

3. COFFEE ROASTING

3.1 Introductory information

SYSTEMA COFFEE

EQUIPMENT WARM-UP

- Preheat the roaster before roasting for 30 to 60 minutes.
- Warm-up profile (warm-up at low and high power, with closed and open airflow)
- The roaster goes to its operating mode at cycle 3-5
- It is better to take simple coffee with low density for your first roasting
- "Warm-up roast profile" +15-30% to standard modulation in Pa

SYSTEMA COFFEE

STAGES OF COFFEE ROASTING

1 Loading coffee

2 Stage 1 (green)

3 Turning point

4 Stage 2 (yellow)

5 First crack

6 Development (time, %)

7 Drop

8 Second crack

9 Cooling

SYSTEMA COFFEE

3. COFFEE ROASTING

3.2 Coffee loading

SYSTEMA COFFEE

WHAT INFLUENCES:

- **DROP
TEMPERATURE**
- **MODULATION
INTENSITY DURING
LOADING**
- **BETWEEN BATCH
PROTOCOL**

SYSTEMA COFFEE

WHAT IT AFFECTS:

↓ ROASTING INTENSITY

Fast, normal, slow

↓ FRUITY

Strecker degradation: higher loading makes coffee fruitier

SYSTEMA COFFEE

WHAT'S HAPPENING:

↓ **ENDOTHERMIC REACTION**

Energy absorption

↓ **COLOR CHANGE**

From green to pale green

↓ **WATER HEATING**

SYSTEMA COFFEE

RECOMMENDATIONS

**FOR INTENSE
ROASTING**

High charge temperature

**FOR SLOW
ROASTING**

Low charge temperature

The mismatch between temperature and intensity
will require drastic changes in the process

LOADING SIZE

Batch size

↓ **BURNER'S POWER, ITS EFFICIENCY – BTU**

Lack of power will result in a drawn-out roast profile.

CONDUCTION ROASTERS

cope with 60-80% of
the declared volume

CONVECTION ROASTERS

can handle 100% of
the declared power

LOADING SIZE

Batch size

↘ LOCATION OF SENSORS

If there is too little coffee, less than 30%. The bean will not be caught by the temperature sensors, and the logger will record irrelevant information.

↘ TOO MUCH COFFEE

There will not be enough energy for roasting, the too long profile, and coffee may fly out into the airflow pipe.

BTU (British Thermal Unit) is a unit of measurement unit for thermal energy, it is defined as the amount of heat required to raise the temperature of one pound of water by one degree Fahrenheit (11,000 BTU per kilogram, or 3.2 kWh per 1 kg)

POWER MODULATION OPTIONS AT START

ON THE DECLINE

for medium and long roasting profiles

- heat the air inside the drum above the charge temperature reduce power
- wait until the temperature goes from top to bottom - load at the desired degree

AT THE RISE

for roasters with high % of convection

- perform protocol between roasts, cool air inside the drum
- set the modulation to the required power - load the beans at the moment when the temperature reaches the required one from bottom to the top

ON "EQUILIBRIUM"

for roasters with a high percentage of conduction

- select the power at which, after completing the protocol between roasts, the temperature will smoothly reach the desired degree and stop at it in balance

3. COFFEE ROASTING

3.3 Stage 1 (green)

SYSTEMA COFFEE

WHAT INFLUENCES:

- ↘ **TIME TO PASS
THE STAGE**
- ↘ **TURNING POINT**
Time, temperature
- ↘ **MODULATION
AIRFLOW**

SYSTEMA COFFEE

WHAT IT AFFECTS:

- ↘ **MOISTURE EVAPORATION
INTENSITY**
- ↘ **UNIFORMITY OF
ROASTING**
Gradient
- ↘ **INTENSITY 1st CRACK**

SYSTEMA COFFEE

WHAT'S HAPPENING:

- ↘ **ENDOTHERMIC REACTION**
Energy absorption
- ↘ **COLOR CHANGE**
From green to pale green
- ↘ **WATER HEATING**

SYSTEMA COFFEE

3. COFFEE ROASTING

3.4 Turning point

SYSTEMA COFFEE

WHAT INFLUENCES:

- ↘ **BETWEEN BATCH PROTOCOL/ "MORNING WARM-UP"**
- ↘ **LOADING VOLUME**

Large % of the drum size - the turning point will be lower

SYSTEMA COFFEE

HOW TO ANALYZE THE PASSAGE OF THE TURNING POINT

CHARGE TEMPERATURE

- ↘ We select it based on our roasting style and dynamics. On average, it is 200 degrees +20 with individual physical characteristics of the beans..

AIR TEMPERATURE

- ↘ This is the value that first signals to us that we have reached the standard, and if we see its deviations, the other parameters will follow it up too.

RATE OF TEMPERATURE RISE (ROR)

- ↘ Once the turning point is reached, ROR begins to grow smoothly and we see the peak of ROR. This is a signal for us - one of the three - about hitting the benchmark.

BEAN TEMPERATURE

- ↘ The bean temperature graph, when it hits the standard at the turning point, it doesn't guarantee us an ideal profile at further stages, but is the most important control point. Deviations can be due to an unheated roaster, denser or moist bean, or a burner modulation error.

WHAT IT AFFECTS:

↳ OVERALL DELTA OF THE ROASTING PROFILE

The extreme lower and upper
point of the graph

↳ HITTING THE REFERENCE PROFILE

WHAT'S HAPPENING:

- ↘ **START OF
ROR GRAPH**
- ↘ **STABILIZATION OF
THE TEMPERATURE**

beans (room temperature)
and temperature sensors

SYSTEMA COFFEE

RECOMMENDATIONS

When does it happen? At about 1st minute of roasting

TOO EARLY

Much less than 1 minute

The roaster is overheated,
risk of scorching, roasting
profile is too short

TOO LATE

Much more than 1 minute

Roaster is not heated
enough, load is too big

3. COFFEE ROASTING

3.5 Stage 2 (yellow)

SYSTEMA COFFEE

WHAT INFLUENCES:

↘ **TIME TO COMPLETE
THE STAGE**

↘ **ENERGY**
Heating, reaction intensity

SYSTEMA COFFEE

WHAT IT AFFECTS:

↓ BODY

Long yellow - the body is full,
short yellow - lighter.

↓ SWEETNESS

↓ BITTERNESS

Long yellow - higher bitterness,
short yellow - lower.

WHAT'S HAPPENING:

- ↘ **MAILLARD
REACTION**
- ↘ **CARAMELI-
ZATION**
- ↘ **STRECKER
DEGRADATION**
- ↘ **COLOR
CHANGE**
From green to yellow

RECOMMENDATIONS

Yellow stage time: short/long

TOO SHORT

Body is light, "coffee bouquet" is not formed

TOO LONG

Bitterness is high, body is full

3. COFFEE ROASTING

3.6 First crack

SYSTEMA COFFEE

WHAT INFLUENCES:

↓ ROASTING INTENSITY

Intense crack increases bean size, increasing extractability.

↓ BEAN MOISTURE

The more humidity, the more intense the crack can be.

↓ STAGE 1

Green, the longer the first stage, the less active the crack will be due to the lack of residual moisture.

SYSTEMA COFFEE

WHAT IT AFFECTS:

- **INCREASING
BEAN SIZE**
- **INCREASED
EXTRACTIVITY**

WHAT'S HAPPENING:

- ↳ **THE PRESSURE INSIDE THE BEAN INCREASES**

Steam, carbon dioxide

- ↳ **EXOTHERMIC REACTION**

Release of energy

- ↳ **CLICKING SOUND**

Like popcorn

SYSTEMA COFFEE

RECOMMENDATIONS

Crack intensity: weak/too active

WEAK

Low ROR before the 1st crack, not enough energy in the beginning/middle of roasting, stage 1 is too long, low bean moisture.

TOO ACTIVE →

High ROR before the crack, too much energy in the beginning/middle, short development, underdeveloped bouquet.

3. COFFEE ROASTING

3.7 Development

SYSTEMA COFFEE

WHAT INFLUENCES:

- ↘ ROR
- ↘ ROASTING INTENSITY
- ↘ TIME OF DEVELOPMENT
- ↘ % DEVELOPMENT

SYSTEMA COFFEE

WHAT IT AFFECTS:

→ BALANCE OF TASTE

Bitterness/sourness/sweetness

→ COLOR

Level of caramelization

WHAT'S HAPPENING

at increasing development time:

- ↓ **ACIDITY (CHARACTER)
DECREASES**
- ↑ **BITTERNESS GROWS**
- ↔ **SWEETNESS
INCREASES, THEN
DECREASES**

SYSTEMA COFFEE

RECOMMENDATIONS

Development time: short/long

TOO SHORT IT'S TOO LONG

Acidity is high, bouquet is undeveloped, “green” (peas, vegetables)

Bitterness is high, loss of flavor oils (character)

AUTOPYROLYSIS

What is it and how to avoid it?

- is a process in which the beans are spontaneously overheated, causing the organic compounds to break down, giving the coffee an unpleasant, harsh taste.

To avoid this, gradually reduce the heat a few minutes before the end of the roast, avoid sudden temperature changes, and increase the airflow. If you control the time after the first crack, you will avoid autopyrolysis and get a clean, rich taste.

SYSTEMA COFFEE

HOW TO MANAGE THE FINAL STAGE

Angle of attack ROR (rate of temperature rise) -
moderate, closed or smooth.

TEMPERATURE GRAPH ANGLE AFTER THE START OF THE 1ST CRACK	ROR AFTER 1st CRACK STARTS	DEVELOPMENT	BALANCE
Moderate	7	Normal	Bitterness/Acidity Balance
Acute	5	Short	Risk of "undevelopment"
Smooth	10	Long	Risk of "overdevelopment"

PERCENTAGE OF DEVELOPMENT AND ITS ROLE

The **development percentage** is the ratio of the time after the first crack to the total roasting time. Overdeveloped coffee is coffee with reduced acidity, duller, probably with a more pronounced group of caramelization flavors.

Overdeveloped and overcooked are not the same thing.

12-15%

FILTER COFFEE

15-17%

ESPRESSO

3. COFFEE ROASTING

3.8 Drop

SYSTEMA COFFEE

WHAT INFLUENCES:

- ↘ **DROP
TEMPERATURE**
- ↘ **TEMPERATURE
INCREASE**
after 1st crack

SYSTEMA COFFEE

WHAT IT AFFECTS:

↓ **BALANCE OF TASTE**

Bitterness/sourness/sweetness

↓ **COLOR**

Level of caramelizing

WHAT'S HAPPENING

- ↘ **ALL PROCESSES
ARE TERMINATED**
- ↘ **COOLING STARTS**

RECOMMENDATIONS

Drop: low/high

TOO LOW

Acidity is high,
undeveloped, light

TOO HIGH

Bitterness is high,
loss of flavor and
aromatic oils, dark

3. COFFEE ROASTING

3.9 Cooling

SYSTEMA COFFEE

WHAT INFLUENCES:

- ↙ **ROOM TEMPERATURE**
- ↙ **AIRFLOW COOLER CAPACITY**
- ↙ **COOLING TIME**
- ↙ **MIXING PROFILE**
Number of turns
- ↙ **CLEANLINESS OF EQUIPMENT**

WHAT IT AFFECTS:

- ↓ **RISK OF
«OVERDEVELOPMENT»**
- ↓ **RISK OF BAKING**

due to the contact of beans with each other

WHAT'S HAPPENING

- ↘ **THE PROCESSES IN THE BEAN ARE COMPLETED**
- ↘ **THE TEMPERATURE IS DROPPING**
up to 30-40°C in less than 300 seconds

RECOMMENDATIONS

Cooling time: long/normal

LONG

1. Reduce the room temperature
2. Direct additional cooling to the cooling bin
3. Adjust the frequency and number of turns of the cooler blades
4. Clean the cooler screen/pipe