
Live Lecture Series 
#1

Practical Differences - Microprocessor's vs 
Microcontroller's



What Does 
Google Say?



My Definitions

• Processor + Storage + Peripheral's* + Power Management.

MPU: Microprocessor
• Simply the Processor.

SBC: Single Board Computer
• Everything needed to run a desktop OS on a single board.

* Some peripherals will still require external PHY’s/Hardware (Ethernet)

MCU: Microcontroller



Common Examples

• Arduino (Microchip ATMEGA328).
• STMicro STM32 (Not like you can buy them).
• Espressif ESP32.

MCU’s

• Raspberry Pi.
• Beagle Bone.
• Jetson Nano.
• Computer CPU’s.

MPU’s



MCU/MPU Pro’s and Con’s

A direct Pro and Con list doesn’t tell the whole story.

Commonly discussed MCU Pro’s:
• Low price.
• Easier to develop for.

Common discussed MPU Pro’s
• Higher processing power.
• More memory.



MCU/MPU Pro’s and Con’s (Cont’d)

Real-World example: 
Audio mixing board

• Takes in several 
audio channels.

• Mixes, applies 
different 
filters/effects.

• Outputs a single 
audio stream.

MCU based 
approach

• Uses a mixture of 
analog components 
and digital IC’s.

• MCU controls the 
analog and IC’s.

MPU based 
approach

• Feed all audio 
channels directly 
into the processor.

• All mixing is done 
in software.



MCU/MPU Pro’s and Con’s (Cont’d)

• Incredibly flexible.
• Less audio hardware.
• Potentially cheaper.
• Easy to implement on software.

MPU 
solution:

• Limited in flexibility.
• Lots of analog audio hardware.
• Real time, minimal latency.

MCU 
solution



Operating Systems (OS)

MPU’s typically will be running a 
true OS.

MPU’s can also run without one, but it is not as 
common.
This results in a significant overhead, limits real-
time performance.

MCU’s run either bare-metal code, 
or a Real Time OS (RTOS).

RTOS’ focus on time-based scheduling, making 
them deterministic.
Technically you can run a true OS on an MCU.



MPU’s Are the Kings of Interfaces

No matter the interface you 
need, an MPU has it.

DigiKey Search

https://www.digikey.com/en/products/filter/embedded-microprocessors/694?s=N4IgjCBcpgnAHLKoDGUBmBDANgZwKYA0IA9lANogAMIAusQA4AuUIAykwE4CWAdgOYgAviKA


What Makes Designing With MPU’s Difficult?
Why Don’t You See DIY SBC’s Like You Do MCU’s (Arduino/ESP32/STM32)?

• Fun with BGA’s!
• No internal power management control

• Requires external flash* and RAM.
• DDR memory often requires high layer count boards and controlled impedance

*Sometimes there will be some small flash onboard.

https://www.digikey.com/en/products/filter/embedded-microprocessors/694?s=N4IgjCBcpgLAzFUBjKAzAhgGwM4FMAaEAeygG0QAmWADgHYAGRIygNlZtcpBYFZLeYVjyoBOWLH4i68OmDoj6lOjUWUwo3iLAMaleNyJwDvBtt40atbaKaMR62rYfw9Eh61fsHKprAf08BwOoqJ0sIYgHKKsCkRWOmbxvDJJILaiYKpEmfCC2gxMoQVyYJFgcLxSRrAMgmlwdabaEUyREil5LfR0ceD1GubwkhBGrLr0IrF0rKLM4OOW2QsMMVpGekF9WaKW-kaZ8ssaYPzCB-AM%2BjaehTY08KKR6vCvabBh8DoOWXRzDuoOH1KOoaN8WPowMMXBxePsqLVeKx1gioZMWLA4IMMadKMsBLwnvM2Powh5ZFkfJcKj5TP8WDM6vC8VwaCi8eIqiIEK9wWITuzQllltSDOcQAghKMJV9PNpKAx5PMImVxRFxvCJHtuVZejqPpqZNUJSo%2BR8jSJ%2BDRnERBDNpVUNPNeI88ZbwrtLU9LFNVn95a4yWMaFdpaqZuVKKEQSAALpEAAOABcoCAAMpJgBOAEsAHYAcxAAF8DtakCBUJBMLhCCRyCAzPGQMnUxmcwXi0QALTcaAVqBZgCutdIkAoWljJZAXYgfcr1fwRFHFC%2B83GhS5RmatuCRHNIWEk6nWj7CagYETZ8gAinwj72YAJqmZ4qRC3ICAREmAJ4JvCpjAcFQIsiyAA
https://ww1.microchip.com/downloads/en/Appnotes/Atmel-44022-32-bit-ARM-Embedded-Microprocessor-Discrete-Power-Supply-Solution-for-Atmel-eMPUs_Application-note.pdf


What Makes Designing With MPU’s Difficult? (Cont’d)

• Getting Linux up and running can be an awful experience.
• Highly dependent on vendor support. STM32MP1
• Ubuntu/Debian, Yocto, BuildRoot.

https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mpus/software/linux-os-for-mpus
https://wiki.st.com/stm32mpu/wiki/STM32MP1_Distribution_Package


Dealing With Real-Time Requirements

A key advantage MCU’s have is they are real-time responsive.
• MPU’s are not due to the OS overhead.

Use an external MCU for the critical timing portion.
• Talk back and forth using SPI/UART/etc

Use an MPU with an onboard co-processor.

https://i.imgur.com/SPDWZGc.png


Applications For A MPU Approach

Computationally 
Heavy

• Computer vision.
• Machine Learning.
• Anything with a 

lot of calculations.
• Onboard graphics 

engine.

Memory 
Intensive

• Driving 
Displays.

• Large LED 
arrays.

Specific 
Interfaces

• High-Speed 
USB.

• HDMI.
• Ethernet.



Conclusion

While the hardware for the MPU core is more involved than a MCU, it can reduce what else is needed.

Which one you choose likely boils down to:

If you need/want a true OS. What interfaces you need. How software intensive is the 
application.

Do you need real-time 
responsiveness.

Often, you can use either an MCU or an MPU for the same application. 


	Live Lecture Series #1
	What Does Google Say?
	My Definitions
	Common Examples
	MCU/MPU Pro’s and Con’s
	MCU/MPU Pro’s and Con’s (Cont’d)
	MCU/MPU Pro’s and Con’s (Cont’d)
	Operating Systems (OS)
	MPU’s Are the Kings of Interfaces
	What Makes Designing With MPU’s Difficult?�Why Don’t You See DIY SBC’s Like You Do MCU’s (Arduino/ESP32/STM32)?
	What Makes Designing With MPU’s Difficult? (Cont’d)
	Dealing With Real-Time Requirements
	Applications For A MPU Approach
	Conclusion

