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Abstract. Wireless Capsule Endoscopy (WCE) offers an important di-
agnostic instrument for different gastrointestinal diseases. Enhancing the
WCE device with real-time image processing capabilities allows to assist
specialized physicians in the long and cumbersome process of inspecting
the significant amount of data acquired during the examination proce-
dure, providing the first detection of the signs of relevant diseases that
require further attention. In this work, we evaluate different state-of-
the-art Convolutional Neural Network models for real-time WCE image
classification, focusing on lightweight topologies suitable for execution
on low-power microcontroller platforms and integration on the WCE
device. The selected WCE-SqueezeNet model achieves 98.5% accuracy
in the classification of ulcerative colitis, polyps, and esophagitis against
healthy samples, allowing classification at a 16 fps rate on the GAP9
multi-core platform, with 61 ms inference time and 30.6 mW average
core power consumption.

Keywords: Wireless Capsule Endoscopy - Near-Sensor Processing - Con-
volutional Neural Networks

1 Introduction

Gastrointestinal (GI) diseases represent a relevant concern for the health of mil-
lions of people worldwide. As a reference, the number of patients living with a GI
condition in Europe between 2000 and 2019 was estimated to be over 332 mil-
lions [1]. Wireless Capsule Endoscopy (WCE) represents a common diagnostic
instrument for the early detection of GI diseases, which enables proper medical
intervention before more serious complications arise.

The current examination procedure involves image acquisition with the WCE
device along the GI tract, allowing the detailed exploration of the tissue, and
the transmission of a huge amount of image data to an external server for direct
medical examination. Image processing and classification of common conditions
through Artificial Intelligence (AI) approaches have been evaluated in the liter-
ature, with the aim of assisting the physicians in the diagnostic process [8, 10, 2].
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Nonetheless, the continuous stream of images to the server through the wireless
channel requires a significant amount of bandwidth, thus in-place processing
has been explored [11], based on the general Al-at-the-edge trend in medical
applications [3].

This work focuses on enabling near-sensor image processing capabilities on
the WCE device, in order to perform real-time image classification and limit
the WCE-to-server transmission only to the images representing a recognized
symptom of the disease. To this aim, we target image classification based on
Convolutional Neural Networks (CNNs) with a complexity suitable for efficient
inference execution on low-power microcontroller-based platforms, that are com-
patible with the integration on the WCE device. Recent Al-oriented platforms
in the edge domain leverage up to a few MBs of available memory [13], although
the working memory of most common microcontroller-based platforms is within
1 MB. The targeted computing platforms thus introduce a significant constraint
on the complexity of the classification model, both in terms of memory require-
ments and the number of required operations to ensure real-time processing.

The contributions of this work can thus be summarized in two main points:

— the evaluation on an open-source dataset of a suitable CNN classifier, the
WCE-SqueezeNet model, for real-time near-sensor WCE image classification,
reaching 98.5% accuracy in the recognition of three common GI conditions,
including the assessment of the most effective image resolution reduction as
a trade-off between accuracy and computational complexity;

— the preparation, deployment, and demonstration of real-time execution on
the GAP9 low-power multi-core platform, enabling a 16 fps throughput
within a core power envelope of 30.6 mW.

The paper is organized as follows: Section 2 summarizes the state of the art,
Section 3 describes our proposed approach for the classification model training
and evaluation, Section 4 reports the experimental results, and finally Section 5
summarizes the conclusions.

2 Related Work

The use of Al, particularly of CNN models, for medical image processing is well
documented in the literature. Table 1 summarizes recent works from the state of
the art, addressing WCE-image classification with CNN models, and referencing
the same set of open source data, with the exception of [11].

The author of [8] presents a classification model obtained from the combina-
tion of truncated versions of the EfficientNetB0O, MobileNetV2, and ResNet50V2
topologies, exploited as feature extractors prior to a Fusion Residual Block
producing classification. The classification model, called MFuRE-CNN, reaches
97.75% accuracy in the recognition of 3 pathological conditions against healthy
samples.

The EfficientNet topology is also exploited in the work of [10], where the Effi-
cientNet V2B2 topology is adapted to the WCE task with the integration of a cus-
tom classification head including Global Average Pooling and Dense layers. The
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finally obtained GastroNet model outperforms the evaluated alternatives fine-
tuned from state-of-the-art topologies, such as ResNet50, and EfficientNetv2B1,
reaching over 99% accuracy.

Additionally, the work of [2] presents the DCDS-Net model, exploiting several
blocks of separable convolutions prior to a classification block composed of three
Dense layers.

As can be noticed from the table, the efficiency of the classifiers described
in these works was not assessed on an embedded hardware target, however, due
to their storage requirements, of at least 20 MB, and the number of operations
required per inference run, over 2 GOPS, they do not represent suitable candi-
dates for integration in an intelligent WCE device. On the other hand, the idea of
exploiting network models reaching state-of-the-art accuracy on the ImageNet
dataset was demonstrated as a successful approach, to be considered also for
WCE classification.

A system based on real-time image processing on the WCE device is envi-
sioned and assessed in the work of [11], where memory constraints and efficiency
are taken into account for the selection of the CNN detection model, showing
99.5% average precision in the recognition and detection of colorectal polyps. The
precision number refers to a 25% intersection-over-union between the detected
bounding box and the ground truth, evaluated on the data acquired from 255
patients of Denmark’s national screening program. The number of parameters
is still significantly high, over 3 million, but it is compatible with the proposed
camera-pill hardware architecture, integrating 8 MB of memory, and where the
average power consumption was assessed to be around 50 mW.

In this work, we target a similar problem, aiming at real-time classification of
different GI diseases. Exploiting the feature extraction capabilities, derived from
learning on large image datasets, of the pre-trained state-of-the-art SqueezeNet
network, our proposed WCE-SqueezeNet classification model reaches a compet-
itive accuracy compared to the alternatives, within a complexity and memory
footprint suitable for inference deployment on resource-constrained low-power
hardware platforms, demonstrated through direct measurements. The efficiency
of the proposed model surpasses the topology presented in [11], both in terms
of required parameters and operations.

Table 1: Comparison with the state of the art of WCE image classification
models.

Model [Accuracy[Precision[Recall[Deployed[Parameters Memory[GOPS*
MFuRE-CNN [g] 97.75% | 97.75% [97.75% X 19.2 MB 7.8
ResNet50 [10] 98% 98.1% | 98% X 89 MB™" 7.6""
EfficientNetV2B1 [10]| 98.5% 98.5% | 98.5% X 25.9 MB™" 2"
GastroNetV1 [10] 99.2% 99.3% | 99.3% X 32.8 MB™" 2.3""
DCDS-Net [2] 99.33% | 99.37% [99.32% X 83.8 MB 9™
YOLO-based [11] | 99.5 AP N.R. N.R. v 3.2 MB 0.9""
this work 98.5% 98.6% | 98.5% v 750 kB 0.45

* The number of operations refers separately to multiplications and additions: 1 MAC = 2 OPS.
** Estimated from paper.
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3 Method

This section describes our training and evaluation approach for the development
of the proposed classification system, presenting the reference dataset and target
hardware platform, as well as the CNN model considered for the assessment.

(d)

Fig. 1: Sample images from the reference dataset [9,14], including a) normal
sample, b) ulcerative colitis, ¢) polyp, d) esophagitis.

3.1 Dataset

This study references the KVASIR [9] and the ETIS-Larib Polyp [14] databases,
according to the data organization introduced in [8]. This collection counts 6000
images acquired through WCE, including an equal number of examples for three
main pathological conditions of the gastrointestinal tract, such as ulcerative col-
itis, polyps, and esophagitis, as well as healthy /normal samples. Figure 1 reports
an example of acquired image for each of the targeted classes.

Ref. [8] also introduced a standard training, validation, and test split, accord-
ing to the scheme summarized in Table 2. All the images in the dataset were
pre-processed in order to standardize their size to a 224x224 resolution and
normalized according to the data format expected by the different models con-
sidered. The selection of the input resolution was then the subject of a dedicated
exploration, which is described in detail in Section 4.

Table 2: Data organization into training, validation, and test set.
Class [Train[Valid[Test
Normal - N | 800 | 500 | 200
Ulcer - U 800 | 500 | 200
Polyps - P | 800 | 500 | 200
Esophagitis - E| 800 | 500 | 200
Tot 3200 | 2000 | 800

3.2 Hardware Target

To evaluate the efficiency of the WCE image classification application, we con-
sider as a target the GAP9 Parallel Ultra-Low-Power (PULP) platform [4]. This
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device recently demonstrated remarkable energy efficiency in the tiny-ML bench-
marks [7], with 0.033mW/GOP. It is an advanced microcontroller-based plat-
form, integrating a cluster of nine parallel processors, which have access to a
shared 128 kB L1 memory. The cluster can be exploited for parallel processing
and the acceleration of typical deep learning workloads, such as convolutional
and fully connected layers. The memory hierarchy also includes a 1.5 MB L2
memory, thus providing enough storage and computational resources to accom-
modate the classification model, within the limited power budget compatible
with integration on WCE devices.

3.3 Classification Approach

A common approach in medical image classification problems is to leverage the
feature extraction capabilities of off-the-shelf models pre-trained on large image
datasets, such as ImageNet, and finally specialize them for the task at hand [6].
This solution often results in higher classification performance than training the
same topology from scratch, as the available medical data is typically reduced
and sometimes unbalanced in the representation of the different conditions.

Considering these documented results, in this work we aim to fine-tune an im-
age classification model for WCE image classification. The network topology was
selected based on the assessment of the computational and storage requirements,
with the aim of targeting ultra-low-power deployment on tiny microcontroller-
based platforms, to perform near-sensor image processing directly on the WCE
device. We thus defined a memory constraint of 1 MB as the maximum accept-
able memory footprint, limiting the evaluation to network models exploiting less
than 1 million parameters. Therefore, we selected the SqueezeNet topology [5] as
the backbone of our classification model. The structure of the model is recalled in
Figure 2. Compared to the Vanilla topology, we replaced the classification head
with a dense layer suitable for the new 4-classes problem. In this configuration,
the model exploits less than 740k parameters, thus allowing to meet the memory
constraint with 8-bit quantization.

For the fine-tuning of the model, we leveraged the Pytorch framework, ex-
ploiting CrossEntropy loss, SGD optimizer, and 0.001 learning rate. The learning
rate was iteratively adapted after patience of 30 epochs without improvements
on the validation set, considering up to 6 steps. The final update was considered
as the early stop condition. The training was performed on Google Colaboratory,
leveraging the T4 GPU.

4 Experimental Results

In this section, we summarize the experimental results obtained on the target
dataset, highlighting the most relevant metrics describing the classification per-
formance, and including the impact of quantization on the final accuracy. We
finally assess the efficiency of the selected solution with on-hardware direct mea-
surements, demonstrating the feasibility of performing real-time classification on
suitable low-power hardware targets.
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Fig. 2: WCE-SqueezeNet classification model.

4.1 Classification Performance Assessment

As the first step of the performance investigation, we compared the achievable
accuracy when training and testing the classification model on images of different
resolutions, starting from the 224 x224 resolution exploited in [8], then reducing
the size of the training image to 128x128, and finally to 64x64. The outcome
of the exploration is summarized in Figure 3, where the evaluated alternatives
are placed according to the accuracy achieved on the validation set and to their
computational complexity in terms of number of required operations (GOPS).
Each model in the plot was evaluated on images of the same resolutions as the
examples learned during the training. As can be observed, reducing the image
size to 128 x 128 introduces only a negligible drop in the accuracy, while resulting
in a significant reduction, by a factor of 3x, of the computational workload.
On the contrary, the performance degrades significantly when the resolution is
reduced further.

Based on this first assessment, and considering the low-power hardware tar-
geted for the deployment, we selected the model trained to perform classification
on the 128x 128 images. We then performed a refinement training, based on the
exploration of the most relevant hyperparameters, with batch size equal to 128,
reaching an accuracy of 99% for full precision inference on the test set.

The details of the confusion matrix obtained with the WCE-SqueezeNet
model are reported in Table 3a. As can be observed, the model shows per-
fect specificity, providing 100% recall in the recognition of the normal condition,
with no false alarms raised based on the examples in the test set. The average
precision and recall on all the targeted classes are 99%. Due to the importance
of polyps’ early detection, we further explored the accuracy in the recognition of
this target class. Figure 4 shows the Receiver Operating Curve for the recogni-
tion of the polyps class against all other classes in the dataset. As can be noticed,
the model provides a good discrimination ability, with an area under the curve
(AUC) value equal to 0.99.
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Fig. 3: Exploration of the input image resolution considering the validation set.

1.01

I o 4
IS o ®

True Positive Rate

o
N}

004 —— ROC curve

0.0 0.2 0‘4 0‘.6 0.8 1.0
False Positive Rate

Fig. 4: Receiver Operating Characteristic curve for polyps recognition.

Table 3: Confusion Matrix resulting from test set classification with the WCE-
Squeezenet model.

(a) Full Precision. (b) 8-bit Integer.
a Normal 200f 0f O 0 a Normal 200f 0f O 0
'§ Ulcer 0{198 2 0 '§ Ulcer 0{197 3 0
; Polyps 1 41195 0 ; Polpys 3 41193 0
ﬁ Esophagitis 0 1 0| 199 ﬁ Esophagitis 0 1 1] 198
N| U |P| E N| U |P| E

Predicted Labels Predicted Labels
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4.2 Quantization

As anticipated, the aim of this work is to enable real-time classification on the
WCE device, targeting execution on low-power microcontrollers. In order to
meet the memory constraint of 1 MB, the memory requirements of the WCE-
SqueezeNet model needed to be reduced through quantization to 8-bit precision.
The quantization was performed through the TensorflowLite utilities, resulting
in a limited accuracy drop, to 98.5%, compared to the Floating Point 32-bit
full precision representation. The confusion matrix obtained on the test set with
the integer model is reported in Table 3b. As can be noticed, only a few errors
involving the pathological classes were introduced.

4.3 Discussion

Table 4: Classification Performance Assessment on the test set. PT column in-
dicates whether the training started from ImageNet trained weights.

Ulcer Polyps Esophagitis

Model ‘PT Accuracy Precision|Recall|Precision|Recall| Precision|Recall
WCE-Squeezenet | v 98.13 98.45 95 95.12 97.5 100 100
WCE-Squeezenet X 84.63 64.84 88.5 81.97 50 98 100
Squeezenet + SVM | v/ 96.5 95 95.5 95.29 91 100 100
WCE-MobileNetV2 | v 98.5 97 97 97 97 100 100
MobileNetV2 4+ SVM| v 96.87 96.39 93.5 94 94 100 100

In this section, we discuss the effectiveness of the classification approach
described in Section 3. First, we evaluate the training approach, comparing it to
the classification performance achievable with:

— the same topology trained from scratch, with no previous knowledge acquired
on the ImageNet dataset;

— the pre-trained feature-extraction model, combined with a classifier trained
on the target problem.

Additionally, we also considered the comparison with a more complex network
model, such as MobileNetV2 [12]. Table 4 summarizes the comparison, based on
models trained on images of 224 x224 resolution. As can be observed, standalone
CNN classification outperforms the classification of the extracted features based
on SVM for both the network models considered. Furthermore, starting from
the pre-trained parameters provides a significant advantage over training the
same topology from scratch. Finally, the classification performance enabled by
the WCE-SqueezeNet model is very close to the best one achievable with the
more complex MobileNet topology.
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Fig. 5: Computational workload of the different layers in WCE-SqueezeNet model
evaluated in terms of number of required operations and required execution
cycles on the GAP9 platform, for 224 x224 input resolution.
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Fig. 6: Computational workload of the different layers in WCE-SqueezeNet model
evaluated in terms of number of required operations and required execution
cycles on the GAP9 platform, for 128 x128 input resolution.

4.4 Deployment

The deployment of the selected WCE-SqueezeNet model was automated through
the proprietary code generation tool, the GAP9 SDK. We compared the required
inference time for the model applied to 224x224 and to 128x128 input images,
considering parallel execution on eight cores of the computing cluster. In the first
case, inference time was measured equal to 0.2 s, thus resulting in an expected
throughput of 5 fps, evaluated at a 370 MHz working frequency. The average
computational efficiency was 9 OPS/cycle. In the second case, the reduced com-
putational workload resulted in only 61 ms inference time, with an expected
throughput of 16 fps and an average computational efficiency of 10 OPS/cycle.

The composition of the computational workload is reported in Figure 5a
and 6a, whereas the required inference time on the GAP9 platform for each layer
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is represented in Figure 5b and 6b. As can be noticed, the composition of the
expected workload based on the number of required operations and of the mea-
sured inference time is very similar, showing there is no significant inefficiency in
the implementation of the most relevant operands. The computational workload
is dominated by the convolutional layers, as the main operands exploited in the
Fire modules, while the contribution of the fully connected classification head is
negligible. Input resolution shows only a limited impact on the composition of
the required execution time.

Finally, we assessed the energy efficiency, by measuring the average core
power consumption during inference execution, which is equal to 30.6 mW. The
required energy per inference is thus 1.9 mJ. Measurements were performed with
Nordic Power Profiler II. This result demonstrates the suitability of performing
real-time inference on the WCE device, with limited power requirements com-
patible with battery-powered solutions.

5 Conclusions

In this work, we presented a classification model for the recognition of GI diseases
based on WCE acquisition. The WCE-SqueezeNet model demonstrated 98.5%
classification accuracy, evaluated after 8-bit quantization for efficient inference
execution on the targeted GAP9 low-power platform. The analysis of the accu-
racy degradation with the progressive reduction of the input image resolution
showed that compression up to a 128 x128 resolution is possible with a negligible
impact on the accuracy. The efficiency of the proposed solution was evaluated
on the GAP9 platform, considering parallel execution on 8 cores. The measure-
ments demonstrated a 16 fps achievable throughput and an average core power
consumption of 30.6 mW, compatible with possible integration in the WCE de-
vice.
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