
1

SYNtzulA: Open Hardware for Near-Sensor SNN Inference
Luca Martis, Gianluca Leone, Luigi Raffo, Paolo Meloni

Abstract—Spiking Neural Networks (SNNs) exploit event-
driven processing to offer high energy efficiency when deploying
Artificial Intelligence (AI) on wearable edge devices. However,
specialized hardware is needed to fully take advantage of this
potential, which, despite recent advances, remains expensive and
not widely accessible. To address this, open-source Electronic
Design Automation (EDA) tools and Process Design Kits (PDKs)
offer a path to democratize the development of neuromorphic
hardware. In this work, we present SYNtzulA, a system-on-
chip designed for SNN acceleration, developed using the open-
source IHP-SG13G2 130 nm PDK and the OpenROAD toolchain.
The chip integrates a RISC-V softcore and a dedicated SNN
accelerator, occupying approximately 6.8 mm2 including I/O
pads. It operates at up to 125 MHz, reaching a throughput of 2
Giga Synaptic Operations per second (GSOP/s) with an energy
consumption of 36.5 pJ per synaptic operation. The accelerator
can exploit the sparsity of spike-based computation by skipping
unnecessary operations, resulting in total energy consumption in
the order of a few hundred nanojoules per inference in different
use cases involving biosignal analysis.

Index Terms—Spiking Neural Networks, Open Hardware,
ASIC, Low Power

I. INTRODUCTION

Spiking Neural Networks are a computational model in-
spired by the structure and functioning of biological neural
networks. As in traditional artificial neural networks (ANNs),
SNNs are built from basic computational units, i.e. neurons,
that are interconnected through synaptic weights to form
complex network architectures. A key distinction of SNNs is
that they process information through sparse binary signals,
called spikes, in an event-driven manner. This operational
model drastically reduces the number of required computa-
tions, making SNNs particularly well-suited for applications
demanding high energy efficiency. Moreover, the spike-based

This manuscript is submitted as an extended version of the paper titled
“SYNtzulA: Open-Source Hardware for Energy-Efficient Spiking Neural
Network Inference” by L. Martis, G. Leone, L. Raffo, and P. Meloni, originally
presented at the 22nd ACM International Conference on Computing Frontiers
(CF’25).

This work was funded by the projects EdgeAI “Edge AI Technologies
for Optimised Performance Embedded Processing” and H2TRAIN ”Enabling
digital technologies for Holistic Health-lifestyle motivational and assisTed
supeRvision supported by Artificial Intelligence Networks”, supported by the
Chips Joint Undertaking and its members including top-up funding by Austria,
Belgium, France, Greece, Italy, Latvia, Netherlands, and Norway under grant
agreement No 101097300 and No 101140052. Funded by the European Union.
Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the Chips Joint
Undertaking. Neither the European Union nor the granting authority can be
held responsible for them. It is also partially funded by NextGenerationEU
Mission 4, Component 2, Investment 1.5, CUP B83C22002820006—Project
METBIOTEL—Innovation Ecosystem ECS 0000024 ROME TECHNOPOLE
SPOKE 1, and SPOKE 6.

The authors are with the Department of Electrical and Electronic
Engineering, University of Cagliari, 09123, Cagliari, Italy (email:
luca.martis@.unica.it, gianluca.leone94@unica.it, raffo@unica.it,
paolo.meloni@unica.it )

computation in SNNs replaces the energy-intensive multiply-
and-accumulate operations typical of ANNs with simpler
addition operations, further enhancing their energy efficiency.
Thanks to these characteristics, SNNs are particularly well-
suited for wearable edge processing devices, where both
energy and computational resources are severely constrained.
However, to fully exploit the benefits of SNN algorithms, ded-
icated hardware is essential. The execution of SNNs achieves
its highest efficiency on specialized neuromorphic processors
designed to leverage temporal sparsity and minimize energy
consumption per operation. In recent years, several of these
processors have demonstrated exceptional performance in ef-
ficiently running large-scale SNN models [1]–[4]. Despite the
significant promise of neuromorphic systems, their widespread
deployment is currently constrained by prohibitive develop-
ment costs and restricted accessibility.
Recent proposals, notably those by [5]–[7], have investigated
Field-Programmable Gate Array (FPGA)-based architectures
to overcome some of the challenges associated with neuro-
morphic hardware, focusing primarily on image classification
tasks with the goal of achieving high throughput. FPGA
solutions provide a straightforward and cost-effective way to
implement neuromorphic systems, supporting the objective
of democratizing access to this technology. Furthermore, the
study in [8] has placed greater emphasis on deep edge and
sensor processing applications, demonstrating the effectiveness
of this approach within these domains [9]–[12].
However, a major limitation of FPGAs is their relatively high
static power consumption compared to Application-Specific
Integrated Circuits (ASICs) [13]. A significant portion of
this static power is dissipated by the routing infrastructure
itself [14], regardless of the actual logic utilization, making
it difficult to benefit from the event-driven sparsity typical of
SNN workloads by setting the system in idle mode.
An alternative that may ease access to neuromorphic com-
puting for small-scale production while overcoming the lim-
itations of FPGAs, is offered by the growing ecosystem of
open-source EDA tools and open PDKs, which enable full
digital ASIC design without relying on commercial toolchains
or hardly accessible technologies. Although current open-
source PDKs are primarily based on legacy technology nodes,
falling short of the performance and integration levels offered
by modern manufacturing processes, they still provide sig-
nificant flexibility of use and enable fine tuning of power-
related features. Thus, such libraries mark a significant step
toward the creation and democratization of custom, efficient
neuromorphic hardware, with an increasing impact as more
advanced open-source PDKs become available.
In this work, we leverage a recent entirely open-source de-
velopment flow, to design and implement a fully digital SNN
accelerator optimized for lightweight networks, with the goal

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

of optimizing sparsity exploitation for ultra-low-power near-
sensor processing.
Building upon the open-source neuromorphic processor for
sensor data presented in [8], in this work we introduced the
following main contributions:

• We present an adaptation of the system described in [8],
originally designed for implementation on a low-power
FPGA, to the open-source IHP-SG13G2 PDK 1.

• We extended the dual-core architecture introduced in [8],
leveraging its scalability and the customizability enabled
by ASIC design to implement a quad-core version with
higher throughput and improved energy efficiency.

• We validate our approach by comparing it with the low-
power FPGA implementation, achieving higher energy
efficiency and throughput while demonstrating that the
use of open-source EDA tools and PDKs can represent a
viable alternative to FPGAs for democratizing access to
neuromorphic hardware.

• We compared our accelerator with another SNN imple-
mentation also developed using open-source EDA tools
and PDKs, showing superior performance in terms of
flexibility and resource utilization.

The aim of this work is to demonstrate that an extremely
low-resource design can still deliver meaningful acceleration
for sparse workloads, showing that sparsity-related power
savings can be effectively exploited even in an older and open-
source technology node and within an open-source design
flow. In doing so, the proposed approach aims to achieve
a balance between the accessibility typical of FPGA-based
solutions and the efficiency offered by ASIC implementa-
tions, thus providing a path toward democratizing access
to neuromorphic hardware. The remainder of the paper is
organized as follows. Section II reviews the state of the art of
neuromorphic hardware accelerators. Section III introduces the
proposed system architecture, while Section IV describes the
backend flow adopted for the ASIC implementation. Section
V outlines the design process and the optimizations that
transformed the original FPGA-based implementation into an
ASIC version, emphasizing how the latter more efficiently
exploits available hardware resources. Section VI presents the
experimental results, focusing on key metrics such as area,
timing, and power consumption. Section VII complements this
analysis by comparing our ASIC design with both the FPGA
implementation and an existing open-source SNN accelerator.
Finally, Section VIII discusses the limitations of this work and
outlines possible future directions, while Section IX concludes
the paper by summarizing the main findings.

II. RELATED WORK

Over the last years, both research and industry have pro-
posed neuromorphic processors that leverage the event-driven
nature of SNNs, achieving remarkable energy efficiency.
Table I provides a summary of some of the most significant
contributions from academia and industry.
Among the most prominent industrial efforts are Intel’s Loihi

1https://github.com/IHP-GmbH/IHP-Open-PDK

[1] and IBM’s TrueNorth [4], two highly parallel, digital
neuromorphic chips specifically designed for SNN processing.
Loihi, fabricated in a 14 nm Intel process, exhibits high
parallelism and low power consumption, making it suitable
for energy-efficient SNN execution. TrueNorth, implemented
in a 28 nm low-power CMOS process, adopts a massively
parallel architecture with a large number of simple spiking
cores operating asynchronously.
These platforms have demonstrated high energy efficiency
across several tasks, with Loihi used for gesture classification
based on Electromyography (EMG) signals [21], [22] and for
Dynamic Vision Sensor (DVS)-based gesture recognition [23],
while TrueNorth has been employed in Electroencephalog-
raphy (EEG) data analysis [24]. However, access to these
systems is highly restricted, as it is often limited to remote
servers or specific research agreements, which poses a signif-
icant barrier to broader adoption, particularly in contexts that
require low-cost, open, and easily replicable edge AI solutions.
Several neuromorphic accelerators have been developed in
academic research, such as those presented in [2], [3], [16]–
[20], achieving excellent performance in terms of both energy
efficiency and throughput. SNE [2] and SNPU [17] focus
on the efficient processing of event-driven data, achieving
low energy consumption of 0.221 pJ/SOP and 0.35 pJ/SOP,
respectively, through architectures optimized for input sparsity.
In contrast, SpiNNaker [3] does not prioritize energy efficiency
but rather aims to investigate how information is represented
and processed in the brain, enabling large-scale, real-time
simulations of spiking neural networks via a massively paral-
lel, event-driven architecture. MorphIC [16], ODIN [20], and
ReckOn [18] instead emphasize on-chip learning capabilities
and low-power operation, making them ideal for embedded
and IoT-oriented applications. Finally, Unicorn [19] addresses
the scalability of SNNs by supporting unbounded fan-out and
flexible fan-in connectivity, overcoming limitations of previous
architectures in handling increasingly large and complex neu-
ral topologies. While these designs achieve excellent results,
their development relies on commercial tools and PDKs, which
constitute a barrier to their reproduction and broader adoption
in new use cases.
A more accessible path toward the widespread adoption of
neuromorphic hardware is the implementation of SNN ac-
celerators on FPGAs. Notable works such as [5] and [8]
have explored FPGA-based architectures to overcome the
limitations of ASIC solutions.
Presented in [5], Spiker+ is a framework for generating FPGA-
based neuromorphic accelerators designed for efficient SNN
inference at the edge. Synthesized on a Xilinx Artix-7 FPGA,
it supports configurable LIF neuron models and customizable
network topologies. Spiker+ demonstrates competitive perfor-
mance on datasets such as MNIST, SHD, and AudioMNIST,
with low power consumption and limited hardware resource
usage, making it suitable for edge scenarios with strict power
and area constraints.
In [8], a low-power FPGA is employed to achieve even
greater energy efficiency, making the system particularly well-
suited for edge applications involving sensor data analysis. The
architecture integrates a RISC-V processor, a reconfigurable

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

TABLE I
RELATED WORKS

Work Platform Process [nm] Area [mm2] Fclk [MHz] GSOP/s PInference [mW] PIdle [mW] Energy/SOP [pJ] TSOP/s/W
This Work ASIC 130 6.8 125 2 73 0.17 36.5 0.027

SYNtzulu [8] FPGA 40 - 22 0.18 12.4 1.23 68 0.015
Spiker+ [5] FPGA 28 - 100 - 180 - 1370 -

OpenSpike [15] ASIC 130 33 20 - 225 - - 0,056
Spinnaker [3] ASIC 130 19 200 - 653 - 7500 -
MorphIC [16] ASIC 65 3.5 55 0.11 - 2.27 51 -
TrueNorth [4] ASIC 28 430 Async 58 65 - - 0.046

SNPU [17] ASIC 28 6.3 200 - - - 0.35 36.5
ReckOn [18] ASIC 28 0.86 115 - - - 12.8 -

UNICORN [19] ASIC 28 500 1000 3600 85000 - - 0.424
ODIN [20] ASIC 28 0.086 75 - - - 12.7 -

SNE [2] ASIC 22 - 400 51.2 11.29 - 0.221 4.54
Loihi [1] ASIC 14 60 - - - - 23 -

module that converts continuous sensor signals into spike
trains depending on the use case, and a dedicated accelerator
for SNNs. The accelerator is specifically designed to execute
small-scale feedforward SNNs. Despite the limited network
size, the system demonstrates near state-of-the-art accuracy
across multiple use cases [9]–[11], while maintaining real-
time inference capabilities and power consumption levels
compatible with near-sensor edge processing.
While FPGA-based implementations offer notable advantages,
including increased accessibility and reduced development
costs, they fail to achieve the energy efficiency of ASIC
solutions in real-time sensor data processing. In such use cases,
most energy savings come from avoiding power wastage dur-
ing periods of stationary input. However, processing platforms
like FPGAs introduce a significant static power component that
is difficult to mitigate.
An alternative pathway is provided by the rapidly expanding
ecosystem of open-source EDA tools and open PDKs, which
allows the design of fully digital ASICs without relying on
commercial toolchains or proprietary technologies. Tools such
as Yosys, OpenROAD, and KLayout, together with design
flows like OpenROAD flow-scripts, OpenLANE and Silicon-
Compiler, support the entire physical design process from
Register-Transfer Level (RTL) to GDSII. Although currently
limited to legacy technology nodes, including Sky130 (pro-
vided by SkyWater), GF180 (from GlobalFoundries), and IHP
SG13G2, these platforms represent a major step forward in
democratizing access to custom, low-cost, and energy-efficient
neuromorphic hardware development.
Of particular relevance to this work is [15], which presents
an SNN accelerator implemented using the OpenLANE open-
source design flow and the Sky130 technology node. The ac-
celerator is designed to process DVS (Dynamic Vision Sensor)
images and achieves remarkable performance by exploiting
binary weight representation and a highly parallel process-
ing architecture. Although fabricated using an older 130 nm
technology, it still delivers an energy efficiency of 0.056 Tera
Operations per Second per Watt (TOPS/W) , comparable to
that of some accelerators built with more advanced 28 nm
nodes.
Our work extends [25], where a system-on-chip integrating
a RISC-V core and an SNN accelerator was implemented
using open-source EDA tools and an open-source PDK. In
this paper, we present an improved design that reduces power

consumption while enhancing throughput. Specifically, we
extend the original dual-core architecture into a quad-core ver-
sion, leveraging its inherent scalability and the customizability
offered by ASIC design, thereby achieving a higher throughput
of 2 GSOP/s and an improved energy efficiency of 36.50
pJ per operation. Additionally, we provide a more detailed
comparison between the ASIC and FPGA implementations
to highlight trade-offs in terms of performance, energy, and
design accessibility.
While most existing neuromorphic accelerators are designed
to support large-scale SNNs and are often optimized for
processing data from DVS cameras, our system targets a
different design space. It focuses on the efficient execution of
small neural networks tailored for data from conventional low-
bandwidth sensors. The proposed accelerator provides a more
accessible and lightweight solution, well-suited for scenarios
where resource constraints, simplicity, and reproducibility are
essential.

III. SYSTEM ARCHITECTURE

The architecture presented in this work 2 builds upon
the open-source3 neuromorphic processor introduced in [8],
originally designed for sensor data processing on resource-
constrained FPGA platforms. Figure 1 shows the system block
diagram. Highlighted in green are the three main functional
blocks of the system:

• a RISC-V softcore processor responsible for system man-
agement and control.

• a delta-modulation-based encoding module that converts
continuous signals into spike trains.

• an SNN accelerator that processes the spikes generated
by the encoding module.

To better exploit input sparsity and take advantage of idle
periods, the architecture incorporates a clock-gating mecha-
nism that allows each module to suspend its clock signal when
inactive. The RISC-V processor orchestrates this mechanism
using a timer operating at 10 kHz, which periodically triggers
wake-up events to check for pending processing tasks. This
approach leads to a substantial reduction in energy consump-
tion, making the system more suitable for energy-constrained

2https://github.com/EOLAB-2025/SYNtzulA
3https://github.com/gianlucaleone/SYNtzulu

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

Fig. 1. Architecture Overview: SYNtzulA is composed of a timer, responsible for waking up the system after clock gating, a RISC-V softcore that manages
housekeeping tasks and power management, and the accelerator that includes an encoding module for converting continuous signals into spike trains and an
SNN processor for executing spiking neural network inference. Finally, the system integrates SPI and UART interfaces to handle input/output communications.

applications. The system operates with two input clock sig-
nals, where the main clock drives the entire system and the
secondary 10 kHz clock is used for the timer. Finally, the
architecture can communicate with external devices through
Serial Peripheral Interface (SPI) and Universal Asynchronous
Receiver–Transmitter (UART) interfaces.

A. RISC-V softcore

To improve system flexibility, the architecture includes a
RISC-V softcore processor, specifically the SErial RISC-V
(SERV). This core manages the loading of synaptic weights
received via the SPI interface, storing them in the accelerator’s
weight memory. It also oversees the reception of input data and
handles power management tasks, activating low-power modes
through clock gating according to the system’s workload.
In this design, instruction and data share a single 8 kB memory
block, allowing for more efficient resource usage. The register
file is implemented with flip-flops, minimizing latency and
simplifying the overall design.

B. Encoding Module

The encoding module converts continuous input signals into
spike trains, which serve as input to the SNN processor. In this
work, the adopted algorithm is based on delta modulation, one
of the most widely used methods for spike encoding.
The algorithm takes as input a continuous signal and generates
two spike trains as output: one corresponding to the positive
variation of the signal and the other to the negative variation.
The encoding process employs a dynamic threshold to track
variations in the input signal. If the signal exceeds the thresh-
old plus a fixed channel-specific constant, a spike is generated
on the positive channel, and the threshold is updated by adding
the same constant to its current value. Conversely, if the
signal falls below the threshold minus the constant, a spike is
generated on the negative channel, and the threshold is updated
by subtracting the constant. No spikes are generated as long
as the signal remains within this range.

The hardware implementation of the encoder operates in a
time-multiplexed manner, effectively reducing the required
silicon area. It integrates two 1 KB Static Random-Access
Memory (SRAM) blocks to store the threshold and the
constant associated with each input channel, along with an
additional 1 KB SRAM accessible by the RISC-V processor
for buffering the incoming input samples.
In addition, two comparators are used to identify spike condi-
tions, along with the necessary wiring and control circuitry.

C. SNN processor

This accelerator is based on Leaky Integrate-and-Fire (LIF)
neurons, which are described by the equation in Eq. 1:

U [t] =
(
βU [t− 1] +

∑
ws[t]

)
· (1− Sout[t])

Sout[t] =

{
1, if U [t] > θ

0, otherwise

(1)

In this model, U represents the neuron’s membrane potential,
β is the membrane potential decay rate, w denotes the synaptic
weights, s indicates the input spikes, Sout is the output spike,
and θ represents the neuron’s threshold.
The SNN processor is designed to execute fully connected
layers of LIF neurons using fixed-point arithmetic. Weights are
represented with 8-bit precision, while membrane potentials
are stored as 16-bit values. To exploit the inherent sparsity
of SNN algorithms, the synaptic current computation is per-
formed in an event-driven manner rather than sequentially
iterating through all neuron inputs. This is enabled by a stack
that stores the addresses of spike groups (in sets of four) that
contain at least one active spike. This approach limits memory
accesses to only those weight groups that are relevant, thereby
reducing energy consumption. Grouping spikes in sets of four
strikes a balance between maximizing sparsity exploitation
(which improves with smaller groups) and minimizing the size
of the stack memory, which becomes smaller as the group size
increases.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

Fig. 2. Core architecture of the system. Each core includes a 4-way SIMD
adder for synaptic current computation, a local memory for storing the
membrane potential, a multiplier that applies a decay factor to the membrane
potential, an adder that sums the decayed potential with the incoming synaptic
current, and a comparator that checks whether the updated potential exceeds
a predefined threshold, triggering a spike if the condition is met.

The implemented accelerator features a multi-core architec-
ture, with each core independently computing the arithmetic
for a single neuron. As illustrated in Figure 2 a single core is
composed of a 4-way Single Instruction Multiple Data (SIMD)
adder for computing synaptic currents, a local memory for
storing the neuron’s membrane potential, a multiplier that
applies a decay factor to the membrane potential, an adder
that sums the decayed potential with the incoming synaptic
current, and a comparator that checks whether the updated
potential exceeds a predefined threshold, triggering a spike if
the condition is met. Weights are stored across multiple SRAM
blocks, with a total capacity of up to 32,768 entries. Each core
is equipped with a dedicated 2 KB memory for membrane
potentials, capable of holding 1024 values. Finally, memories
for storing emitted spikes and the stack are implemented
using flip-flops, offering an area-efficient solution for small-
capacity storage elements. The network size is constrained by
the on-chip memory capacity since all weights and activations
are stored locally. Weights are initialized once and remain
constant throughout inference thus no external memory writes
are required.

IV. RTL-GDSII FLOW

We hardened the system using the OpenROAD Flow Scripts
(ORFS), a reference RTL-to-GDSII design flow developed and
maintained by the OpenROAD project. ORFS offers a com-
plete, fully open-source 4 backend implementation pipeline
that includes synthesis, floorplanning, placement, clock tree
synthesis, routing, and final sign-off. It supports various open
and commercial PDKs and integrates example platforms and
designs to streamline development and benchmarking.
For our implementation, we used the IHP SG13G2 PDK, a
130 nm BiCMOS technology.
The synthesis step was performed using Yosys, a leading open-
source 5 synthesis engine widely adopted in open-source EDA

4https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
5https://github.com/YosysHQ/yosys

flows. Following synthesis, the OpenROAD 6 tool handled
all backend stages, including floorplanning, placement, clock
tree synthesis, and routing. Finally, the complete layout was
generated using KLayout 7, which provided the final GDSII
output.
The most challenging step in the design flow was the floor-
planning phase, mainly due to the presence of several memory
blocks within the architecture. In our design, the automatic
placement of these memories often led to inefficient area
utilization, with memory macros occupying more space than
necessary. To address this issue, we opted for manual memory
placement, which allowed us to better control the layout and
reduce area overhead.
However, this manual step introduced further complexity.
Depending on how the memories were arranged, we en-
countered varying degrees of routing congestion, requiring
several layout iterations to identify a configuration that ensured
both routability and timing closure. In addition, the relative
placement of memory blocks and I/O pads strongly influenced
the quality of the placement of standard cells. In some cases,
poor placement caused standard cells to be distributed too
far apart, resulting in long interconnect paths during routing.
These long paths introduced significant parasitic resistance
and capacitance, ultimately reducing the maximum achievable
clock frequency of the design. Therefore, careful floorplanning
and iterative refinement were crucial to obtaining a timing-
optimized and area-efficient physical implementation.

V. FPGA TO ASIC EVOLUTION

This section presents the key design choices that pro-
gressively shaped the final ASIC implementation. Beginning
with an initial FPGA-based prototype, we developed a first
version of the ASIC by adapting the architecture to the chosen
PDK. In this step, FPGA-specific components such as block
RAMs (BRAMs), single port RAMs (SPRAMs), and Digital
Signal Processor (DSP) blocks were replaced with equivalent
elements available in the PDK. After completing this initial
version, we introduced a set of modifications that leverage
the increased flexibility of the ASIC platform to improve the
system’s energy efficiency.

A. Leveraging the Flexibility of the ASIC Design

The architecture is designed to be easily scalable, allowing
the number of cores to be increased to boost throughput. At
the same time, resource usage grows sub-linearly with the
number of cores, as control logic is shared across them rather
than duplicated within each core. This shared-control approach
enables efficient scaling. However, this flexibility could not
be fully exploited in the original low-power FPGA imple-
mentation, due to limited hardware resources such as memory
blocks and flip-flops, which constrained the number of instan-
tiable cores. In contrast, the ASIC version overcomes these
limitations, as the flexibility of custom silicon design enables
the integration of additional cores without being restricted

6https://github.com/the-openroad-project
7https://www.klayout.de/

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

by fixed resource availability. This allows the architecture
to achieve higher throughput with only modest increases in
area and power, significantly reducing the energy per synaptic
operation. To leverage this advantage, we developed not only
a dual-core version of the accelerator, similar to the one
implemented in [8], but also a new quad-core version. This
effectively doubles the throughput and reduces the energy
dissipated per synaptic operation.

B. Small Memories as Register Files
One of the early challenges in the ASIC implementation

concerned the spike memory and the stack.
Implementing these using the SRAM available in the PDK
wouldn’t have been efficient. Each of the four required mem-
ories would only need about 256 bits, but the smallest SRAM
macro in the PDK is 1 Kbit, leading to wasted, unused
area. Consequently, this would have necessitated four separate
1 Kbit memory blocks, each occupying approximately 0.05
mm2, for a total area of 0.20 mm2.
To optimize area usage, these memories were instead im-
plemented using flip-flops. This approach enabled an 86%
reduction in area compared to the PDK SRAM-based solution,
while also contributing to lower leakage power by avoiding
unnecessary memory blocks.

C. Weight memories
A significant portion of the power consumption during

inference derives from weight memories. In the baseline ar-
chitecture, each processor is equipped with a dedicated weight
memory, with data being read 32 bits at a time. All weight
memories are active simultaneously, as weight fetch operations
are performed in parallel by the cores. Since the PDK does
not provide memory macros with 32-bit read ports, we instead
had to use the available macros with 64-bit read ports. Namely,
two 16 KB memories were used for the dual-core architecture,
while the quad-core architecture employs four 8 KB memories.
To take advantage of 64-bit width, we shared the weight
memories between the cores and reorganized the weight stor-
age layout so that each memory macro provides weights to
two cores in one access. As a result, memories are accessed
alternatively: in the dual-core architecture, only one of the two
memories is active at each cycle (two out of four in the quad-
core configuration). In this way, we can halve the number
of simultaneously active memory blocks and stand-by the
unused ones, reducing the power consumption of the weight
memories the overall power dissipated during inference. To
quantify the available bandwidth, during inference each core
fetches 32 bits of weight data per clock cycle, corresponding to
four 8-bit weights. In the dual-core configuration, 64 bits are
read per cycle from a single 64-bit-wide memory, resulting
in a bandwidth of 1 GB/s at 125 MHz. In the quad-core
configuration, two 64-bit memories are accessed in parallel,
providing a total bandwidth of 128 bits per cycle, i.e., 2 GB/s
under the same operating frequency.

D. Dual Port Memories for Membrane Potential and Encoding
The FPGA implementation leveraged true dual-port

BRAMs, enabling simultaneous read and write operations at

0

20

40

60

80

100

Du
al

co
re

 Im
pr

ov
em

en
ts

 [%
]

3.45 mm² 3.45 mm²

2.84 mm²

78.92 pJ

64.77 pJ 64.66 pJ

0.092 mW 0.092 mW

0.058 mW

Baseline W MOD DP MOD0

20

40

60

80

100

Qu
ad

co
re

 Im
pr

ov
em

en
ts

 [%
]

4.68 mm² 4.68 mm²

4.15 mm²

51.43 pJ

36.50 pJ 36.50 pJ

0.130 mW 0.130 mW

0.110 mW

Core Area En/SOP Pidle

Fig. 3. Improvements achieved across the different design versions, expressed
in terms of core area, energy per synaptic operation, and idle power consump-
tion. The bar chart highlights the progressive optimization steps that led to
the final ASIC implementation.

different addresses in one clock cycle. This capability was
essential for efficiently implementing the neuron membrane
potential memories and the dynamic threshold memory used
in the encoding process.
Since the target PDK does not provide dual-port memory
blocks, an alternative approach was required. The baseline
solution, presented in [25], replaces each dual-port memory
by combining two single-port memory blocks used as a ping-
pong buffer.
However, the use of additional memory blocks not only
increases the number of macros, but also complicates physical
routing. As a result, more whitespace must be reserved to facil-
itate signal routing between the memories and the processing
logic, raising silicon area and static power consumption.
As an optimization, we exploited 64-bit macro width, allowing
four neuron membrane potentials to be stored per memory
word. This approach increases both read and write bandwidth
by a factor of four. The potentials read from memory and
potentials to be updated during writing, are temporarily stored
in flip-flop buffers, and read/write occurs only when all four
values are consumed/ready. This method reduces memory ac-
cess rate by a factor of four, avoiding contention for conflicting
read/write requests.

E. Ablation study

To assess the impact of the previously mentioned design
choices, we compared results obtained at different adaptation
stages. As a baseline implementation, we consider the most
direct replacement of weight memories, implemented with
SPRAMs on the FPGA, with SRAM blocks or flip-flops avail-
able in the ASIC, as presented in [25]. Using this approach, we
developed the baseline implementation of both the dual-core
and quad-core versions. In Figure 3, such baseline is shown

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

by the leftmost bar. The bar labeled W-MOD illustrates the
improvement achieved by optimizing the weight memories.
Specifically, this reduces power consumption during inference,
with an 18% decrease for the dual-core version and 29%
for the quad-core version, while idle power and area remain
unchanged. The second modification involved the new imple-
mentation of the dual-port memories, indicated in the figure as
DP-MOD. This change made it possible to reduce the number
of memory blocks, resulting in an area reduction of 18% in
the dual-core case and 11% in the quad-core case. Moreover,
it led to a decrease in static power consumption of 37% for
the dual-core version and 15% for the quad-core version.

VI. RESULTS

This section presents the main results of the ASIC imple-
mentation, focusing on area occupation, timing performance,
and power consumption. Table II summarizes the general
characteristics of the chips.

A. Area

Figure 4 shows the final layout of the two systems, with
the dual-core version displayed at the top and the quad-core
version at the bottom. In the dual-core version, the two large
memory blocks at the top correspond to the weight memories,
with smaller blocks on the left dedicated to membrane poten-
tials, the encoding module, and the buffers used for reading
from and writing to the accelerator, while the RISC-V core
memory is located in the bottom-right corner. In the quad-
core version, the layout shifts slightly: membrane potential
memories occupy the top, weight memories are positioned in
the center, encoding and buffer blocks are found at the bottom
left, and the RISC-V core memory remains at the bottom right.
The red regions highlight the standard cells that implement the
system logic, while the I/O pins are visible along the perimeter
of the layout.
The chip occupies a total area including I/O pads of approxi-
mately 5.09 mm2 for the dual-core implementation and 6.79
mm2 for the quad-core version. The relative sizes of the
two implementations highlight a key aspect of the system’s
scalability: doubling the number of cores does not lead to a
proportional increase in silicon area. As previously discussed,
the architectural design allows for more efficient resource
utilization, enabling performance to scale more effectively than
the associated hardware overhead.
Figure 5 shows the area occupation percentages for the main
modules in both the dual-core and quad-core versions. Exclud-
ing the I/O pads, which account for 44% of the area in the
dual-core case and 39% in the quad-core, the majority of the
remaining area is occupied by memory blocks, accounting for
34% and 30%, respectively. The rest of the area is used by
logic circuitry and unused whitespace.

B. Timing

Timing analysis was performed using OpenSTA8. In both
implementations, the critical path is associated with the control

8https://github.com/The-OpenROAD-Project/OpenSTA/tree/master

Weight Memories

Potential Memories

Encoding Memories
and I/O bu�ers

Servant RAM

Weight Memories

Potential Memories

Servant RAM

Encoding Memories
and I/O bu�ers

Fig. 4. Final layout of the dual-core accelerator (top) and the quad-core
accelerator (bottom), visualized using the OpenROAD GUI.

34.0%

44.1%

8.3%

13.5%

Area Distribution - Dual Core

29.6%

39.0%

10.8%

20.6%

Area Distribution - Quad Core

Memories Pads Logic Whitespace

Fig. 5. Breakdown of area occupation across system components, including
memories, I/O pads, logic standard cells, and whitespace.

logic that drives the weight memory address. Although the
exact critical path differs between the dual-core and quad-core
architectures, it originates from a similar functional unit. The
critical path delay is 5.98 ns in the dual-core case and 6.83 ns
in the quad-core case.
Both designs were synthesized with a target clock frequency
of 125 MHz. Since each core performs four synaptic additions
per clock cycle, the throughput is calculated as:

Throughput = Ncores × fclk × 4SOP (2)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

where Ncores is the number of accelerator cores and fclk is
the clock frequency. At the maximum frequency of 125 MHz,
this results in a peak throughput of 1 GSOP/s for the dual-core
architecture and 2 GSOP/s for the quad-core architecture.

C. Power

To estimate power consumption, we simulated the post-
layout netlist and used the resulting Value Change Dump
(VCD) file to perform power analysis. Power analysis was
performed using two different tools: OpenSTA and Cadence
Genus. We adopted this two step approach for two main
reasons. First, to cross-validate the power measurements and
ensure consistency across different analysis methodologies.
Second, because we aimed to assess how effectively the
system exploits the event-driven nature of the algorithm, which
requires estimating power consumption over different time
intervals, specifically distinguishing between spike-processing
phases and idle periods. Since OpenSTA does not support
time-based power analysis, Cadence Genus was used to obtain
accurate power profiles across different time intervals.
Power measurements were conducted at various clock frequen-
cies in both operating phases. In the dual-core implementa-
tion, inference power increases at a rate of 0.517 mW/MHz,
while in the quad-core design it scales at 0.584 mW/MHz.
Idle power consists of a constant leakage component and a
frequency-dependent term, which increases at approximately
545 nW/MHz in the dual-core case and 590 nW/MHz in the
quad-core case.
Although the power dissipated during the inference phase
is higher in the quad-core implementation, the throughput
is doubled compared to the dual-core version, while power
increases by only 13.3%. This results in a higher energy
efficiency for the quad-core design.
To better compare the energy efficiency of the two accelera-
tors, we adopt a commonly used metric in the state of the art:
the energy dissipated per synaptic operation.
The energy per synaptic operation (En/SOP) was computed
as:

En/SOP =
PInference

Ncores × fclk × 4SOP
(3)

The measured values are 64.66 pJ and 36.5 pJ for the dual-core
and quad-core implementations, respectively. These results
confirm the higher energy efficiency of the quad-core design,
despite its higher absolute power consumption, and further
support the scalability of the proposed architecture.
Figure 6 shows the percentage of power dissipated by the
various system components during inference. In both the
dual-core and quad-core cases, the majority of the power is
consumed by the memory blocks. In the dual-core design,
the second most power-hungry component is the clock tree,
whereas in the quad-core version it is the sequential logic.
This higher percentage in the quad-core is due to the presence
of twice as many dual-port memories, which significantly
increases the number of flip-flops used to implement them.

50.3%

25.7%

4.1%

19.9%

Inference Power Distribution - Dual Core

40.7%

23.1%

5.6%

30.7%

Inference Power Distribution - Quad Core

Memories Clock Combinational Sequential

Fig. 6. Breakdown of power consumption across system components during
inference: memories, clock tree, sequential elements, and combinational logic.

TABLE II
ASIC REPORT

Dual Core Quad Core
Die Area 2230 x 2285 µm 2735 x 2485 µm

Core Area 1660 x 1715 µm 2165 x 1915 µm

FMAX 125MHz 125MHz
Performance 1 GSOP/s 2 GSOP/s

PInference 0.517 mW/MHz 0.584 mW/MHz
PLeakage 0.046 mW 0.097 mW

PIdle PLeakage + 545 nW/MHz PLeakage + 590 nW/MHz
En/SOP 64.66 pJ 36.50 pJ

VII. DISCUSSION

Since the objective of our work is to provide an alternative
that contributes to democratizing access to neuromorphic
hardware, we performed a comparison with the original system
implemented on a low-power FPGA, which currently rep-
resents one of the most accessible platforms for this class
of applications, as well as with another SNN accelerator
developed using a similar approach based on open-source
EDA tools and an open-source PDK. While the efficiency
gap between open-source and commercial EDA tools remains
an open issue, we expect that the on-hardware performance
of our design could further improve with more sophisticated
toolchains. To preliminarily assess this potential, we compared
the place-and-route results of the LIF neuron module obtained
using both the OpenROAD-flow scripts and commercial tools
(Cadence Genus and Innovus), while maintaining the same
open-source PDK (IHP-SG13G2). The commercial implemen-
tation achieved a 34% improvement in maximum operating
frequency, a reduction of 78% in dynamic power and a
4.6% decrease in total area. These results, although limited
to a single block, indicate that our overall approach could
significantly benefit from future advances in open-source EDA
frameworks, without compromising its accessibility-oriented
objectives.

A. FPGA implementation comparison

Regarding the original architecture presented in [8], which
targets an FPGA platform, our ASIC implementation provides
several advantages over the original design. Unlike FPGA-
based solutions, which rely on a rigid organization of memory

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

TABLE III
COMPARISON WITH FPGA IMPLEMENTATION

Use case Dataset Synapses Sparsity Work Platform Cores TInf [µs] TIdle [µs] EnInf [nJ] EnIdle [nJ] EnTot [nJ]
sEMG [26] 23,360 77 % [9] FPGA 2 30 102 368 132 500

Gesture Classification This Work ASIC 2 30 102 347 6 353
This Work ASIC 4 15 51 196 6 202

iEEG [27] 22,848 73 % [10] FPGA 2 34 95 418 122 540
Neural Decoding This Work ASIC 2 34 95 394 6 400

This Work ASIC 4 17 47 223 5 228
ECG [28] [29] 17,088 85 % [11] FPGA 2 14 82 175 107 282

Arrhythmia detection This Work ASIC 2 14 82 166 5 171
This Work ASIC 4 7 41 94 4 98

macros, the ASIC implementation allows for greater flexibility
in memory placement and sizing. This enables optimized area
utilization, the ability to scale the number of memory blocks
according to application requirements, and strategic placement
to facilitate routing and meet timing constraints. As discussed
in Section V, this flexibility has been leveraged to improve
both the system’s energy efficiency and performance, resulting
in higher throughput and reduced energy consumption per
synaptic operation compared to the FPGA-based implemen-
tation.
Moreover, the absence of reconfigurable logic eliminates the
timing overheads typically associated with FPGA architec-
tures, enabling higher maximum clock frequencies compared
to the FPGA-based implementation.
Finally, one of the most important advantages of the ASIC
implementation is its significantly lower idle power consump-
tion, which enables more effective exploitation of the event-
driven nature of the algorithm. This feature is crucial for fully
leveraging the inherent sparsity of spiking neural networks, as
it ensures that energy is not wasted during periods of inactivity.
However, a meaningful comparison in terms of overall energy
efficiency must also take into account the sparsity of the
algorithm, which is inherently dependent on the specific neural
network model. For this reason, performance evaluation must
be carried out on a per-use-case basis. We selected three works
[9] [10] [11] where the FPGA-based system was previously
evaluated and demonstrated state-of-the-art accuracy across
three different biosignal analysis use cases. In all three studies,
a fully connected SNN based on LIF neurons was employed.
Based on the reported model size and sparsity, we compared
our ASIC implementation in terms of inference latency and
energy consumption. In [9], an SNN composed of 269 neurons
and approximately 23K parameters was used to decode surface
Electromyography (sEMG) signals for gesture classification.
The network was trained and evaluated on the [26] dataset,
achieving a sparsity of 77% and an accuracy of 83.17% in the
classification of twelve different finger gestures. In [10], an
SNN composed of 261 neurons and approximately 23K param-
eters was used to decode intracranial Electroencephalography
(iEEG) signals for the estimation of the hand kinematics and
kinetics of a monkey. The network was trained and evaluated
on dataset [27], achieving an accuracy, measured as the Co-
efficient of Determination (R2) between the decoded variable
and the ground truth, of 0.66 on average for hand velocity
decoding and 0.76 for hand force decoding, with a sparsity of
73%. Finally, in [11], Electrocardiography (ECG) signals were

analyzed for arrhythmia detection using an SNN composed of
261 neurons and approximately 17K parameters. The network
was trained and evaluated on dataset [28] [29], and it classified
the samples into the five most critical groups for arrhythmia
recognition: N (non-ectopic beats), S (supraventricular ectopic
beats), V (ventricular ectopic beats), F (fusion beats), and Q
(unclassifiable beats), achieving an overall accuracy of 98.4%,
which is consistent with the state of the art, and a sparsity of
85%.
Table III reports the comparison between the ASIC imple-
mentation and the FPGA-based system. The left side of the
table lists the main characteristics of the model, including
the dataset used for training and testing, the model size
expressed as the total number of synapses, and the sparsity.
The sparsity values reported for each of the three models
are average values obtained by monitoring their execution
over the entire test set. To evaluate the variability of sparsity
throughout the inference process on the test dataset, as an
example, we additionally report the maximum, minimum, and
standard deviation values obtained by the model [9], which are
81%, 67%, and ±3%, respectively. The right side presents the
comparison between the ASIC and FPGA implementations. To
ensure a fair comparison, both implementations are evaluated
at the same operating frequency of 22 MHz. The table presents
the total energy consumed per inference EnTot, along with the
metrics used for its calculation. In particular the inference time
TInf defined as the time required to process active synapses,
calculated as:

Tinf =
(1− Sparsity)× Synapses

Ncores × fclk × 4SOP
(4)

where the numerator represents the average number of active
synapses during inference, and the denominator corresponds to
the throughput of the accelerator. The idle time, TIdle, defined
as the period during which inactive synapses are skipped, is
calculated as:

TIdle =
Synapses

Ncores × fclk × 4SOP
− TInf (5)

In this expression, the first term represents the time that would
be required to process all synapses if no sparsity were present,
while the second term subtracts the actual time needed to
perform the inference. Finally the energy dissipated during
the inference phase EnInf and during the idle phase EnIdle.
The comparison between the dual-core ASIC and the FPGA
implementation underscores the ASIC’s superior ability to ex-
ploit spike sparsity. Thanks to its much lower idle-state power,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

the ASIC validates our initial assumption that sparsity-oriented
processing benefits more from custom silicon, which does not
incur the substantial quiescent power typical of FPGA fabrics.
Remarkably, even though the FPGA is manufactured in a
more advanced 40 nm process and the ASIC in a 130 nm
node, the energy consumed during the active inference phase
is essentially the same for both solutions, whereas the ASIC’s
idle energy is almost negligible. In contrast, for the FPGA,
idle energy is reduced but still significant when compared
to inference energy. As a result, the ASIC implementation
consistently achieves lower total energy consumption across
all three use cases.
Moreover, as shown by the comparison between the quad-core
and dual-core versions, scalability further improves efficiency.
Doubling the number of cores results in a proportional increase
in throughput, while the energy per inference is reduced.
Since idle power remains virtually negligible, scaling up the
architecture does not lead to a significant energy overhead. As
a result, the quad-core ASIC not only improves performance
but also achieves less than half the energy dissipation of the
equivalent dual-core FPGA implementation across all three use
cases.

B. Comparison with Open-Source Accelerator

To the best of our knowledge, the work presented in [15]
is the only other accelerator for SNNs developed using an
approach similar to ours, based on open-source EDA tools
and an open-source PDK. Their design also targets the 130 nm
technology node, specifically the Sky130 PDK, and is tailored
for processing data from Dynamic Vision Sensors (DVS).
The accelerator occupies a total area of 33 mm2, which is
five times larger than our design, with 21.89 mm2 dedicated
to 77 on-chip memory blocks of 2 KB each. These memory
blocks store spikes, adaptive thresholds, membrane potentials,
decay rates, weights, and incoming spikes. The accelerator and
memory blocks operate at 20 MHz and 40 MHz, respectively,
and dissipate 119 mW and 106 mW, resulting in a combined
power consumption of 225 mW.
While their design consumes approximately fourteen times
more power during inference compared to ours, at the same
operating frequency, it achieves higher energy efficiency in
terms of GOPS/W. This improvement is mainly due to a
high degree of parallelism, with 1024 neurons processed
simultaneously,at the cost of a significantly larger silicon area
compared to our design. Additionally, the design is tailored for
DVS workloads and employs binarized weights, resulting in
significantly increased computational throughput. In contrast,
our accelerator is intended for more general-purpose sensor
signal processing, which imposes different design trade-offs.
According to the data in [30], the memory used in their design
likely consumes around 1.36 mW of static power, although this
is not explicitly reported in the original work. Additionally, no
mechanism for power gating is described.
These aspects make a direct, one-to-one comparison challeng-
ing. However, the significantly higher power consumption in
both inference and idle modes, combined with the absence of
information regarding the exploitation of sparsity and the use

of binary weights, indicates that their design may not be well
suited for general-purpose, energy-constrained applications. In
contrast, our approach prioritizes flexibility, efficient use of
resources, and energy-aware design choices, making it more
appropriate for a broader set of real-world scenarios.

VIII. FUTURE WORKS AND LIMITATIONS

Although the proposed architecture demonstrates competi-
tive performance and energy efficiency despite being imple-
mented in a legacy 130 nm technology, several limitations and
directions for future improvement can be identified.
The first limitation concerns the technology node itself. The
use of a 130 nm open PDK inherently constrains achiev-
able operating frequency and power consumption compared
to modern processes. Nonetheless, the comparison with the
FPGA implementation manufactured in a more advanced 40
nm node highlights that even with older technology, open
ASICs can outperform reconfigurable devices in energy effi-
ciency. In the future, the availability of more advanced open-
source PDKs could help overcome this limitation, enabling
further improvements in performance and energy efficiency. As
preliminary evidence of the potential improvements achievable
with more advanced nodes, we synthesized the same design
using a commercial 28 nm PDK and standard commercial
EDA tools. The preliminary results indicate a maximum
clock frequency of 1.5 GHz, with an estimated active power
dissipation of 75.9 mW at this maximum frequency and a
leakage power of 0.18 mW. These results demonstrate that
the proposed architecture scales well when implemented in
more advanced technologies.
A second limitation lies in the spike encoding strategy, which
is currently fixed to a delta-modulation scheme. While this
approach provides a good balance between simplicity and
efficiency, different application domains could benefit from
more flexible or task-specific encoding methods. Future work
will explore a reconfigurable encoding module capable of
adapting to the characteristics of the target input data and use
case.
The current accelerator presents other two main limitations.
First, it supports only fully connected layers composed of
Leaky Integrate-and-Fire (LIF) neurons. This restriction limits
the range of neural architectures that can be executed, pre-
venting the implementation of more complex models such as
convolutional or recurrent networks. As a result, the current
design is best suited for lightweight sensor data processing
tasks, such as biosignals or other one-dimensional time series.
Nonetheless, extending the architecture to support convo-
lutional layers would significantly broaden its applicability,
enabling efficient processing of multi-dimensional data such as
event-based vision or other spatially correlated sensor streams.
Second, the network size is constrained by the capacity of
the on-chip weight memories. In the current implementation,
weights are preloaded into these memories before inference,
and no write operations can be performed during execution.
Consequently, the total number of weights that can be used
is fixed, and it is not possible to stream additional weights
from external memory. Incorporating a Direct Memory Ac-
cess (DMA) mechanism or a similar data-transfer interface

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

could alleviate this limitation, allowing the execution of larger
networks by dynamically loading weights during inference.
Summarizing, future developments will focus on addressing
these limitations by enhancing the hardware flexibility and
computational capabilities of the system. In particular, future
work will aim to design a more adaptable encoding architec-
ture and extend the accelerator to support convolutional SNN
layers, while also exploring design optimizations or alternative
open-source technology nodes to further improve performance
and energy efficiency.

IX. CONCLUSION

In this work, we presented SYNtzulA, an ASIC accelerator
for Spiking Neural Network inference implemented using an
open source 130 nm PDK and open-source EDA tools. The
system achieves an energy efficiency of 36.50 pJ/SOP and
a peak throughput of 2 GSOP at 125 MHz. Despite being
implemented in a legacy technology node, it outperforms
the FPGA-based implementation across multiple use cases,
highlighting that open ASIC design represents a feasible path
to democratizing access to neuromorphic hardware and provid-
ing a viable alternative to FPGA-based solutions. Finally we
demonstrated that leveraging an ASIC-based approach allows
us to fully exploit the event-driven nature of the algorithm,
making the proposed architecture particularly well-suited for
real-time processing of sensor data.

REFERENCES

[1] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, P. Joshi, A. Lines,
A. Wild, H. Wang, and D. Mathaikutty, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. PP, pp.
1–1, 01 2018.

[2] A. D. Mauro, A. S. Prasad, Z. Huang, M. Spallanzani, F. Conti,
and L. Benini, “Sne: an energy-proportional digital accelerator
for sparse event-based convolutions,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.10687

[3] E. Stromatias, F. Galluppi, C. Patterson, and S. Furber, “Power analysis
of large-scale, real-time neural networks on spinnaker,” in The 2013
International Joint Conference on Neural Networks (IJCNN), 2013, pp.
1–8.

[4] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba,
M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson,
and D. S. Modha, “Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 10, pp. 1537–1557, 2015.

[5] A. Carpegna, A. Savino, and S. D. Carlo, “Spiker+: a framework for
the generation of efficient spiking neural networks fpga accelerators
for inference at the edge,” IEEE Transactions on Emerging Topics in
Computing, pp. 1–15, 2024.

[6] J. Sommer, M. A. Özkan, O. Keszocze, and J. Teich, “Efficient hardware
acceleration of sparsely active convolutional spiking neural networks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 11, pp. 3767–3778, 2022.

[7] J. Li, G. Shen, D. Zhao, Q. Zhang, and Y. Zeng, “Firefly v2: Advancing
hardware support for high-performance spiking neural network with a
spatiotemporal fpga accelerator,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 43, no. 9, pp. 2647–2660,
2024.

[8] G. Leone, M. A. Scrugli, L. Badas, L. Martis, L. Raffo, and P. Meloni,
“Syntzulu: A tiny risc-v-controlled snn processor for real-time sensor
data analysis on low-power fpgas,” IEEE Transactions on Circuits and
Systems I: Regular Papers, pp. 1–12, 2024.

[9] M. Scrugli, G. Leone, P. Busia, L. Raffo, and P. Meloni, “Real-time
semg processing with spiking neural networks on a low-power 5k-lut
fpga,” IEEE Transactions on Biomedical Circuits and Systems, vol. PP,
pp. 1–14, 01 2024.

[10] L. Martis, G. Leone, L. Raffo, and P. Meloni, “Low-power fpga-based
spiking neural networks for real-time decoding of intracortical neural
activity,” IEEE Sensors Journal, vol. 24, no. 24, pp. 42 448–42 459,
2024.

[11] M. A. Scrugli, P. Busia, G. Leone, and P. Meloni, “On-fpga spiking
neural networks for integrated near-sensor ecg analysis,” in 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2024,
pp. 1–6.

[12] P. Busia, G. Leone, A. Matticola, L. Raffo, and P. Meloni, “Wearable
epilepsy seizure detection on fpga with spiking neural networks,” IEEE
Transactions on Biomedical Circuits and Systems, pp. 1–11, 2025.

[13] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, 2007.

[14] V. Degalahal and T. Tuan, “Methodology for high level estimation of
fpga power consumption,” in Proceedings of the ASP-DAC 2005. Asia
and South Pacific Design Automation Conference, 2005., vol. 1, 2005,
pp. 657–660 Vol. 1.

[15] F. Modaresi, M. Guthaus, and J. K. Eshraghian, “Openspike: An
openram snn accelerator,” in 2023 IEEE International Symposium on
Circuits and Systems (ISCAS), 2023, pp. 1–5.

[16] C. Frenkel, J.-D. Legat, and D. Bol, “A 65-nm 738k-synapse/mm2
quad-core binary-weight digital neuromorphic processor with stochastic
spike-driven online learning,” in 2019 IEEE International Symposium
on Circuits and Systems (ISCAS), 2019, pp. 1–5.

[17] S. Kim, S. Kim, S. Um, S. Kim, J. Lee, and H.-J. Yoo, “Snpu: An
energy-efficient spike domain deep-neural-network processor with two-
step spike encoding and shift-and-accumulation unit,” IEEE Journal of
Solid-State Circuits, vol. 58, no. 10, pp. 2812–2825, 2023.

[18] C. Frenkel and G. Indiveri, “Reckon: A 28nm sub-mm2 task-agnostic
spiking recurrent neural network processor enabling on-chip learning
over second-long timescales,” in 2022 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3.

[19] Z. Yang, L. Wang, Y. Wang, L. Peng, X. Chen, X. Xiao, Y. Wang, and
W. Xu, “Unicorn: a multicore neuromorphic processor with flexible
fan-in and unconstrained fan-out for neurons,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, ser. DAC ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
943–948. [Online]. Available: https://doi.org/10.1145/3489517.3530563

[20] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A 0.086-mm2 12.7-
pj/sop 64k-synapse 256-neuron online-learning digital spiking neuro-
morphic processor in 28-nm cmos,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 13, no. 1, pp. 145–158, 2019.

[21] A. Vitale, E. Donati, R. Germann, and M. Magno, “Neuromorphic edge
computing for biomedical applications: Gesture classification using emg
signals,” IEEE Sensors Journal, vol. 22, no. 20, pp. 19 490–19 499, 2022.

[22] S. S. Bezugam, A. Shaban, and M. Suri, “Neuromorphic recurrent
spiking neural networks for emg gesture classification and low power
implementation on loihi,” in 2023 IEEE International Symposium on
Circuits and Systems (ISCAS), 2023, pp. 1–5.

[23] R. Massa, A. Marchisio, M. Martina, and M. Shafique, “An efficient
spiking neural network for recognizing gestures with a dvs camera on the
loihi neuromorphic processor,” in 2020 International Joint Conference
on Neural Networks (IJCNN), 2020, pp. 1–9.

[24] B. S. Mashford, A. Jimeno Yepes, I. Kiral-Kornek, J. Tang, and S. Har-
rer, “Neural-network-based analysis of eeg data using the neuromorphic
truenorth chip for brain-machine interfaces,” IBM Journal of Research
and Development, vol. 61, no. 2/3, pp. 7:1–7:6, 2017.

[25] L. Martis, G. Leone, L. Raffo, and P. Meloni, “SYNtzulA: Open-
source hardware for energy-efficient spiking neural network inference,”
in Proceedings of the 22nd ACM International Conference on Computing
Frontiers (CF Companion ’25), Cagliari, Italy, May 2025, accepted for
publication.

[26] S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani, H. Müller,
and M. Atzori, “Comparison of six electromyography acquisition setups
on hand movement classification tasks,” PLOS ONE, vol. 12, no. 10,
pp. 1–17, 10 2017. [Online]. Available: https://doi.org/10.1371/journal.
pone.0186132

[27] T. Brochier, L. Zehl, Y. Hao, M. Duret, J. Sprenger, M. Denker, S. Grün,
and A. Riehle, “Massively parallel recordings in macaque motor cortex
during an instructed delayed reach-to-grasp task,” Scientific data, vol. 5,
no. 1, pp. 1–23, 2018.

[28] G. Moody and R. Mark, “The impact of the mit-bih arrhythmia
database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45–50, 2001.

[29] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. E215–20, Jun. 2000.

[30] sky130 datasheet. Accessed: June, 09, 2025. [Online]. Available: https:
//github.com/VLSIDA/sky130 sram macros/blob/main/sky130 sram
2kbyte 1rw1r 32x512 8/sky130 sram 2kbyte 1rw1r 32x512 8.html

Luca Martis received the B.S. and M.S. degrees
in electronics engineering from the University of
Cagliari, Cagliari, Italy, in 2021 and 2023, respec-
tively, where he is currently pursuing the Ph.D.
degree in electronic and computer engineering. His
research interests include the development of custom
hardware systems for executing algorithms based
on artificial intelligence, with a particular focus on
spiking neural networks.

Gianluca Leone received the B.S. degree in elec-
tronics engineering from the University of Cagliari,
Italy, in 2016, the M.S. degree in electronics engi-
neering from Politecnico di Torino, Italy, in 2019,
and the Ph.D. degree in electronics and computer
engineering from the University of Cagliari in 2023.
Since 2023, he has been an Assistant Professor with
the University of Cagliari. He teaches integrated
systems design and mixed-signal circuits and sys-
tems at the University of Cagliari. His recent work
includes the development of FPGA-based systems

for processing bio-signals and SNN-type workloads in real-time at the edge.
His research interests include the design and optimization of digital systems.

Luigi Raffo (Member, IEEE) received the Lau-
rea degree in electronic engineering and the Ph.D.
degree in electronics and computer science from
the University of Genoa, Italy, in 1989 and 1994,
respectively. In 1994, he joined the Department of
Electrical and Electronic Engineering, University of
Cagliari, Italy, as an Assistant Professor and as an
Associate Professor in 1998. Since 2006, he has been
a Full Professor of electronics with the Department
of Electrical and Electronic Engineering, University
of Cagliari. He teaches courses on system/digital

and analog electronic design and processor architectures for the courses
of studies in electronic and biomedical engineering. He was a Coordinator
of the project EU IST-FET-IST-2001-39266-BEST and the MADNESS EU
Project (FP7/2007-2013), a Unit Coordinator of the project EU IST-FET-
SHAPES-Scalable Software Hardware Architecture Platform for Embedded
Systems, and a Local Coordinator of industrial projects in the field (among
others: ST-Microelectronics-Extension of ST200 architecture for ARM binary
compatibility and ST-Microelectronics-Network on chip). He is responsible
for the cooperation programs in the field of embedded systems with several
other European Universities. He was also a Local Coordinator of the ASAM
(ARTEMIS-JU) and ALBA projects (national founded project) and RPCT
(regional founded project).

Paolo Meloni (Member, IEEE) is currently an As-
sociate Professor with the University of Cagliari. He
teaches microcontroller-based systems and advanced
embedded systems at the University of Cagliari.
He is the author of a significant track of interna-
tional research papers. His research activity is on
the development of advanced digital systems, on
the application-driven design and programming of
multi-core on-chip architectures and FPGAs.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3645186

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


