitivity, inter-individual variability, and lack
of generalizability across datasets. Nevertheless, they are
valuable due to their low computational complexity and
interoperability.

1) TIME-DOMAIN METHODS

In [64], the authors benchmark four automatic spindle detec-
tors (RMS, Sigma Index, Relative Spindle Power, and Teager
Energy Operator) using an acceptable temporal resolution
and multiple databases, including both open-access and
closed-access ones. The study also critiques the reliability
of expert annotations and promotes open science tools,
such as the Spyndle Python package. To measure the
framework’s performance, the authors used sensitivity, preci-
sion (PPV), Fl-score, Cohen’s kappa, Matthews correlation
coefficient (MCC), and ROC and PR curves and emphasised
threshold-dependent evaluation rather than fixed thresholds.
The authors used four datasets: DDB (DREAMS Database),
MASS (Montreal Archive of Sleep Studies), NDB (Night-
mare Study Dataset), and SDB (Sleep Density Dataset),
focusing on stage N2 sleep [64]. A nonlinear time-domain
method for sleep spindle detection is introduced by [65]
using the Delay Differential Analysis (DDA) approach. The
proposed method operates on raw EEG without filtering or
feature engineering. Performs comparably to spectral meth-
ods but is computationally lighter and captures dynamical
features beyond spectral signatures [65].

In [66], the author proposes a novel, automated sleep
spindle detection algorithm based on bivariate normal
modelling of spindle amplitude and frequency distributions.
Instead of using fixed amplitude and frequency thresholds,
it adapts dynamically to individual EEG derivations [66].
This paper [67] provides the first dedicated review linking
sleep spindle dynamics to PTSD, covering both mechanistic
underpinnings and clinical findings. The authors review
experimental and clinical studies focused on spindle density,
amplitude, frequency, morphology, and nesting in individuals
with PTSD.

2) FREQUENCY-DOMAIN METHODS

In [68], the author aimed to develop an efficient, simple, and
explainable sleep spindle detection algorithm (A7) that emu-
lates human scoring by utilising signal characteristics derived
from sigma-filtered data and raw EEG, with a focus on mim-
icking human interpretability and minimising false positives.
The authors used the WSC110sub dataset (Wisconsin Sleep
Cohort, comprising 110 healthy middle-aged subjects and
13 hours of N2 sleep) for the experiments and evaluated
performance using precision, recall, and Fl-score of 0.74,
0.68, and 0.70, respectively. Authors in [69] compared two
well-established automatic sleep spindle detection methods
1) fixed frequency (FixF): Uses pre-defined frequency bands
(11-13 Hz for slow, 13—15 Hz for fast spindles) and 2) Indi-
vidual Adjustment Method (IAM): Adapts frequency and
amplitude criteria to each subject. The authors used a dataset
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of 161 healthy volunteers (17-69 years old) and argued
for using individualized frequency ranges, especially when
studying cognitive correlates. In [70], authors compared the
effectiveness of four Power Spectral Density (PSD) methods,
including FFT, Welch, AR, and MUSIC, for automatic sleep
spindle detection. They used a custom dataset comprising
5 subjects, with EEG recorded at 128 Hz, and evaluated the
selected methods using accuracy.

3) TIME-FREQUENCY ANALYSIS

Using the teager energy operator (TEO) and spectral edge
frequency (SEF), [71], design and validate a low-power
ASIC system-on-chip (SoC) for automatic sleep spindle
detection. The aim is to achieve ultralow power con-
sumption for real-time, wearable EEG applications without
compromising detection accuracy. The authors utilised the
DREAMS Sleep Spindles dataset, employing sensitivity
and specificity as evaluation metrics. The authors in [72]
developed an enhanced sleep spindle detection algorithm
using Synchrosqueezing Transform (SST) approach that
extracts oscillatory EEG components (11-16 Hz) and mimics
expert visual scoring by comparing spindle-like events to
the surrounding background. The authors used a dataset of
2 healthy adult subjects, a 24-year-old male and a 30-year-
old female. They used sensitivity, specificity, selectivity, and
detection correlation Coefficient as evaluation metrics and
achieved 98.1% specificity.

4) EMPIRICAL MODE DECOMPOSITION (EMD)

The aim of the authors [73] was to develop and validate
a CWT-based spindle detection algorithm that: accounts
for inter-individual variability in spindle frequency and
EEG amplitude, separates slow vs. fast spindles adaptively,
compares results with both human scoring and the SIESTA
commercial detector, and applies the method to memory
consolidation and heritability analysis using twin data. The
authors employed the continuous wavelet transform (CWT)
using the Morlet wavelet approach within the developed
framework, utilising 18 nap recordings from 10 healthy
participants. In [48], using complex demodulation (CD) and
Z-score normalisation, the authors validated a novel individu-
alised sleep spindle detection method. Authors used complex
demodulation to extract the instantaneous sigma-band power
(13.5 Hz, 11-16 Hz range) and Z-score normalization using
a 60s moving window per channel (compensates for inter-
/intra-individual variability). For the experiments, [48] used
MASS SS2 (Montreal Archive of Sleep Studies) dataset and
precision, recall, f1-score and phi coefficient as evaluation
metrics. In [74], the authors propose a stage-independent and
single-channel sleep spindle detection algorithm that utilises
the CWT with a Morlet basis and implements probabilistic
detection with local smoothing, comparing it against six
popular algorithms on public datasets (DREAMS, MASS).
The authors used sensitivity, specificity, false discovery rate
and weighted kappa as evaluation metrics. In [75], the authors
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present the development and comparative evaluation of four
automated methods for detecting bilateral sleep spindles in
EEG recordings: a combination detector (a new method),
a fuzzy detector (previously developed), a bilateral sigma
index, and a fixed amplitude detector. This paper [76]
addresses a long-standing issue in sleep spindle research:
the lack of standardization in evaluating and comparing
automatic detection algorithms. The authors propose a uni-
fied assessment framework that defines consistent evaluation
metrics and applies it to their detection algorithm.

In [77], the authors develop and validate a real-time auto-
mated sleep spindle detection system. The developed system
works on single and multiple EEG channels. The authors
used precision, sensitivity, and f1-score as evaluation metrics
and selected Nap EEG (N = 20) and Full-night Sleep EEG
(N = 10) datasets for the experiments. In [78], the authors
propose and validate a sliding window-based probability
estimation (SWPE) method and its enhanced version, SWPE-
E, for spindle detection. The authors used continuous wavelet
transform, sliding window-based estimation (SWPE), and
envelope enhancement (SWPE-E) approaches. They used
precision, Fl-score, accuracy, sensitivity, FDR, and the
DREAMS Sleep Spindle Dataset for framework evaluation as
benchmarks. To separate EEG into transient and oscillatory
components using sparse low-rank decomposition, authors
in [79] propose a novel multichannel sleep spindle detection
algorithm (McSleep) using the TEO, which enables global
and local spindle detection across multiple EEG channels.
For the experiments, the authors chose the DREAMS AND
MASS SSE datasets, and for evaluation, they selected the F1
score, MCC, recall, and precision.

a: KEY TAKEAWAYS

Table 4 represents a cumulative summary of traditional
techniques used for sleep spindle detection. Traditional
signal-based approaches primarily rely on amplitude, fre-
quency, and duration thresholds, with notable differences
observed across time—frequency transforms, such as wavelet
and Fourier analyses. While these methods are computation-
ally efficient and fairly easy to interpret, their effectiveness
can be affected by noise and variability between subjects.
Overall, they remain useful as baseline techniques and
for real-time low-resource situations but are increasingly
surpassed by machine learning and deep learning methods in
large-scale assessments.

C. MACHINE LEARNING-BASED APPROACHES

Machine learning-based approaches have introduced a shiftin
sleep spindle detection by enabling adaptive decision-making
and data-driven feature learning. These models typically
operate on manually extracted features extracted from
EEG signals, including statistical moments, spectral power,
and time-frequency coefficients. ML models such as Ran-
dom Forests (RF), Support Vector Machines (SVM), and
k-Nearest Neighbors (k-NN) are utilized for classification,
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TABLE 4. Summary of traditional techniques for sleep spindles detection.

Ref.  Objectives Dataset

Approach Evaluation Metrics

[78]  Propose and validate a sliding window-based

DREAMS  Sleep

Spindle  SWPE, and SWPE-E Precision, Fl-score, Accu-

probability estimation (SWPE) method and  Database racy, Sensitivity, and FDR
its enhanced version SWPE-E for spindle
detection.

[71]  Design and validate a low-power ASIC DREAMS EEG Filtering, TEO  Sensitivity and Specificity

system-on-chip for automatic sleep spindle
detection.

Block, Duration Filtering,
SEF50 Block, and
Decision Logic

[77]  Develop and validate a real-time, automated

Nap EEG and Full-night Sleep

Real-Time Spindle Detec-  Precision, Sensitivity, F1-

sleep spindle detection system (RTSD). EEG tor (RTSD) score

[74]  Proposed a stage-independent and single- DREAMS, MASS Continuous Wavelet  Sensitivity, Specificity,
channel sleep spindle detection algorithm Transform False Discovery Rate, and
that uses the Continuous Wavelet Transform Weighted Kappa
(CWT) with Morlet basis.

[48]  Validated a novel individualised sleep spin- MASS SS2 Complex Demodulation  Precision, Recall, FI-

dle detection method using Complex De-
modulation (CD) for signal extraction and
Z-score normalisation via a 60s sliding win-
dow.

and Z-score Normalization  score, and Phi Coefficient

[68]  Develop an efficient, simple, and explainable
sleep spindle detection algorithm that emu-
lates human scoring by utilizing signal char-
acteristics derived from sigma-filtered data
and raw EEG.

(WSC110sub)

Wisconsin Sleep Cohort Subset

A7 (signal processing- Precision, Recall, FI-

based, non-ML) score, Spindle Density
Correlation with Experts:
R? =0.82

[73]  Developed and validated a CWT-based spin-
dle detection algorithm that accounts for
inter-individual variability in spindle fre-
quency and EEG amplitude.

18 naps from 10 subjects

Continuous Wavelet

Transform (CWT)

Kappa, Sensitivity, Speci-
ficity, and Precision

[64] Benchmark four automatic spindle detec-
tors (RMS, Sigma Index, Relative Spindle = SDB
Power, and Teager Energy Operator) us-
ing fine temporal resolution and multiple
datasets.

DREAMS, MASS, NDB, and

RMS Amplitude Detec-  Sensitivity, Precision
tor, Sigma Index Detector,  (PPV), Fl-score, Cohen’s
Relative Spindle Power  Kappa, Matthews
Detector, and TEO Correlation Coefficient

(MCC), ROC and PR
curves

offering enhanced accuracy and robustness compared to
traditional methods. However, their performance depends on
careful feature engineering and may require balanced, well-
annotated datasets.

1) CLASSICAL MACHINE LEARNING MODELS

Using SVM-based multivariate classification, cross-feature
selection and normalization [80] develop and validate a
robust, single-channel, automatic sleep spindle detector
(MUSSDET). Using evaluation metrics such as accuracy,
sensitivity, specificity, precision, F1 score, and MCC, the
authors conclude that the performance is consistently better
on MASS than on DREAMS due to differences in data clarity
and sampling rates using the SVM model. A novel algorithm
for automatic sleep spindle detection is proposed by [81]
using an SVM classifier to determine spindle likelihood,
Wavelet Transform (WT) for spectral feature extraction and
Gaussian-based smoothing for noise robustness. The pro-
posed algorithm is evaluated on a public dataset (DREAMS)
using well-structured comparisons and robust metrics. The
proposed method performed best in specificity (92.8%), with
a well-balanced F1-score despite slightly lower sensitivity
than Tsanas’ method.

A Random Forest-based method (Spindle-Al) framework
is proposed by [82] to detect both the number and
duration of sleep spindles in infant EEG, and the system
works on single-channel EEG (F4-C4, F3-C3). The authors
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implemented the model on a 141-EEG recording dataset
from 4-month-old ex-term infants and achieved 93.3%
sensitivity. A Random Forest-based supervised classifier is
proposed by [83] that automatically detects infant sleep
spindles. The proposed framework focused on identifying
both spindle presence and duration and was designed for
large-scale infant EEG (N = 141 ex-term + 6 ex-preterm).
They applied SMOTE (Synthetic Minority Over-sampling
Technique) to balance the dataset, as the duration of spindles
was significantly shorter than that of non-spindle intervals.
The authors utilised an EEG dataset comprising 147 infants,
employing accuracy, sensitivity, specificity, and MCC as
evaluation metrics, and achieved 94.8% accuracy on the test
dataset. The authors evaluated a Random Forest (RF)-based
supervised classifier for automatic sleep spindle detection
using features from EEG data filtered in multiple frequency
bands [49]. The aim was to outperform or avoid the
overfitting issues common with ANN and SVM classifiers,
focusing on low-complexity, real-time-capable features. The
authors used the MASS SS2 dataset, used a random
forest classifier (10 trees, 2 features/node) and achieved
specificity 96.73%

In [84], the authors explore how combining linear (time-
series) and nonlinear (chaotic) EEG features enhances
automatic sleep spindle detection and spindle prediction
(several seconds in advance). The author mainly focused on
how chaotic feature-scattering intensity maps can help define
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decision boundaries more clearly. The authors implemented
Multi-Layer Perceptron (MLP) and k-Nearest Neighbors
(KNN) classifiers and used accuracy, sensitivity and speci-
ficity as evaluation metrics. Based on the results, MLP
outperforms KNN across all feature configurations. Using
Gaussian Mixture Models (GMM) [85], they developed and
evaluated an unsupervised clustering-based sleep spindle
detection method. Authors used the sigma ratio (RMS of
spindle band (10.5-16 Hz) vs total signal) and sigma index
(mean energy of spindle band / (Alpha + Beta energy)) as
input features. The authors used two datasets for experiments:
the MASS SS2 Cohort and the Berlin Sleep Lab. The
authors used sensitivity, False Positive Rate, F1 Score and
recall as evaluation metrics. In [86], authors systematically
compare the performance of conventional ML and DL
methods for automatic sleep stage classification (ASSC),
particularly focusing on robustness to feature selection,
accuracy, and the effect of reducing the number of channels
(e.g., wearable EEG). The authors used the Sleep-EDF
Expanded (PhysioNet) dataset and achieved 89.6% accuracy
from the SVM model.

2) HYBRID APPROACHES

Authors in [87] develop a hierarchical fusion algorithm for
automatic sleep spindle detection that enhances accuracy and
efficiency and combines multiple detection methods (wavelet
& RMS) and machine learning (k-means). The authors used
a dataset of 20 patients with diagnosed sleep disorders,
implemented morlet wavelet transform (signal processing),
RMS detection (heuristics), and k-means clustering (ML),
and used precision, recall, fl-score, accuracy and specificity
as evaluation metrics. In [88], authors improve and robustly
evaluate the performance of existing sleep spindle detectors
using Multi-Objective Evolutionary Algorithms (MOEAs),
optimization the performance of 9 different algorithms
(6 base + 3 hybrid) using Pareto fronts to derive performance
metrics like F1-score and Precision-Recall (PR) curves. For
the experiments, the authors used DREAMS and MASS SS2
datasets.

In [89], authors developed and optimised a Filter-Based
Thresholding (FBT) method for sleep spindle detection that
provides automated labelling for training ML models and
works across multichannel EEG. In the proposed research
work, the authors used the CCNY Study as a primary
dataset and the DREAMS dataset for external validation.
SPINDILOMETER is a machine-learning-based diagnostic
model integrated with polysomnography (PSG) systems
introduced by [90]. It is designed to automatically detect and
quantify sleep spindles in EEG signals, thereby achieving
a reliable and fast diagnostic enhancement tool for PSG.
The authors implemented several ML models, including
K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), Decision Trees (DT), Naive Bayes (NB), and Extra
Trees Classifier (ETC). They achieved 94.61% accuracy from
the KKN model.
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In [91], the authors propose a novel hybrid method (SST-
RUS) for automated sleep spindle detection that extracts
features using Synchrosqueezed Wavelet Transform (SST),
handles class imbalance using Random Under-Sampling
Boosting (RUSBoost), and eliminates the need for thresh-
old tuning common in template-matching methods. The
authors employed RUSBoost, a combination of Random
Under-Sampling and Boosting, utilising the MASS-C1 and
DREAMS datasets for implementation. They selected sensi-
tivity, F1-score, and PPV as performance evaluation metrics.
In [92] authors proposed a parametric spindle detection
framework Spindler that utilizes matching pursuit (MP) with
Gabor atoms, avoids reliance on human-labeled training data,
selects parameters based on the stability of spindle metrics
(rate, duration, etc.), supports both unsupervised and super-
vised modes, and provides an open-source MATLAB toolbox
for benchmarking various algorithms. Authors used the
Spindler algorithm on two datasets, MASS SS2 (19 subjects,
full-night NREM) and DREAMS Sleep Spindles (30-min
excerpts, Cz channel) and calculated spindle surfaces: rate,
length, time fraction. In [93], authors propose a hybrid spindle
detection framework by combining wavelet-fourier analysis,
statistical feature selection using Kruskal-Wallis and machine
learning classifiers (LS-SVM, K-NN, K-means, C4.5) for
final detection. The authors achieve 97.9% accuracy from the
SVM classifier.

a: KEY TAKEAWAYS

Table 5 represents a cumulative summary of ML-based
techniques used for sleep spindle detection. ML-based meth-
ods demonstrate a clear improvement over threshold-based
techniques by utilising handcrafted features and statistical
learning algorithms, such as SVMs, Random Forests, and
k-NN. Their strength lies in moderate data requirements and
adaptability to various recording conditions, balancing accu-
racy and computational efficiency. However, their reliance
on expert-defined features limits scalability, and performance
often stagnates without large, annotated datasets. These
methods are therefore most effective in clinical contexts
where dataset size and resources are limited.

D. DEEP LEARNING-BASED APPROACHES

Deep learning-based approaches represent the cutting edge
of sleep spindle detection, leveraging the capacity of neural
networks to learn complex, hierarchical representations
directly from raw EEG data. DL models such as Recurrent
Neural Networks (RNNs), Convolutional Neural Networks
(CNNs), and hybrid CNN-RNN frameworks eliminate the
need for handcrafted features, enabling end-to-end training.
These models have proven superior generalization, especially
on large, diverse datasets, and show promise in handling
label noise, temporal dynamics, and spatial dependencies
across channels. Despite their success, challenges remain
in interpretability, computational demand, and the need for
high-quality annotated data.
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TABLE 5. Summary of ML-Based techniques for sleep spindles detection.

Ref.  Objective Dataset Approach Evaluation Metric

[94]  To develop an interpretable spindle detector =~ MASS SS2, COGNITION, 132 handcrafted features;  Fl-score: 80.5-84.7%
using sliding-window features and XGBoost DREAMS (combined total  Feature selection via boot-  (E2), outperforms
with a new F1 score metric. ~11,000 subjects) strapped XGBoost; classi- DOSED, A7, SpindleU-

fier with 60 estimators. Net.

[90] Real-time detection system for PSG using 72 subjects (clinical PSG), PSD, CWT, NGS, BGS KNN Acc: 94.6%, MCC:
statistical + ML models, evaluates spindle ~ EEG: F3-M2, F4-M1, C3-M2, features; classifiers: KNN, 0.89, AUC: 0.95, FI:
features across subjects. etc. SVM, RF, NB, Extra 94.3%.

Trees.

[91] Develop an RF-based spindle detection MASS SS2 SSWT + RF classifier  Sensitivity: 87%,
method using time-frequency features from on extracted signal energy  Specificity: 93%, FI-
synchrosqueezed wavelet transform. features. score: 84%.

[49]  Evaluate the Random Forest classifier with  MASS SS2 (19 subjects), C3, 5 bandpass filters + 3 sta-  Sensitivity: 71.2%,
spectral feature ratios on the MASS SS2  Cz, C4 EEG channels tistical ratios as features;  Specificity: 96.7%, FDR:
dataset. RF classifier. 47.4%.

[81] Use SVM classification of wavelet-based = DREAMS dataset Mexican hat wavelet trans-  Specificity: 96.3%, FDR:
EEG features for spindle detection. forms, Gaussian smooth-  46.3%, Sensitivity: 70.7%.

ing, linear SVM.

[82]  Quantify the number and duration of spin-  Infant EEG (0-1 year), channel =~ Preprocessing + rule- RMSE for spindle
dles in infant EEG using ML models. Cz based event scoring +  count/duration estimation

regression models. <0.1.

[85]  Develop a spindle detection algorithm using ~ MASS SS2 (C3 EEG), manu- GMM clustering with  F1: 82%, Sensitivity: 85%,
multivariate GMM with adaptive features. ally labelled by experts spectral and statistical ~ Specificity: 90%.

features, adapted per
subject.

[92]  Test supervised classifiers using wavelet- MASS subset, expert-labeled  Wavelet + RMS + statisti- RF F1: 84.7%, SVM F1:
transformed EEG features for spindle detec-  C3 signals cal moments + SVM, RF. 82.2%.
tion.

[94]  Create an interpretable spindle detection MASS SS2, COGNITION, XGBoost with sliding- F1*: 80.5-84.7%,
framework (SpinCo) with novel metrics for =~ DREAMS window features;  outperforms DOSED,
comparing with human annotations. bootstrapped feature A7, SpindleU-Net

selection; novel F1* event  in population-level
metric. validation.

[86] Compare multiple classical ML models vs  Sleep-EDF Expanded (Fpz-Cz, = SVM, RF, k-NN, MLP, Acc: 89.6% (SVM-RBF),
DL models for automatic sleep staging with ~ Pz-Oz), 21,265 epochs LSTM, Bi-LSTM with 62 MLP:  89%, LSTM:
reduced EEG channels. handcrafted features. 87.9%, BiLSTM: 87.9%.

[74]  Benchmark classical ML models using DREAMS, Cz EEG CWT + statistical feature  Sensitivity: 90.7%, FI1-

CWT-transformed EEG features for spindle
detection.

extraction + Logistic Re-
gression, SVM.

score competitive with

expert agreement.

1) CONVOLUTIONAL NEURAL NETWORKS (CNNS)

To design a data-efficient CNN-based model, named SUMO
(Slim U-Net trained on MODA) [95], a framework was
proposed that can accurately detect sleep spindles across
age groups, surpassing both experts and state-of-the-art
algorithms (A7), and derive reliable spindle-related biomark-
ers, such as density and duration. The authors utilised
the MODA (Massive Online Data Annotation) dataset,
a three-level U-Net-style convolutional neural network,
and recall, precision, and Fl-score as evaluation metrics.
In [96], authors developed the first U-Net-based framework
for point-wise sleep spindle detection and applied a 1D
convolutional U-Net with an attention module for feature
focusing. For the experiments, the authors selected the MASS
and DREAM datasets and used precision, Fl-score, and
recall as evaluation metrics. The paper [97] proposes a
deep VGG-like CNN architecture for automatic sleep stage
classification and visualises the internal layers to understand
emergent signal features in EEG and EOG, and achieved
81% overall accuracy on the Sleep-EDF Expanded dataset.
The authors demonstrate that deep CNNs classify sleep
stages with near-human accuracy and spontaneously learn
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human-relevant features like sleep spindles, slow waves, and
rapid eye movements.

Propose real-time, smartphone-app-compatible methods
for clinical adoption by [98] to revolutionize spindle detection
by visually analyzing EEG waveform images—instead of
EEG time-series signals—using state-of-the-art deep learn-
ing object detection models. The authors compared YOLOv4
and YOLOX architectures and enabled automated spindle
location via bounding boxes. They used the MASS SS2
dataset and achieved 97.24% average precision on the Tiny
Coco model. For sleep stage classification (Wake, NREM,
REM), [60] developed a 1D-CNN-based deep learning
model for Cyclic Alternating Pattern (CAP) detection, which
includes phases with sleep spindles, especially in the Al
phase. The goal of the paper is to automate the detection
of both macrostructure (sleep stages) and microstructure
(CAP) and validate on high-sampling-rate (512 Hz) EEG
from CAPSLPDB, and achieved 90.46% accuracy.

In [99], authors address the label noise problem in sleep
spindle detection using a CNN-based Multiple Instance
Learning (MIL) model with an iterative label refinement
mechanism to tackle the high inter-expert and intra-expert
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variability in spindle annotations. The authors utilised
the MASS and DREAMS datasets and achieved 95.38%
accuracy on the MASS dataset. A CNN-based model for
classifying sleep spindles and exploring the effectiveness
of transfer learning in applying a model trained on healthy
individuals to data from patients with insomnia is proposed
by [100]. The research aimed to address the difficulty in man-
ual spindle annotation for clinical populations and optimize
classification performance with CNN feature learning and
layer-specific transfer. A recall value of 94.53% on healthy
and 94.17% on insomnia individuals is achieved. In [94], the
authors developed a transparent, accurate, and interpretable
spindle detection framework called SpinCo based on the
XGBoost gradient-boosted tree model. The authors used
three datasets: MASS SS2, DREAMS and COGNITION
(private).

2) HYBRID DEEP LEARNING MODELS

Authors in [101] proposed a deep learning-based framework
for the automated detection of both the duration and number
of sleep spindles in infant EEG data, explicitly targeting
ex-term and ex-preterm infants. The aim was to support
physicians with a visual and interpretable system that mimics
expert annotation without requiring domain-specific feature
engineering. The authors implemented CNN and bidirec-
tional LSTM on a recorded dataset consisting of 141 ex-term
infants (81 for training, 30 for validation, and 30 for testing)
and 54 ex-preterm infants used for independent testing. They
used sensitivity: 91.9%-96.5%, specificity: 95.3%-96.7%,
f1-score: 0.924%v-0.954%, and MCC 0.878%-0.922% as
evaluation metrics. In [102], authors developed a generic
and accurate sleep spindle detection framework that handles
uncertain spindle durations via an elastic time-window mech-
anism. The proposed framework represents weak features by
combining deep features (CNN) and macro-scale entropy-
based features. The authors emphasise onset/offset accuracy
and handling imbalanced datasets via focal loss. The authors
utilised the DREAMS dataset (six excerpts, C3-A1/Cz-Al
channels, 50-200 Hz) for the experiments, employing
fl-score (0.664 £ 0.11), precision (0.654 £ 0.13), and recall
(0.687 £+ 0.09) values as evaluation metrics.

To present SEED (Sleep EEG Event Detector), [103]
proposed a deep learning model combining CNNS +
BiLSTMs, which uses long context windows (20s) for precise
temporal localisation and detects both sleep spindles (SS)
and K-complexes (KC) using raw EEG. The researcher
used MASS2 (E1, E2) and NSRR6 (6 sets) datasets and
achieved an 80.8% F1-score on the SEED detector. In [104],
authors develop a flexible, event-agnostic deep learning
architecture called RED (Recurrent Event Detector) for
automatic detection of sleep micro-events (specifically spin-
dles and K-complexes) using time-frequency domain (CWT
spectrogram) and time-domain EEG. For the experiments, the
authors used the MASS S2 dataset and achieved an 81.2%
value of the Fl-score.
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To evaluate the ability of Deep Belief Networks (DBNs),
the authors [105] proposed a framework for sleep spindle
detection by replacing the expert “‘gold standard” with a
crowdsourced dataset and comparing DBNs against tradi-
tional classifiers. The authors used the Fl-score to evaluate
the results. To investigate the effectiveness of several neural
network architectures—DNN, LSTM, CNN, and CNN-
LSTM hybrids, [106] proposed automated sleep spindle
detection using EEG data from the MASS SS2 database.
The study also includes a value-based thresholding method
as a baseline for comparison. The research achieved 67.15%
accuracy from the CNN-LSTM (Torch) model. The authors
in [107] proposed a two-stage (Stage 1 — Pre-detection
and Stage 2 — Refinement) framework for sleep spindle
detection and validated their method on two public datasets:
MASS and DREAMS. The paper used both Sample-Based
Evaluation (SBE) (ACC, SEN, SPE, and KAPPA) and
Event-Based Evaluation (EBE) (RE, PR, FI1, and Overlap
criterion (20% overlap considered a match)). They achieved
F1 = 0.814, Kappa = 0.694 on the MASS dataset (union
of expert annotations), and F1 = 0.690, Kappa = 0.539 on
the DREAMS dataset. The proposed method is robust,
fast, and suitable for real-time applications, as it works
with single-channel EEG (minimising subject discomfort).
Adaptive thresholds overcome inter-subject variability and
outperform or match the performance of state-of-the-art
methods and experts.

The authors in [108] proposed a sleep spindle detection
method based on Concentration of Frequency and Time
(ConceFT), a nonlinear time-frequency (TF) analysis tool
that combines Synchrosqueezing Transform (SST) and
Multitapering (nonlinear adaptation). They used DREAMS
and MASS datasets to validate the proposed method,
reporting SEN, Precision, and F1 as evaluation metrics.
The results were F1 scores of 0.678 (a7), 0.674 (SUMO),
and 0.765 (Conceft-S) on the DREAMS dataset (with
SEN=0.750 and PRE=0.792), and F1 scores of 0.692 (a7),
0.782 (SUMO), and 0.791 (Conceft-S) on the MASS dataset
(with SEN=0.800 and PRE=0.801). ConceFT provides
a robust, interpretable, and accurate method for spindle
detection, which is either comparable to or better than state-
of-the-art methods (A7, SUMO). The proposed method has
only been tested on single-channel EEG during the N2 sleep
stage and requires validation on larger datasets (e.g., MODA).
To develop a general-purpose deep learning architecture for
joint detection of micro-events in EEG (e.g., spindles and K-
complexes), [109] proposed a framework that predicts event
onset, duration, and label and does not rely on sleep stage
annotations. The authors used the MASS SS2 dataset and
precision, recall, and f1 score as evaluation metrics.

a: KEY TAKEAWAYS

Table 6 represents a cumulative summary of DL-based
techniques used for sleep spindle detection. DL-based
methods dominate recent research, with CNNs, RNNs, and
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Traditional
Approach

DL-Based Approach 30%

32%

ML-Based Approach
38%

FIGURE 4. Study Counts by Methods (Traditional, ML and DL).

hybrid models consistently outperforming traditional and
machine learning approaches across benchmark datasets.
Their capacity to learn features directly from raw EEG
data and to generalise across noisy, diverse recordings
underpins their superior performance. However, they demand
substantial annotated data and computational resources, and
their lack of interpretability remains a barrier to clinical
application. The increasing emphasis on explainability and
lightweight architectures underscores ongoing efforts to
address this gap for real-world deployment.

Pie chart (Figure 4) illustrates the distribution of reviewed
studies by methodological family in your survey of automated
sleep spindle detection:

o Traditional Approaches (30%) still account for a
significant portion, especially in earlier work. These
methods persist in some contexts due to their compu-
tational simplicity, interpretability, and suitability for
low-resource environments.

o ML-Based Approaches (38%) form the largest share.
This shows that ML methods such as SVMs, Random
Forests, and k-NN have been widely adopted, particu-
larly in mid-2020s research, where feature engineering
and moderate dataset requirements made them practical.

o DL-Based Approaches (32%) represent a rapidly
growing segment. Even though DL emerged later, its
strong performance on benchmark datasets has quickly
positioned it as the dominant recent trend.

The pie chart (Figure 5) illustrates the dataset usage
distribution across the studies included in the survey:

o Sleep-EDF (15%) appears less often, largely because
it is more commonly applied in sleep staging research
rather than spindle-specific detection.

o MASS (36%) is heavily utilised, especially in studies
focused on large-scale validation, due to its extensive
multi-subject recordings and reliable labelling.

« DREAMS (40%) is the most frequently used dataset,
reflecting its accessibility, standardized annotations, and
suitability for benchmarking detection algorithms.

o Other/Clinical datasets (9%) represent studies con-
ducted on local hospital or lab data, which provide
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Other/Clinical
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15% MASS

36 %

DREAMS
40 %

FIGURE 5. Dataset Usage Distribution Across Included Studies (stacked
bars by MASS, DREAMS, Sleep-EDF, and “Other/Clinical”.

valuable diversity but are less standardized, limiting
comparability across studies.

In summary, the evolution of sleep spindle detection
approaches reflects a nonstop effort to improve generalizabil-
ity, accuracy, and clinical relevance. Traditional approaches
offer interpretability and simplicity, while machine learning
(ML) models enhance adaptability through data-driven
insights. DL approaches stand at the forefront, offering
unprecedented performance but introducing new complexi-
ties related to explainability, training, and data dependency.
As research advances, hybrid models and domain-adaptive
frameworks may offer the most promising path forward,
combining the interpretability of traditional methods with the
learning power of modern Al systems.

VI. COMPARATIVE ANALYSIS OF THE DISCUSSED
APPROACHES

The advancement of sleep spindle detection from traditional
signal-based approaches to machine learning (ML) and
deep learning (DL) techniques has significantly influenced
adaptability, performance, and scalability. Each technique
class exhibits distinct characteristics in terms of interpretabil-
ity, accuracy, computational requirements, and suitability
for real-world clinical applications. The evolution of sleep
spindle detection techniques can be analyzed regarding
their strengths, limitations, and practical implementation
considerations. Below is a comparative breakdown of each
approach:

A. TRADITIONAL SIGNAL-BASED APPROACHES
Traditional signal-based approaches primarily rely on band-
pass filtering, fixed thresholds, time-frequency transforms
(e.g., Fourier transforms, wavelets), and statistical rule-based
heuristics.

« Feasibility and Implementation Challenges: Highly
feasible for embedded systems and low-latency applica-
tions, but lacks scalability and is difficult to generalise
across diverse datasets without manual tuning. These
methods are not ideal for applications requiring high
sensitivity or specificity.
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TABLE 6. Summary of DL-Based techniques for sleep spindles detection.

Ref. Objective Dataset Approach Evaluation Metric

[104]  To develop a flexible, event-agnostic deep ~ MASS SS2 (15 subjects, anno- CNN + BILSTM (RED-  Fl-score: 81.2% (SS-
learning architecture (RED) for detecting tated by E1 & E2, 256 Hz) Time, RED-CWT); Time- El), 84.7% (SS-E2),
sleep spindles and K-complexes using Bi- domain and CWT-based 82.8% (K-Complex);
LSTM and CNN layers without fixed win- input; Softmax output per  Outperforms DOSED,
dowing. 40 ms segment. Spinky, SpindleNet.

[96] To create a U-Net-based model for high- MASS SS2, annotated by E1 =~ U-Net CNN with adaptive ~ Fl-score: ~85%, IoU:
resolution sleep spindle detection on single-  and E2 feature fusion, trained with ~ 0.87; Outperforms A7,
channel EEG using weakly supervised learn- weak supervision and aug-  Lajnef, and Devuyst.
ing. mented data.

[103] Develop a generalizable CNN-Bi-LSTM  MASS SS2, MODA, NSRR  Multi-scale CNN + BiL-  Fl: 86% (SS), IoU: 90%;
model for SS/KC detection across large  (11k+), CAP STM (SEED); pretrained  generalizes across datasets
datasets with rule-based pretraining and pop- using A7 rule-based la-  with 10% fine-tuning data.
ulation analysis. bels; joint SS & KC detec-

tion.

[99] Detect spindles in noisy, weakly labelled MASS SS2 (19 subj.), CNN-MIL with bag- F1:59%, Acc: 95.3%; bet-
EEG using a CNN-MIL framework with it-  DREAMS level  training, weak ter than SpindleNet, La-
erative label refinement. supervision, and iterative  belfix, Jiang.

label update.

[98] Detect spindles from waveform images us- MASS SS2 (1044 image seg- YOLOv4 and YOLOX AP: 100% (IoU 0.5),
ing a YOLOX object detection model (EEG ~ ments, 5s each) (Tiny/SmallCoco) for 84.7% (IoU 0.8),
— image). bounding box prediction. Inference: 11ms/image.

[97] Use weakly labelled EEG to train a CNN for  MASS SS2, C3 channel, CNN (5 conv layers) Fl: 83%, AUC: 0.97,
per-sample spindle probability predictions. scored by 2 experts trained using MIL + loss  matches inter-expert

on soft labels. agreement.

[106] Compare the performance of DNN, CNN, MASS SS2 (19 subjects, Pz- CNN, LSTM, CNN- Best Accuracy: 67.15%
LSTM, and CNN-LSTM models on sleep CLE EEG) LSTM (Keras, Torch), (Torch CNN-LSTM);
spindle detection using MASS SS2 EEG Value-based baseline. Value-based: 64.12%.
data.

[105] Evaluate deep learning models against hu-  Cz-Al EEG from DREAMS (8  CNN with weak supervi- F1: ~82%, AUC: 0.95;
man consensus in detecting sleep spindles  excerpts), annotated by crowd  sion; training via human close to expert inter-rater
from EEG. and experts, consensus labelling. agreement.

[109]  Detect spindles and K-complexes with end- ~ MASS SS2 (C3), 20s EEGseg-  SSD-like CNN architec- F1: 85% (spindles), 84%
to-end deep learning using raw EEG without ~ ments ture with regression and  (KCs); outperforming Fer-
feature engineering. classification heads; IoU-  rarelli, Wendt, DOSED,

based label matching. Spinky.

[60] Train a 1D-CNN to classify macro-sleep CAPSLPDB (108 PSGs), C3  6-layer CNN, dropout + F1 (CAP): 75.3%, Sleep
stages and detect CAP A-phases with spindle ~ EEG dense layers, optimized for ~ stage Acc: 90.5%.
co-occurrence. balanced/unbalanced CAP

datasets.

[106] Compare CNN, DNN, LSTM, CNN-LSTM  MASS SS2 (Pz-CLE), Torch CNN-LSTM (4 Best Accuracy: 67.15%
(Torch, Keras) models for spindle classifica-  balanced spindle/non-spindle ~ conv + FC layers), genetic ~ (CNN-LSTM Torch).
tion. epochs optimization for epochs.

[99] Learn from imprecise labels using MIL with ~ MASS SS2, DREAMS CNN instance-level scor- Fl:  59%,  Accuracy:
CNNs on spindle detection tasks. ing + bag-level aggrega- 95.3%; generalizes to

tion.

other datasets.

o Strengths: These methods are lightweight and suitable
for real-time or low-resource environments. They are
based on well-understood signal properties, such as
amplitude, frequency, and duration, making them easy
to interpret and validate. These methods are also
straightforward to implement using classical signal

processing techniques.

o Weaknesses: The performance of the methods degrades
significantly in noisy or artefact-prone EEG recordings,

These methods work well with clean datasets and controlled
environments, but their accuracy drops significantly in noisy
or artefact-laden EEG recordings. Their inability to adjust
to variability between and within subjects makes them
less dependable for diverse populations. However, their
computational speed and minimal hardware need still make
them suitable for small-scale or resource-limited clinical
settings where advanced infrastructure or large datasets are
not available.

and traditional methods rely on rigid parameters, making

them less adaptable to inter-subject and intra-subject
variability. Another weakness of these methods is that
they often fail to detect subtle or atypical spindles that

do not conform to classical definitions.

Traditional signal-based approaches provide interpretabil-
ity and simplicity; their performance mainly suffers from
dependence on strict thresholds and manually set parameters.
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B. MACHINE LEARNING-BASED APPROACHES
Machine learning-based approaches address several limita-
tions of traditional methods by leveraging statistical learning
techniques.

o Feasibility and Implementation Challenges: These

approaches are relatively easy to implement with
standard toolkits (e.g., Scikit-learn, MATLAB) and
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suitable for mid-scale clinical or research applications.
The performance of ML-based approaches may plateau
if features are not optimally designed or if the dataset is
small.

o Strengths: These approaches offer higher detection
accuracy than traditional methods due to learning from
data-driven patterns and can adapt to different EEG
signal characteristics through well-engineered features.
ML models like decision trees or SVMs allow partial
insight into the decision process.

o Weaknesses: Domain expertise is required to design
effective handcrafted features and is also sensitive to
signal quality, class imbalance, and label noise. These
approaches may require retraining or tuning for new
datasets or populations.

ML-based approaches improve upon traditional methods
by learning discriminative features, but their effectiveness
heavily depends on the quality of datasets and careful feature
engineering. The main advantage of ML is balancing better
accuracy with moderate computational demands, making
it suitable for mid-scale clinical settings. However, their
dependence on handcrafted features limits scalability, and
performance often stalls when datasets are small or imbal-
anced. In cases with limited annotated data or low-resource
clinical environments, ML-based approaches may still be
more practical than deep learning, offering a trade-off
between performance and feasibility.

C. DEEP LEARNING-BASED APPROACHES

Deep learning-based approaches represent the most advanced
category, offering fully automated feature learning from raw
or minimally processed EEG signals. DL-based models such
as BiLSTMs, CNNs, and U-Net architectures have proven
state-of-the-art performance in spindle detection tasks.

o Feasibility and Implementation Challenges: The
implementation of DL-based models are feasible in
high-resource environments (e.g., research labs, hospi-
tals with IT infrastructure) and also requires substantial
expertise in deep learning, data augmentation, and
model tuning. Explainability tools (e.g., Grad-CAM,
SHAP) are necessary but add complexity to deployment.

o Strengths: Learns hierarchical features directly from
raw or minimally processed EEG signals and out-
performs traditional and ML methods in sensitivity,
Fl-score, and generalization. The approaches can also
handle large-scale, noisy, and weakly labelled datasets.

o Weaknesses: DL-based approaches require GPUs or
powerful servers for training and sometimes for
inference. The models are often considered ‘“‘opaque
models” models, which may hinder clinical trust and
acceptance and require large, annotated datasets for
effective training and generalization.

DL-based models surpass both traditional and ML
methods because they can automatically learn hierarchical
features directly from raw EEG data and manage noisy,
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large-scale datasets. However, this superior performance
depends mainly on having large, diverse, and high-quality
annotated datasets, along with substantial computational
resources. Their ““black-box’ nature also creates challenges
for interpretability, which can limit clinical adoption. While
DL approaches currently achieve top benchmark results, their
complexity, high resource requirements, and interpretability
issues mean they may not always be the most practical option
in smaller clinics or for real-time bedside monitoring, where
simpler ML or signal-based methods might still be more
suitable.

Each approach has its strengths, weaknesses, feasibil-
ity and implementation challenges. The trend in spindle
detection is moving towards more adaptive and data-driven
solutions. The specific application requirements, availability
of annotated data, computational resources, and the need for
interpretability in clinical workflows should guide the choice
of approach. Table 7 presents the summary of the discussed
approaches, including implementation notes, strengths, and
weaknesses.

VII. DISCUSSION

A. INTERPRETABILITY CHALLENGES IN DL-BASED
SPINDLE DETECTION

While DL-based models have demonstrated strong per-
formance in sleep spindle detection and classification,
their black-box nature presents significant challenges for
clinical integration. Clinicians require transparency in model
decisions, particularly when these outputs are used to inform
diagnoses, treatment choices, or long-term monitoring.
Interpretability techniques are crucial in bridging the gap
between high model performance and trustworthy clinical
application.

1) GRAD-CAM FOR SPINDLE DETECTION

Gradient-weighted Class Activation Mapping (Grad-CAM)
is a powerful visual explanation tool that highlights the
regions of the signal most responsible for a model’s decision.
In the context of spindle detection, a CNN can apply
Grad-CAM to EEG signals to reveal temporal segments
where the model detects spindle-like activity. As illustrated
in Figure 6 (a), Grad-CAM activation overlays underscore
a concentrated region of EEG activity, aligning well with
known characteristics of sleep spindles in the sigma band
(12-16 Hz). This visual alignment not only confirms that the
model is focusing on physiologically meaningful patterns but
also enhances its credibility among clinicians.

2) SHAP FOR EXPLAINING MODEL OUTPUT

Shapley Additive Explanations (SHAP) offer complementary
insights by quantifying the influence of each input feature
on the model’s output. In EEG-based detection tasks,
features may include power in specific frequency bands (e.g.,
sigma, delta), statistical descriptors (e.g., skewness, entropy),
or spatial-channel data. As illustrated in Figure 6 (b),
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TABLE 7. Comparison of Traditional, ML, and DL Approaches for Clinical Use.

Aspect Traditional Methods

Machine Learning (ML) Deep Learning (DL)

Interpretability High — rule-based

Medium - feature-based Low — requires explainability tools

Computational Requirements Low — lightweight

Moderate — CPU-based train- High — GPU required for train-

ing ing/inference
Data Requirements Low —can work on limited data ~ Moderate — needs labeled fea- High — requires large, labeled
tures datasets
Ease of Integration Easy — legacy systems compat-  Moderate — depends on infras-  Complex — often requires custom
ible tructure deployment
Scalability & Performance Low to moderate Moderate to high High — state-of-the-art performance
Robustness to Noise Low Medium High — if trained on noisy data

(a) Grad-CAM Activation on EEG Signal

—— EEG Signal
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T T T T T T
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(b) SHAP Feature Importance
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FIGURE 6. Interpretability of Deep Learning-Based Spindle Detection Using Grad-CAM and SHAP.

SHAP values indicate that Sigma Power has the greatest
positive influence on the model’s prediction, followed by
Entropy and Delta Power. These quantitative attributions
assist in validating whether the model is attending to
medically relevant signals and provide deeper diagnostic
interpretability.

3) CLINICAL RELEVANCE OF INTERPRETABILITY

Interpretability is more than a technical feature—it is a
clinical necessity. Tools like Grad-CAM and SHAP help to
demystify complex neural models by providing visual and
quantitative justifications for predictions. This transparency
is essential for building clinician confidence, navigating
regulatory pathways, and facilitating the safe integration of
DL-based spindle detectors into real-world sleep medicine
workflows. By incorporating explainable Al components,
future models can better align with both clinical expectations
and ethical standards in healthcare technology.

B. IMPROVING GENERALIZABILITY ACROSS EEG
DATASETS

A critical barrier in sleep spindle detection and classification
is the limited generalisability of models trained on specific
datasets. ML and DL-based models often demonstrate high
performance on the datasets they were trained on but struggle
to maintain accuracy when applied to different EEG channels,
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new subjects, or data collected under varying recording
conditions. The data generalizability issue arises due to
dataset bias—non-representative training data that limit the
model’s ability to generalise across real-world populations
and clinical environments.

1) DOMAIN ADAPTATION TECHNIQUES

Domain adaptation techniques significantly reduce perfor-
mance drops across datasets. These approaches aim to align
the feature distributions between a source domain (e.g., the
training dataset) and a target domain (e.g., the unseen test
dataset). Techniques such as adversarial domain adaptation
train a shared encoder that extracts domain-invariant features
by minimising classification loss while simultaneously
maximising domain confusion using a discriminator. In sleep
spindle detection, adversarial networks can align EEG
signal features across various institutions, recording setups,
or patient populations.

2) DATA AUGMENTATION FOR EEG
Effective data augmentation is crucial for enhancing model
robustness and minimising overfitting. In the realm of spindle
detection, various augmentation strategies have demonstrated
potential:
« Synthetic Spindle Injection: Artificial spindle events can
be injected into real EEG signals by mimicking the

VOLUME 13, 2025



W. Ahmed et al.: Toward Sleep Spindle Detection: A Comparative Survey

IEEE Access

characteristics of sigma-band frequency, duration, and
amplitude. This approach enhances class balance and
aids the model in learning more generalised spindle
representations.

o Noise Perturbation and Channel Dropout: Introducing
Gaussian noise or randomly zeroing out EEG chan-
nels during training can effectively simulate recording
artefacts and electrode disconnections, thereby fostering
resilience to real-world signal quality issues.

o Temporal Warping and Jittering: Slight distortions in
time, such as stretching or compressing spindle win-
dows, simulate natural variability in spindle duration and
onset, making the model tolerant to temporal variations.

3) PROMOTING DATA DIVERSITY IN COLLECTION

The diversity of the training dataset significantly influences
data generalisability. Models trained solely on data from
a narrow demographic (e.g., healthy young adults) may
struggle to perform effectively with infants, the elderly,
or patients with neurological disorders. To address this:

« Standardise Multi-Site Data Collection: Collaborating
across clinical sites to gather EEG recordings with
consistent protocols can enhance data richness while
preserving comparability.

o Include Diverse Demographics: Datasets should be
collected across a range of ages, genders, ethnic
backgrounds, and sleep-related clinical conditions (e.g.,
insomnia, PTSD, Alzheimer’s disease).

« Label Harmonisation Across Raters: Consensus annota-
tions or multi-expert labelled data can reduce variability
and improve the quality of training labels, which is
crucial for spindle detection models.

By integrating data augmentation, domain adaptation, and
demographic diversity into spindle detection research, future
models can achieve enhanced robustness, fairness, and real-
world applicability. These strategies are not merely technical
enhancements but essential steps towards developing clini-
cally reliable and widely deployable EEG diagnostic tools.

C. CHALLENGES AND TRADE-OFFS IN CLINICAL
IMPLEMENTATION OF DEEP LEARNING

Despite the strong performance of DL-based models in
sleep spindle detection, their deployment in clinical settings
presents several practical constraints. These limitations must
be carefully considered when designing algorithms intended
for real-world healthcare environments.

1) DEPENDENCE ON LARGE, LABELED DATASETS
Supervised deep learning models are data-hungry, necessi-
tating large, diverse, and meticulously annotated datasets to
learn generalised and accurate representations. In clinical
neuroscience, such datasets are scarce due to the cost, time,
and expertise required for manual spindle labelling. Further-
more, inter-rater variability and differing scoring standards
across institutions further complicate model training and
evaluation.
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2) COMPUTATIONAL RESOURCE CONSTRAINTS

DL models, especially those based on convolutional
and recurrent neural networks, generally require high-
performance GPUs for both training and real-time infer-
ence. However, many hospital EEG systems function
on resource-constrained hardware with limited processing
capabilities. This results in a mismatch between model
requirements and clinical infrastructure, particularly in
low- to mid-resource settings where dedicated servers or
cloud-based inference pipelines are not readily accessible.

3) EXPLAINABILITY VERSUS SIMPLICITY

DL models are frequently criticised as “‘opaque models™ due
to their lack of inherent interpretability. In contrast, traditional
signal processing or classical machine learning methods (e.g.,
decision trees, SVMs) provide greater transparency, which is
critical in medical contexts where explainability is not just
preferred but required for regulatory approval and clinician
acceptance. While explainability techniques like Grad-CAM
and SHAP can assist, they add complexity and may not be
fully trusted by non-technical users.

4) REAL-TIME AND EDGE DEPLOYMENT

Low-latency and real-time performance are essential chal-
lenges for integrating automated sleep spindle detection into
a clinical setting. The current traditional offline models
are accurate but require significant computational resources
and are unsuitable for bedside monitoring or portable sleep
devices. Recent research has introduced lightweight models
that can run on embedded systems or edge devices without
depending on high-performance servers. Edge deployment
provides several advantages for automatic sleep spindles
detection: (i) enhanced privacy and security, as sensitive
patient data stays on the device; (ii) lower bandwidth needs,
since raw EEG doesn’t have to be continuously streamed to
central servers; and (iii) reduced latency, allowing real-time
visualisation of spindles during polysomnography. Detection
methods such as model quantisation, pruning, and knowledge
distillation have been examined to decrease computational
load and model size while maintaining detection accuracy.
Despite the advantages of edge deployment, significant
limitations persist. Clinical-grade embedded solutions must
find a balance between energy efficiency and dependability,
especially for wearable EEG headbands or home-based
monitoring platforms. Furthermore, hardware inconsistencies
across hospitals and a lack of standardised toolchains
for medical edge-Al systems present practical challenges.
Tackling these issues will be crucial to transition from
research prototypes to routine clinical use of real-time spindle
detection.

VIil. CHALLENGES AND OPEN ISSUES
Despite the substantial advancements in sleep spindle detec-
tion, several challenges and open issues remain that limit
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the widespread clinical and practical deployment of current
approaches.

Lack of Interpretability: Based on the critical evalu-
ation of existing research studies, we identified that
DL-based methods often act as “‘black-box” models.
Their decisions are difficult to interpret and validate,
which reduces clinical trust and impedes regulatory
approval [97], [100].

Variability in Spindle Morphology: Based on the
analysis of [48] and [69], sleep spindles demonstrate
significant inter- and intra-individual amplitude, dura-
tion, and frequency variability. These variations pose
challenges for ML and DL algorithmic generalization
across different subjects, age groups, and EEG channels.
Limited Availability of Labelled Data: After the com-
prehensive evaluation of existing datasets, we identified
that there is a need for high-quality and annotated EEG
datasets for model training and testing. The publicly
available datasets have limited subject diversity and
channel configurations, which restrict the development
of highly generalizable models, including ML and
DL. This is especially critical for DL, which requires
extensive labelled data for robust training [96], [104].
Annotation Subjectivity and Label Inconsistency: Man-
ual annotation by human experts and researchers
remains the gold standard for supervised model training.
Nevertheless, even expert scorers often disagree with
inter-rater reliability (Cohen’s Kappa) around 0.52 [48].
This subjectivity negatively impacts model training,
label noise, and evaluation.

Multi-event Co-detection: Sleep EEG signals may
contain overlapping events such as slow waves and K-
complexes. Distinguishing spindles from other events
in multi-label settings or during temporal co-occurrence
remains underexplored [104], [109].

Class Imbalance: The research survey revealed that in
typical EEG recordings, sleep spindles are rare, resulting
in imbalanced class distributions. This imbalance can
bias models toward non-spindle classifications, lower-
ing sensitivity and F1-score [83].

Overfitting and Generalization: Based on the data
interoperability, we identified that many ML and DL
models demonstrate promising performance on specific
datasets but often fail to generalise across different
populations or unseen data without retraining or fine-
tuning [82].

Real-Time Implementation and Power Efficiency: Some
clinical and wearable applications require real-time
detection with low power consumption. Designing
accurate and computationally efficient models remains
an open challenge, especially for embedded or edge
devices [71].

Addressing the above-discussed challenges is critical for
moving sleep spindle detection algorithms from research
settings to real-world clinical and neurotechnological appli-
cations.
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IX. FUTURE DIRECTIONS

To overcome the above-discussed challenges and enhance the
utility of spindle detection systems, several future research
directions are proposed based on the state-of-the-art:

o Personalized Spindle Detection: Based on the survey
discussion, we identified that individualised spindle
detection models that dynamically adapt to user-specific
EEG patterns can improve accuracy and clinical rele-
vance. Integrating personal neuro profiles could further
tailor detection parameters [110].

o Few-Shot and Semi-Supervised Learning: The survey
identified that integrating few-shot or semi-supervised
learning methods can reduce dependency on large,
labelled datasets and better handle label noise, par-
ticularly useful for underrepresented clinical popula-
tions [111].

o Development of Larger and More Diverse Datasets:
Based on the existing research, the survey identifies
that future efforts should prioritise building publicly
available, large-scale, multi-channel EEG datasets with
diverse subject populations and consistent expert anno-
tations. This will support the training and validation of
generalizable models [112].

o Explainable Al (XAI) in Spindle Detection: Based
on the interpretability section, we identified that
future spindle detection models should incorporate
interpretability frameworks like attention mechanisms,
saliency maps, and layer-wise relevance propagation to
improve transparency and foster clinical trust [113].

o Federated Learning and Privacy-Preserving Al: Future
research should also focus on emphasising federated
learning and privacy-preserving Al to foster multi-centre
collaboration without depending on centralised data
sharing, which is often restricted by ethical and legal
constraints in healthcare. Federated learning frame-
works allow models to be trained across institutions
while keeping patient data local, thereby improving
the generalisability and diversity of training datasets
without compromising privacy.

« Incorporating Multimodal and Contextual Information:
Combining EEG with other physiological signals (e.g.,
EOG, EMG, HRV) or sleep context (e.g., sleep stages,
circadian rhythms) may enhance detection performance
and robustness [114].

o Multi-task Learning Frameworks: The survey iden-
tified that jointly training models to detect multi-
ple sleep micro-events (e.g., spindles, K-complexes,
slow waves) can enhance temporal resolution, reduce
false positives, and more accurately mimic human
scoring [115].

o Transfer Learning and Domain Adaptation: Leveraging
transfer learning techniques can enable the adaptation
of pre-trained models across different populations and
recording setups with minimal retraining. Domain
adaptation strategies can further reduce performance
drop-offs on unseen data.
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TABLE 8. List of Abbreviations.

Abbreviation Description Abbreviation Description

ML Machine Learning DL Deep Learning

ATM Air Traffic Management TCAS Traffic Alert and Collision Avoidance System
NREM Non-Rapid Eye Movement ASD Autism Spectrum Disorder

TEO Teager Energy Operators EEG Electroencephalogram

RF Random Forests SVM Support Vector Machines

K-NN K-Nearest Neighbors RNNs Recurrent Neural Networks

MIL Multiple Instance Learning FPR False Positive Rate

FNR False Negative Rate ASSD Automated Sleep Stage Classification

MCC Matthews Correlation Coefficient MASS Montreal Archive of Sleep Studies

SDB Sleep Density Dataset DDA Delay Differential Analysis

FixF Fixed Frequency IAM Individual Adjustment Method

PSD Power Spectral Density SEF Spectral Edge Frequency

SoC System-on-hip SST Synchrosqueezing Transform

EMD Empirical Mode Decomposition CWT Continuous Wavelet Transform

CD Complex Demodulation SWPE Sliding Window-Based Probability Estimation

o Edge AI and Real-Time Deployability: The survey
concludes that designing lightweight models compatible
with mobile, embedded, and wearable devices will
accelerate clinical translation, especially in home-based
or telemedicine applications [116].

Continued interdisciplinary collaboration between the
signal processing, neuroscience, and Al communities is
essential to pushing the boundaries of automated sleep
spindle analysis and enabling its integration into clinical
diagnostics and brain-computer interfaces.

X. CONCLUSION

A. SUMMARY OF KEY FINDINGS

The proposed research survey provides a comprehensive
overview of sleep spindle detection methods, classifying
them into traditional, machine learning, and deep learning
techniques. Key findings reveal that while traditional tech-
niques offer interpretability and computational efficiency,
they experience limited accuracy. ML-based techniques
enhance adaptability and performance but require carefully
engineered features. DL-based techniques achieve the highest
accuracy and robustness, particularly on large datasets;
however, challenges remain in terms of interpretability and
data dependency.

B. IMPLICATIONS FOR SLEEP RESEARCH AND CLINICAL
APPLICATIONS

This survey has significant implications for sleep research
and clinical applications. Automated spindle detection can
potentially improve diagnostic workflows, support neurocog-
nitive studies, and improve our understanding of sleep
physiology. However, adoption in clinical practice requires
accurate, yet also explainable and generalizable, models
across diverse populations.

C. FINAL THOUGHTS AND RECOMMENDATIONS

This survey highlights the advancements made in the
field and emphasizes the need for the continued devel-
opment of models that balance performance with clinical
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interpretability. Future work will focus on implementing
and evaluating ML-based spindle detection techniques using
state-of-the-art EEG datasets, such as MASS and DREAMS,
to contribute practical, scalable, and transparent tools for
sleep research and healthcare.

D. LIMITATIONS
Although this review follows PRISMA guidelines and uses a
systematic search strategy across multiple databases, certain
limitations should be acknowledged. Firstly, only studies
published in English were included, which may exclude
relevant research published in other languages. Secondly,
proprietary and non-public datasets, including clinical EEG
datasets not accessible for research, were excluded due to
access restrictions. Thirdly, publication bias might be present,
as studies reporting negative or non-significant results are
less often published in indexed journals. Lastly, as the field
advances rapidly, some recent preprints and unpublished
works may not have been captured at the time of review.
These factors should be considered when interpreting the
findings and trends reported in this survey.

Table 8 represents the abbreviations used in the survey

paper.
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