

Vulcan Seals Type 1677MS

Technical Data Sheet

Product Description

The Vulcan Seals Type 1677MS is a robust, 'O'-ring mounted sinusoidal wave-spring "pusher" seal design, fully DIN24960/EN12756 L1K-U dimension compatible.

The drive from the shaft and set of working lengths is by set screws to the shaft, providing bi-directional rotation capability. The sinusoidal wave-spring provides even closing force to the sealing faces ensuring higher sealing performance compared to a single spring seal design.

The Vulcan Seals Type 1677MS features a monolithic steelhead, optimised for chemical resistance and high-temperature applications.

Vulcan Seals Type 1677MS complete seal is supplied with the Vulcan Seals Type 8.DINS stationary to suit DIN24960/EN12756 housings without anti-rotation provision.

Why Choose the Vulcan Seals Type 1677MS?

- The design of the Vulcan Seals Type 1677M head ensures the 'O'-ring is positively energised against the shaft at all times, providing superior performance and preventing shaft fretting.
- The positive energising of the secondary seal allows high shore-A 'O'-ring materials with high chemical resistance to be used.
- The crest-to-crest wave spring technology utilised in the Vulcan Seals Type 1677M offers excellent axial movement capabilities.
- The one-piece sinusoidal wave spring provides superior strength and reliability compared to welded multi-part wave springs, which are prone to breakage at the weld points.
- The high performance and interchangeability of the 'O'-ring secondary seals provide a wide range of material capabilities for chemical process industries.

Standard Face Material Combinations

Rotary Face	Stationary Face	Complete Seal Code
VCD1 Carbon	VAW1 Ceramic	DB
VCD1 Carbon	VSS1 Silicon Carbide	DR
VSS1 Silicon Carbide	VCD1 Carbon	RD
VSS1 Silicon Carbide	VSS1 Silicon Carbide	R
VTN2* Tungsten Carbide	VTN1* Tungsten Carbide	H

Guaranteed Stock/Material Elastomers: Viton™/FKM, EP, Nitrile and Metallurgy 316SS
*Non-stock guarantee

Elastomer Temperature Capabilities

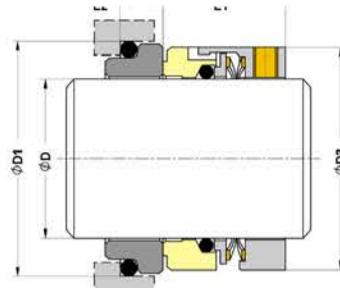
	Minimum	Maximum
Nitrile	-30°C	+120°C
EPDM	-40°C	+140°C
Viton™/FKM	-30°C	+230°C
FEP/AFLAS®	-10°C	+250°C
FFKM	-50°C	+315°C

Pressure: Up to 22 bar (320 psi)

Compliance & Certificates

Also available with built materials that adhere to the above compliance standards and certificates. Please enquire about your requirements.

Mechanical Seal Replacement Range


Vulcan Seals Type 1677MS is a dimensional replacement mechanical seal for the following seal ranges:

- Burgmann® | Type M7N4*

*Rotary Face | **Stationary Face

Embrace Excellence - Vulcan Service, Quality and Value

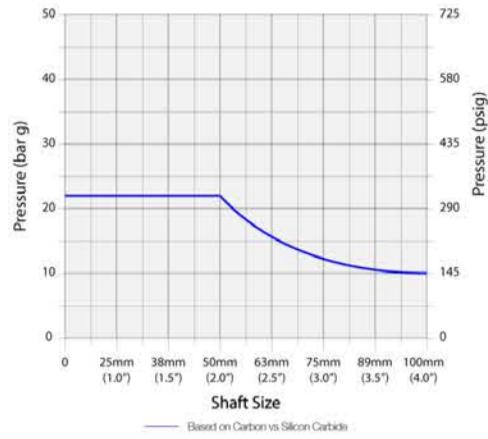
Mechanical Seals | FEP/PFA Encapsulated 'O'-rings | Gland Packing | Expanded PTFE Gasketing
UK/World: +44 (0) 114 249 3333 | USA: +1 952 955 8800 | www.vulcanseals.com | contact@vulcanseals.com

Dimensional Data

DØ (Metric)	Seal Size Code	D1 (mm)	D3 (mm)	L1 (mm)	L2 (mm)	L Total (mm)
14*	0140	25.00	24.00	25.00	6.60	31.60
16	0160	27.00	26.00	25.00	6.60	31.60
18	0180	33.00	32.00	26.00	7.50	33.50
20	0200	35.00	34.00	26.00	7.50	33.50
22	0220	37.00	36.00	26.00	7.50	33.50
24	0240	39.00	38.00	28.50	7.50	36.00
25	0250	40.00	39.00	28.50	7.50	36.00
28	0280	43.00	42.00	31.00	7.50	38.50
30	0300	45.00	44.00	31.00	7.50	38.50
32	0320	48.00	46.00	31.00	7.50	38.50
33	0330	48.00	47.00	31.00	7.50	38.50
35	0350	50.00	49.00	31.00	7.50	38.50
38	0380	56.00	54.00	31.00	9.00	40.00
40	0400	58.00	56.00	31.00	9.00	40.00
43	0430	61.00	59.00	31.00	9.00	40.00
45	0450	63.00	61.00	31.00	9.00	40.00
48	0480	66.00	64.00	31.00	9.00	40.00
50	0500	70.00	66.00	32.50	9.50	42.00
53	0530	73.00	69.00	32.50	11.00	43.50
55	0550	75.00	71.00	32.50	11.00	43.50
58	0580	78.00	78.00	37.50	11.00	48.50
60	0600	80.00	80.00	37.50	11.00	48.50
63	0630	83.00	83.00	37.50	11.00	48.50
65	0650	85.00	85.00	37.50	11.00	48.50
68	0680	90.00	88.00	34.50	11.30	45.80
70	0700	92.00	89.00	42.00	11.30	53.30
75	0750	97.00	96.00	42.00	11.30	53.30
80	0800	105.00	104.00	41.80	12.00	53.80
85	0850	110.00	108.00	41.80	14.00	55.80
90	0900	115.00	114.00	46.80	14.00	60.80
95	0950	120.00	118.00	47.80	14.00	61.80
100	1000	125.00	124.00	47.80	14.00	61.80

Dimensions in mm

*Non-stock guarantee


Maximum Operating Pressure

The PV Chart shows the maximum operating pressures of this Vulcan Seals type, based on the seal face materials used. Different lines on the chart indicate different material combinations, as shown underneath.

It also assumes stable operation in a clean, cool, lubricating and nonvolatile fluid with an adequate flush rate.

For more in-depth pressure rating calculations based on specific material combinations and application conditions, please consult us.

PV Chart

Application Conditions

	Criteria	Multiplier
Product Fluid	Lubricating fluids	X 1.00
	Aqueous solutions / Water	X 0.85
Temperature	Below 70°C (158°F)	X 1.00
	71°C to 120°C (160°F to 248°F)	X 0.85
	121°C to 175°C (250°F to 347°F)	X 0.75
	Over 176°C (349°F)	X 0.60
Speed	Up to 1750 rpm	X 1.00
	1750 to 3600 rpm	X 0.80

Example Calculation for Vulcan Seals Type 1677MS

- A. Shaft size: 38mm therefore pressure is 22 bar (from PV Chart)
- B. Media: Water (multiplier = 0.85)
- C. Temperature: 50°C (multiplier = 1.00)
- D. Speed: 1450 rpm (multiplier = 1.00)
- E. Face combination: Carbon vs Silicon Carbide (multiplier = 1.00)

For this particular Vulcan Seals Type 1677MS seal size, the calculation for the approximate guidance maximum operating pressure would be:

$$A \times B \times C \times D \times E \\ 22 \text{ bar} \times 0.85 \times 1.00 \times 1.00 \times 1.00 = 18.70 \text{ bar}$$

Face and Seat Materials

Combination	Multiplier
Carbon vs Ceramic	x 0.50
Carbon vs SiSiC	x 0.85
SiSiC vs Carbon	x 0.85
SiSiC vs SiSiC	x 0.41
Tungsten Carbide vs Tungsten Carbide	x 0.50

Guidance Only

Please note that due to the many operational and application variables that affect seal performance, the information given on this page is for guidance only.

We therefore strongly recommend careful individual testing and monitoring of all seals and related equipment for any proposed application.

Our policy is one of continuous technical and efficiency improvement. As such, all specifications may be subject to change without prior notice.

®™ All product names, brands and trademarks shown are property of their respective owners, are for identification purposes only, and do not imply affiliation nor endorsement.

** Important: These limits are the theoretical elastomer or design limitations. For maximum theoretical operating pressure for your specific size and application please refer to calculation example within this data sheet. All performance information given is for guidance only and is dependent on material, operating and application factors that affect seal performance.