

# 5. GREEN COFFEE

5.1 Coffee production



SYSTEMA COFFEE

# STAGES

- 1** Planting
- 2** Flowering and ripening
- 3** Harvesting
- 4** Depulpation
- 5** Fermentation
- 6** Drying
- 7** Packaging

# THE INFLUENCE OF TERROIR

Terroir affects not only the taste, but also the density and chemical composition of the bean. Important factors are:

## ALTITUDE

- ▼ The higher the coffee grows, the slower it ripens. This increases the density of the bean and the richness of the flavors. Due to the difference in day and night temperatures, the berry ripens longer.

## CLIMATE CONDITIONS

- ▼ The number of sunny days, the seasonality of precipitation - all of these affects the development of the coffee tree. Wetter and rainier regions produce coffee with a greater set of acids. You can also find out the average annual amount of precipitation, it is different for different latitudes.

## SOIL TYPE

- ▼ The soil should be well-drained, rich in minerals such as magnesium and potassium. To work with the yield, different agricultural technologies are used - soil preparation, drainage, mulching, soil cultivation, pH monitoring, crop rotation, use of vermicompost.

# **TYPES OF PACKAGING**

Temperature graph angle from the start of the first crack:

| <b>PACKAGE</b> | <b>MAINTAINING<br/>QUALITY</b>      | <b>COST/LABOR</b> |
|----------------|-------------------------------------|-------------------|
| Jute           | Low (Season 1)                      | Normal            |
| "Grainpro"     | Medium/long (from 1 season)         | Above average     |
| Vacuum         | Long (ages instantly after opening) | High              |

# 5. GREEN COFFEE

5.2 Coffee processing



SYSTEMA COFFEE

# EFFECT OF PROCESSING ON ROASTING

| PROCESSING   | SUGAR ON THE SURFACE | MODULATION INTENSITY | FEATURES                      | DEVELOPMENT | INCREASE AFTER 1 CRACK |
|--------------|----------------------|----------------------|-------------------------------|-------------|------------------------|
| Washed       | Average              | Intensive            | Sugars are washed out         | Long        | High                   |
| Natural      | Many                 | Average              | Sugar on/close to the surface | Average     | Average                |
| Fermentation | Little               | Low                  | Microbial trace on grain      | Short       | Short                  |

# 5. GREEN COFFEE

5.3 Coffee Density



SYSTEMA COFFEE

# **DENSITY OF COFFEE**

**— is the ratio of the mass of beans to their volume.**

It is measured in kilograms per cubic meter (g/l). This indicator can affect the taste and aroma of coffee, as it is associated with the concentration of flavor and aroma substances in the beans.

# DENSITY OF COFFEE

## HIGH DENSITY

- ↘ High profile modulation + Airflow

## AVERAGE DENSITY

- ↘ Average modulation, charge temperature

## LOW DENSITY

- ↘ Low modulation

# 5. GREEN COFFEE

5.4 Coffee moisture



SYSTEMA COFFEE

for beans

## **WITH HIGH MOISTURE**

green stage  
longer/airflow  
higher/normal  
modulation

for beans

## **WITH LOW MOISTURE**

green stage  
shorter/normal  
modulation or +5-10% if  
the beans are of high  
density

# MOISTURE CALCULATION

taking into account the density

Density

**800 G/L**

Moisture

**10%**

**= 80 ml**

Density

**900 G/L**

Moisture

**10%**

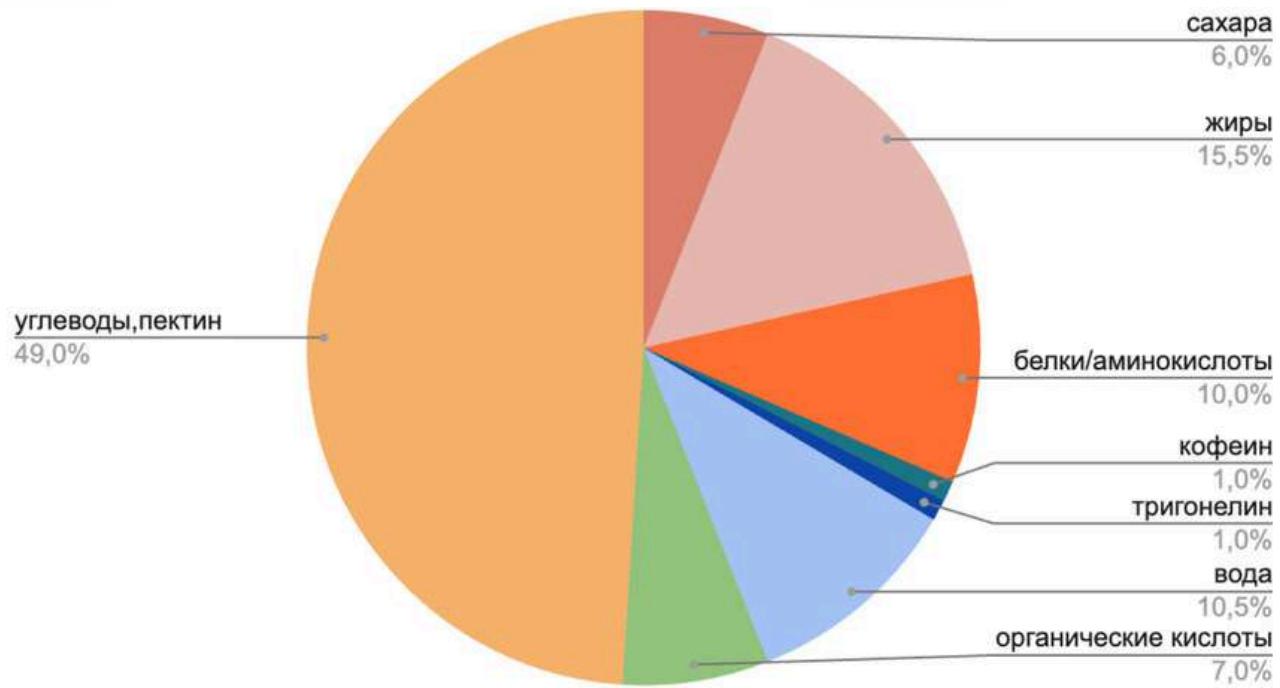
**= 90 ml**

Different amounts of water need different amounts of time to evaporate = higher density requires a longer green stage

# **FREE MOISTURE**

## **in green coffee**

- is water that is not bound to other components and is easily removed during drying or roasting.


# **BOUND MOISTURE**

## **or connected**

in green coffee, it is held by molecular forces within the bean structure and is not removed as easily as free moisture. It affects the texture, aroma and bouquet of coffee. It takes part in the reaction of: caramelization/Maillard reaction

**Bound moisture can also influence the speed and intensity of these reactions, as it is involved in heat transfer and can slow down or speed up chemical processes during roasting.**

# MOISTURE CALCULATION



1. Sugars: 6%
2. Fats: 15.5
3. Proteins and free amino acids: 10%
4. Alkaloids: caffeine 1%

4. Alkaloids: trigonelline 1%
5. Water: 10.5%
6. Organic acids: 7%
7. Carbohydrates, pectin: 49%

# 5. GREEN COFFEE

5.5 Coffee Chemistry



SYSTEMA COFFEE

# SUGAR CONTENT

| <b>SUGARS</b> | <b>QUANTITY</b> | <b>CARAMELIZATION TEMPERATURE</b> |
|---------------|-----------------|-----------------------------------|
| Sucrose       | 6,3-9,6%        | 160                               |
| Glucose       | 0,005-0,044%    | 150                               |
| Fructose      | 0,008-0,165%    | 130                               |

# **TYPES OF ACIDS**

Chlorogenic 3.5-7.5%

Citric 0.75-1.34%

Tartaric 0.0-0.1%

Apple 0.26-0.445%

Quinine 0.19-0.34%

Lactic 0.08-0.12%

Acetic 0.93-1.5%

Orthophosphoric 0.81-1.3%

**Citric, apple and quinic acids are non-volatile. The tastes and smells of apple and malic acids correspond to their names - they are of the highest quality and most valuable for roasters when choosing beans. Quinic acid is bitter. These acids affect the acidity of coffee.**

# EFFECT OF PROCESSING ON ROASTING

| ACID                           | TASTE                                                                         | HIGH CONCENTRATION | LOW CONCENTRATION             |
|--------------------------------|-------------------------------------------------------------------------------|--------------------|-------------------------------|
| Apple                          | Apple, pear, stone fruits (plum, peach)                                       | Intensive          | Sugars are washed out         |
| Citric                         | Lemon, orange, grapefruit                                                     | Average            | Sugar on/close to the surface |
| Orthophosphoric<br>(inorganic) | Creaks on the teeth like coke, sweet combined with citrus = grapefruit, mango | Low                | Microbial trace on bean       |
| Wine                           |                                                                               | Acid, enzyme       | Grapes, wine, champagne       |
| Vinegar                        |                                                                               | Vinegar            | Light spiciness               |

# **TYPES OF ACIDS**

## **↳ Quinic acid**

formed by the breakdown of other acids. It is found in large quantities in dark roasted coffee, stale coffee, and coffee that was brewed a few hours ago but kept warm on a hot stove. Although quinic acid gives coffee a clean taste, it is also the main acid that causes heartburn.

## **↳ Chlorogenic acids (CHA)**

are largely responsible for the perceived acidity of coffee. They are quickly destroyed during roasting, which is why light roasts are often called "bright" and "acidic" than dark roasts.

# CHLOROGENIC ACID

**- is an ester of the caffeic acid residue with quinic acid.**

The melting point of chlorogenic acids is 207-209°C.

When coffee is roasted, they are partially destroyed.

Chlorogenic acids form the astringent, tart and sweet notes of coffee flavor.

The content of this acid in the composition is relevant for "Scandinavian" roasting styles.

**Often, roasters, in pursuit of bright acidity, left too much chlorogenic acids in the beans, which negatively affects the taste.**

# THE INFLUENCE OF CHEMISTRY

## on coffee taste

### SWEETNESS

- ↘ Carbohydrates such as glucose and fructose. The slower the roasting process, the more sugars have time to caramelize. But the end result is bitterness.

### ACIDITY

- ↘ Acids give coffee its brightness. If roasting is done too quickly, the acids may not have time to transform, resulting in a harsh, low-quality acidity.

### BITTERNESS

- ↘ Caffeine and other alkaloids give coffee its natural bitterness.

# 5. GREEN COFFEE

5.6 Choosing Green Coffee



SYSTEMA COFFEE

# PARAMETERS

## green coffee

- Processing
- Density
- Q-grade
- Defects
- Moisture
- Screen
- Quality classification

# HOW TO CHOOSE GREEN BEANS?

When choosing, it is important to consider several factors:

## REGION OF ORIGIN

- Knowing the characteristics of the region, you can predict the flavor profile of the bean in advance.

## TYPE OF COFFEE

- Different varieties, such as Arabica varieties: Caturra, Typica, Pacamara, Geisha, have their own unique characteristics.

## PROCESSING METHOD

- Processing affects the flavor and texture of the bean.

## CUPPING SHEET

- When choosing beans, you need to do an organoleptic analysis, evaluate the coffee on the SCA scale, determine the rating and then make a purchase decision.

# CALENDAR of harvesting

# **TYPES OF DEFECTS**

## **First category**

1. Completely black
2. Completely sour
3. Dried berries/skin
4. Damaged by fungus
5. Foreign impurities
6. Severe insect damage

# **TYPES OF DEFECTS**

## **Second category**

1. Partially black
2. Partially sour
3. Parchment
4. Floater
5. Immature
6. Wrinkled
7. Shells
8. Broken
9. Peel/husk
10. Minor insect damage