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Abstract. Functional bootstrapping in FHE schemes such as FHEW and TFHE allows the
evaluation of arbitrary functions on encrypted data, while simultaneously reducing
noise. Implementing programs that directly use functional bootstrapping is challenging
and error-prone. In this paper, we propose a heuristic that automatically maps
Boolean circuits to functional bootstrapping instructions. Unlike prior approaches,
our method does not limit the encrypted data plaintext space to a power-of-two
size, allowing the instantiation of functional bootstrapping with smaller parameters.
Furthermore, the negacyclic property of functional bootstrapping is exploited to
extend the plaintext effective space. Despite the inherently greedy nature of the
heuristic, experimental results show that the mapped circuits exhibit a significant
reduction in evaluation time. Our heuristic demonstrates a 45% reduction in evaluation
time when compared to hand-optimized Trivium and Kreyvium implementations.
Keywords: Functional bootstrapping · Boolean circuit mapping · Fully Homomor-
phic Encryption

1 Introduction
Fully homomorphic encryption (FHE) is an encryption scheme that enables the direct
execution of arbitrary computations on encrypted data. The first FHE scheme was
introduced by Gentry in his seminal work [Gen09]. The construction relies on a technique
called bootstrapping, which is used to reduce noise in FHE ciphertexts. This construction
theoretically enables the execution of any computation directly over encrypted data but
remains slow in practice. Many works [FV12, BGV14, DM15, CGGI16a, CGGI20] have
built upon Gentry’s initial proposal and have contributed to further improvements in the
efficiency of FHE.

FHE schemes are typically classified into two main categories. The first category of
FHE schemes is based on Gentry’s initial proposal. While the bootstrapping procedure
is relatively time-consuming, it enables the efficient packing of data through the use of
batching techniques. Typically ciphertexts are bootstrapped as rarely as possible following
the evaluation of numerous homomorphic operations. The second type of FHE schemes
is based on the GSW somewhat homomorphic scheme, which was proposed in 2013 by
Gentry [GSW13] and supports branching programs with polynomial noise overhead. These
schemes are referred to as fast bootstrapping schemes. One limitation of these schemes is
that they can only bootstrap one message at a time, but the bootstrapping procedure is
relatively fast. One of the key benefits of these schemes is that they can be used to compute
an arbitrary function while simultaneously reducing noise. We refer to it as functional
bootstrapping (FBS). The FHEW scheme [DM15] introduced a FBS procedure which evaluates
a nand gate in addition to noise reduction, and suggested an extension for other/larger gates.
In a subsequent work [BR15] the FHEW scheme was adapted to accommodate arbitrary
multi-input Boolean gates. The authors of [CGGI16a, CGGI20] further enhanced these
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designs and introduced the TFHE library [CGGI16b]. TFHE’s bootstrapping implementation
can execute any two-input Boolean gate in approximately 10 milliseconds. In [CIM19],
the authors propose a bootstrapping method for evaluating several functions on the same
inputs at once, which was further improved in [GBA21].

In order to evaluate functions with several inputs, it is necessary to linearly combine
them into a single value before the functional bootstrap. We denote it as multi-input FBS.
Linear combinations are fast and are implemented using scalar-ciphertext multiplications
and ciphertext-ciphertext additions. Typically, the binary composition function

∑
i xi · 2i

is used for evaluating any Boolean functions with n inputs. However, this approach has
a significant drawback: the required plaintext space size is exponential in the number of
function inputs. To address this limitation, we can use linear combinations with smaller
plaintext space sizes for specific Boolean functions. One example are the symmetric
Boolean functions, where the output depends only on the number of activated inputs and
not on their position.

Motivation
Boolean circuits are evaluated in a gate-by-gate manner using fast bootstrapping schemes.
Logic synthesis tools can be used to map circuits to a library of Boolean gates that are
supported by a particular FHE scheme. As an example, in the case of TFHE, the library
contains the complete set of 2-input gates. Another option is to map the Boolean circuit
to lookup tables (LUT) and evaluate them homomorphically as generic n-input functions.
Both of these solutions are straightforward to implement because Boolean circuit mapping
is a well-studied problem in the field of logic synthesis, and there are plenty of performant
tools available [Ber, SRH+22].

Limiting the evaluation to generic n-input gates is not the most efficient approach. As
mentioned before, symmetric Boolean gates require smaller FHE parameters, resulting in
faster processing times. A FBS parameterized for generic n-input gates can be used to
evaluate any symmetric Boolean function with up to 2n − 1 inputs. Additionally, it should
be noted that FBS with power-of-two plaintext space is not always needed.

As an example, the full-adder is a logic circuit which computes the sum of three input
bits and outputs it on two bits. The minimal number of 2-input gates (or FBS with
plaintext Z4) required for this circuit is 5. However, when mapping this circuit to 3-input
LUTs (or FBS with plaintext Z8) only 2 are needed. Furthermore, this circuit can be
implemented with 2 FBS with a plaintext space of only Z3 because full-adder outputs are
symmetric functions, or as low as 1 FBS if multi-output technique from [CIM19, GBA21]
is used.

Contribution
We propose a new heuristic method which automatically maps Boolean circuits to functional
bootstrapping. The algorithm takes a circuit composed of two-input gates and the FBS
parameters (plaintext space size and linear combination norm) as input. The nodes of the
circuit are merged together into larger nodes as long as they can be evaluated using the
given FBS procedure parameters. Nodes are visited only once in a topological order. The
algorithm employs a greedy strategy which tries to merge nodes for as long as possible,
with the goal, supposedly, of minimising the total number of bootstrappings. The size of
the FBS plaintext is not limited to power-of-two values. The negacyclic property of the
TFHE FBS implementation is used to enhance the performance of the mapped circuits.

We have implemented a proof of concept for this heuristic, which is publicly available.
The heuristic has been tested on a number of circuit benchmark suites, including the
EPFL combinational benchmarks, ISCAS 85 and ISCAS 89. It has also been applied to
Boolean circuits implemented by hand, namely the Trivium/Kreyvium cipher and other
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cryptographic primitives. The estimated evaluation time of the mapped circuits has been
compared to the performance of non-mapped versions, specifically the original circuit
evaluated with generic 2-input gates. Our heuristic consistently finds circuits that are
more efficient than their non-mapped counterparts. In comparison to manual Kreyvium
FBS implementations from [BOS23], our heuristic identified a Kreyvium implementation
that uses 20% less FBSs and has a 45% lower evaluation cost.

The fast bootstrapping schemes TFHE/FHEW are particularly well suited for evaluating
Boolean circuits and logic-based machine learning models, such as decision trees and
random forests. Functional bootstrapping, combined with our heuristic, enables low-
latency execution of such logic-heavy applications. In contrast, arithmetic FHE requires
inefficient encoding for Boolean circuit evaluations, leading to substantial overheads.

Existing works
The AutoHoG method from [GMZ+24] presents an automated approach for mapping
Boolean circuits to FBS. A procedure for optimising multi-input FBS linear combination
coefficients is proposed. The objective is to maximise the number of inputs in each FBS,
which should subsequently reduce execution time. The authors use TFHE FBS with Z32
in the benchmarks and do not consider other plaintext spaces. Another distinction from
our work is that AutoHoG is more resource-intensive as it attempts to optimise the linear
combination coefficients for multi-input sub-circuits. In comparison, in our work we restrict
the search to linear combinations with two coefficients.

Helm [GMT25] is a framework for circuit synthesis, mapping and execution targeting
TFHE gate or functional bootstrapping. The authors of [MKG23] introduce a circuit
mapping to LUTs and consider the special case of full-adders being a symmetric Boolean
function. Furthermore, a post-synthesis step is employed which groups several LUTs
into one multi-output LUT, leveraging the results from [CIM19]. These works follow
the standard approach to logic synthesis tools and do not take into account the specific
characteristics of FBS.

Another line of research introduces gate libraries with either multi-input gates [MHSB21]
or uses alternative plaintext space sizes as [CBS24]. In their work, the authors of [MHSB21]
show how to evaluate 3-input gates using an extended plaintext space FBS. The Chocobo
paper [CBS24] generalises binary logic gates to base-B gates which are computed as an
FBS. A variety of approaches to computing two-input B-gates are presented. The chaining
method corresponds to the multi-input FBS with plaintext space ZB2 . However the authors
do not consider specific B-gates which require a much smaller plaintext space.

A novel method of encoding Boolean values is introduced in [BPR24]. In contrast to
the typical approach of using a fixed Boolean encoding scheme, namely the two-element set
{0, 1}, the authors put forward a novel proposal: the use of a distinct Boolean encoding,
denoted p-encoding, for each circuit wire. Each circuit wire has a unique set of potential
values (from Zp) for each Boolean value. Our methodology is comparable to theirs. To
provide some context, the sum of the p-encodings is equivalent to a linear combination
of the two-element Boolean encoding used in our work, refer to Subsection 4.3 for more
details. The authors present two methods for determining the p-encodings for the inputs
of a Boolean function to be evaluated, one exact and one heuristic. A drawback of the
proposed methods is the exponential complexity in the number of inputs ℓ of the Boolean
function. In our work, we adopt an alternative approach to solving the problem for large
Boolean functions. Rather than attempting to find a solution directly, we construct it in
an iterative manner by examining a 2-input gate representation of the function in question.
So, instead of searching for ℓ p-encodings (or linear combination coefficients), we only need
to find 2.

The authors of [BOS23, TCBS23] present hand-optimised algorithms employing FBS.
They demonstrate how to implement Trivium, Kreyvium and AES, showcasing various
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optimisation techniques (negacyclic functions, larger than 2 plaintext spaces, etc.). However,
they do not consider non-power-of-two plaintext spaces.

Paper organization
We begin with a comprehensive overview of functional bootstrapping in Section 2, followed
by the proposed mapping heuristic in Section 3 and with experimental results in Section 4.

2 Multi-input functional bootstrapping
Notations

A vector of size n is denoted by v, v = {v0, v1, . . . , vn−1}, and the i-th vector element is
vi.

2.1 Functional bootstrapping
TFHE [CGGI16a, CGGI20] is a fully homomorphic encryption scheme with a fast bootstrap-
ping procedure. The authors describe how to use functional bootstrapping to evaluate
2-input logic gate circuits. The bootstrapping procedure is implemented via a homomor-
phic accumulator. It evaluates the linear part of the decryption function, followed by the
non-linear part. For this line of schemes, the structure of the bootstrapping can be divided
in 4 steps:

1. The coefficients of an input LWE ciphertext c = (a, b) are rounded to Z2N . A cyclic
multiplicative group G, where Z2N ≃ G, is used for an equivalent representation of
Z2N elements. G contains all the powers Xk mod XN + 1, where XN + 1 is the
quotient polynomial defining the RLWE scheme.

2. The message phase encrypted in the input ciphertext c is transformed to a RLWE
encryption of Xφ. The encryption Xφ is obtained by computing the linear transfor-
mation b − a · s (≈ φ) using GSW encryptions of Xsi (i.e. bootstrapping key). We
obtain the so-called accumulator ACC which contains an encryption of Xφ ∈ G. This
is the linear step of the LWE decryption algorithm.

3. The accumulator ACC is then multiplied with a test polynomial (or test vector) TVF .
The test polynomial encodes the output values of a function G for each possible
input message phase φ ∈ Z2N , where G is a function from Z2N to Zp. Function G
is a composition of the "payload" function F : Zp → Zp and a rounding function
Rp : Z2N → Zp. The rounding function is needed because phase φ is a noised version
of the actual message m = Rp (φ) encrypted in c = (a, b). The rounding function
corresponds to the final non-linear step of ciphertext c decryption.

4. Finally, an LWE encryption of F (m) (or G (φ)) is extracted from RLWE encryption
TVF ·Xφ.

In what follows we consider the FBS as a generic method for evaluating functions
F : Zp → Zp. The input to this method is an LWE encryption of m ∈ Zp, and the output
is also an LWE encryption of the function F applied on m. In the context of cyclotomic
rings with modulus XN + 1, the functional bootstrapping can be extended to negacyclic
functions F : Z2p → Zp, which verify the equality F (x) = −F (x + p) for all x ∈ Zp.
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2.2 Multi-input functional bootstrapping
The FBS procedure takes as input one encrypted message. In order to evaluate multi-input
functions, the ciphertexts are linearly combined into a single ciphertext beforehand. We
denote this bootstrapping procedure as multi-input functional bootstrapping due to its
ability to evaluate generic multi-input functions.

The first step of multi-input FBS is a linear combination of inputs (LWE ciphertexts)
with integer coefficients. The second step is a FBS procedure with a specially crafted
test polynomial. The linear combination maps input Boolean values to an integer value,
which is subsequently mapped back to a Boolean value by the single-input bootstrapping
algorithm.

Let Zp be the FBS message space (hereafter we ignore the fact that in the case of
TFHE, messages are values on the torus and instead consider them scaled to Zp). Let f
be an n-input Boolean function to be evaluated over Boolean values encrypted as LWE
ciphertexts. Boolean values are encoded in LWE ciphertexts as either 0s or 1s. We denote
the multi-input FBS as the composition of a linear function ϕ followed by a non-linear
mapping F : Zp → Z2, such that:

f = F ◦ ϕ.

The non-linear function F is embedded in the test vector. It maps each value of the image
of the function ϕ to a Boolean value. The following sections will provide a more detailed
overview of these two steps.

2.2.1 Linear combination

The function ϕc (x) represents a linear combination, expressed as
∑n

i=1 ci · xi, where the
coefficients c are integers. A linear combination ϕc can be used in a multi-input FBS to
evaluate a logic function, f , if it is capable to distinguish the output values of f . In more
formal terms, for any x and x′ such that f(x) ̸= f(x′) the linear combination must satisfy
ϕc (x) ̸= ϕc (x′).

As example, the binary composition function,
∑

i xi ·2i, is a bijective linear combination
that can be used to evaluate any Boolean function f . The mapping function is given by
F (z) = f(x) where z =

∑
i xi · 2i. However, this approach requires an exponential FBS

message space, Z2n , where n is the number of function inputs.
Not all Boolean functions require a bijective linear combination. For example, the

n-input majority function MAJn (x) (which outputs true if the majority of inputs are
active) can be computed with the linear combination

∑
i xi and the mapping function

F (x) = x ≥ n/2. This linear combination is surjective and can only be used to evaluate
a subclass of Boolean functions, in particular the symmetric functions. The required
FBS message space, Zn+1, is significantly smaller when compared to the generic binary
composition function.

Let us denote by imsize (c) the image size of the linear combination ϕc. It is defined
as:

imsize (c) = max
x

ϕc (x)−min
x

ϕc (x) + 1

For the sake of simplicity, we assume that ϕc (x) ≥ 0. It is possible to transform any linear
combination into an equivalent one that verifies the aforementioned relation by subtracting
minx ϕc (x).

Let us suppose that imsize (c) ≤ p. In this case function f = F ◦ ϕc can be evaluated
by a multi-input FBS with message space Zp. The noise of the input LWE ciphertexts is
inversely proportional to the Euclidean norm ∥c∥2 and it should be chosen in such a way
that the error amplitude of the linear combination over the LWE ciphertexts is smaller than
1/2. This implies that the output noise of the linear combination should remain within one
message space segment with overwhelming probability.
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Figure 1: Example of FBS function encoding (colored segments) and message space (dashed
lines separators).

To summarize, the precision of FBS depends on two factors: the plaintext space
size, p, and the maximal Euclidean norm, l, of supported linear combinations. A FBS
parameterised with p and l can be used to evaluate any other Boolean function (regardless
of input count) whose linear combination, ϕc, verifies imsize (c) ≤ p and ∥c∥2 ≤ l.

2.2.2 Blind rotation

The output of the linear combination evaluation over the encrypted values x is a LWE
encryption of ϕc (x). Each value of linear combination, ϕc, image is mapped to the
corresponding value of the Boolean function f by the FBS procedure using a specific test
vector TV. TV maps the integer value ϕc (x) to the Boolean value f(x) for every x. The
TV is defined as follows:

TV =
∑

0≤k<K

F (k)
∑

⌊ k·N
p ⌉≤i<

⌊
(k+1)·N

p

⌉ Xi mod XN + 1.

In addition to the function F , this test vector encodes the rounding to Zp function of the
LWE decryption.

Figure 1 illustrates the message space partition for p = 5 and the function F encoded
in the TV. For illustration purposes, a small RLWE ring size (N = 32) was selected. It
should be noted that the encoding of the function and message space do not match exactly,
as the test vector is discretised to 2 · N values and message space elements are not. It
is possible to extend the message space to Z2p without incurring any additional cost for
negacyclic functions F . Refer to the lower half of Figure 1 for negacyclic function encoding
illustration.

Negacyclic function evaluation. A FBS parameterised for message space Zp can be
employed for negacyclic functions over Z2p. A function F is negacyclic if F (x) = −F (x + p)
for any x ∈ Zp.

Consider a Boolean function, f = F ◦ ϕc, where the image size of ϕc is larger than
FBS parameter p, i.e. imsize (c) > p. Three distinct types of negacyclic Boolean functions
exist:

1. F (x) = ¬F (x + p) – first and last function values are negated,

2. F (x) = F (x + p) = 1 – first and last function values are ones,

3. F (x) = F (x + p) = 0 – first and last function values are zeros.
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These functions are evaluated as a FBS of function F ′(x) = F (x)− µ for x ∈ Zp followed
by an addition of a constant µ. Here µ equals to 1/2, 1 and 0 for each negacyclic function
type respectively. It is straightforward to see that function F ′ is negacyclic. Furthermore,
it can be shown that after the constant µ has been added, the original function F is
restored.

3 Mapping Boolean circuits to functional bootstrapping
A Boolean circuit is a directed acyclic graph, denoted by G = (V, E), where V is the
set of nodes and E is the set of edges. A node v ∈ V can be either a circuit input, a
circuit output, or a logic gate. An edge, (w, v) ∈ E, is a directed connection from a source
node w to a destination node v. The function pred(v) returns the predecessors of a given
node v, and is defined as pred(v) = {u | (u, v) ∈ E}. A gate node is associated with a
Boolean function, fv (U), where U = pred(v) represents the set of predecessors of v. A
cone, denoted by Cv, is defined as a sub-set of the node v ancestors, including the node
itself, such that for any w ∈ Cv every path from w to v must lie entirely within Cv. The
support of a cone, denoted by sup(Cv), is a set of nodes that feed into the nodes in the cone
but do not belong to it. Formally, this is expressed as sup(Cv) = {u | (u, w) ∈ E, w ∈ Cv}.
The Boolean function fCv with inputs sup(Cv) is defined as the logic function of cone Cv.

Our goal is to partition a Boolean circuit into a set of sub-circuits such that each
sub-circuit can be executed by one functional bootstrapping. We call this problem Boolean
circuit mapping to functional bootstrappings. Let p be the plaintext space size and l the
linear combination Euclidean norm for which FBS has been parameterised. A solution to
this problem is a set B of circuit nodes to bootstrap where for each node v ∈ B we have
a cone Cv and a vector of integer coefficients cv (a coefficient per node in sup(Cv)) such
that:

• B contains all circuit outputs,

• any circuit node belongs to at least one cone:
⋃

v∈B Cv = V ,

• linear mapping ϕcv
is valid for cone logic function fCv

: for any x, x′ ∈ Z|cv|
2 such

that fCv (x) ̸= fCv (x′) we have ϕcv (x) ̸= ϕcv (x′),

• FBS parameters are valid, i.e. imsize (cv) ≤ p and ∥cv∥2 ≤ l.

Given a Boolean circuit the optimization problem is to find a mapping which minimizes
circuit evaluation time. The evaluation time of a circuit depends on the input FBS
parameters and on the number of bootstrappings in the mapped circuit.

3.1 Heuristic mapping
The following section introduces a heuristic that maps a Boolean circuit to FBSs with
fixed parameters. The heuristic algorithm is given in Algorithm 1. The algorithm takes
as inputs a Boolean circuit G, a cone composition function FindParams which returns
a valid linear combination for a node v and functional bootstrapping parameters p and
l. The functional bootstrapping parameters must support any 2-input Boolean gate, at
least. The algorithm output is a solution to the Boolean circuit mapping to functional
bootstrappings problem. The heuristic traverses the circuit in a topological order, starting
from the input nodes. At each gate node, it attempts to merge cones rooted at this node.
In case the merging is not possible, due to unsatisfied functional bootstrapping parameters,
the heuristic bootstraps one or both node inputs.

An empty cone (line 3) is assigned to each circuit input. By convention, the logic
function of an empty cone is the identity function, f{}(x) = x and it has an image size 2.
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The circuit output nodes are added to the set B of nodes to bootstrap. For each gate node v,
function FindParams returns a valid linear combination for the merged cone {v}∪Cu∪Cw

where u, w are the predecessors of v (line 9). In case a linear combination, which verifies
FBS parameters p and l, is found (function IsValidSize) the linear combination coefficients
cv and cone Cv for node v are added to solution. Otherwise, the algorithm bootstraps
predecessor node with largest linear combination image size (line 11) and resets its cone
Cu to single node (line 12). The process is repeated, i.e. the second predecessor w is
bootstrapped, in the event that no valid linear combination is identified (line 13). After
the third FindParams call (line 17), both the predecessors of node v are bootstrapped,
and the new linear combination is certainly valid.

Algorithm 1 Generic mapping algorithm
Input: Boolean circuit G = (V, E) with 2-input gates
Input: FindParams(fCu , cu, fCw , cw, fv) - a function that returns a valid linear combi-

nation for cone v ∪ Cu ∪ Cw.
Input: p, l - FBS message space size and maximal norm of linear combination
Output: B - A set of gates to bootstrap
Output: Cv - A cone for v ∈ B
Output: cv - A vector of coefficients for v ∈ B

1: for all node v ∈ V in topological order do
2: if v is input then
3: Cv, cv ← {}, [1]
4: else if v is output then
5: B ← B ∪ {v}
6: Cv, cv ← {}, [1]
7: else
8: u, w ← pred(v) such that imsize (cu) ≥ imsize (cw)
9: cv ← FindParams(fCu

, cu, fCw
, cw, fv)

10: if not IsValidSize(cv) then
11: B ← B ∪ {u}
12: Cu, cu ← {}, [1]
13: cv ← FindParams(fCu , cu, fCw , cw, fv)
14: if not IsValidSize(cv) then
15: B ← B ∪ {w}
16: Cw, cw ← {}, [1]
17: cv ← FindParams(fCu

, cu, fCw
, cw, fv)

18: end if
19: end if
20: Cv ← {v} ∪ Cu ∪ Cw

21: end if
22: end for
23: function IsValidSize(c)
24: return imsize (c) ≤ p and ∥cv∥2 ≤ l
25: end function

We introduce two algorithms for the cone composition function. The objective of
FindParams is to identify a linear combination that describes the logic function of the
merged cone {v} ∪ Cu ∪ Cw. Let f (x∥y) = fv (fCu

(x) , fCw
(y)) denote the Boolean

function of the merged cone. The composition algorithm returns a vector of coefficients, c,
such that ϕc is a valid linear combination for the function f . Note that these functions
are agnostic about the FBS parameters and can return a vector c whose image size or
Euclidean norm is larger than p or l, respectively.
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The first function is illustrated in Algorithm 2. A scaled version of coefficient vector
cu is concatenated with vector cw (see line 3). The coefficient vector cu is scaled by the
image size imsize (cw) of the second vector. The output linear combination function is:

imsize (cw) · ϕcu
(x) + ϕcw

(y)

for x ∈ Z|cu|
2 and y ∈ Z|cw|

2 .

Algorithm 2 Naive cone composition
1: function FindParamsNaive(fCu , cu, fCw , cw, ·)
2: a, b← imsize (cw) , 1
3: cv ←

[
a · cu

∥∥ b · cw

]
4: return cv

5: end function

The second cone composition function, outlined in Algorithm 3, also concatenates
scaled versions of the vectors cu and cw (line 5). However, this function exhaustively
searches for scaling coefficients a and b and returns the coefficient vector with the smallest
image size. The output linear combination function is:

a · ϕcu
(x) + b · ϕcw

(y)

for x ∈ Z|cu|
2 and y ∈ Z|cw|

2 . The possible ranges for these coefficients are |a| ≤ imsize (cw)
and |b| ≤ imsize (cu). Since the linear combination functions ϕc and ϕ−c are equivalent,
only positive values for the coefficient a are considered. This effectively reduces the search
space by 2.

Heuristic termination, correctness and complexity. Algorithm termination is guaranteed
by construction. Each circuit node is visited exactly once in topological order. At each
node, the heuristic either merges the node into an existing cone (Algorithm 1, line 20) or
triggers bootstrapping on one (line 11) or both of its inputs (line 15).

The output circuit remains functionally equivalent to the input. The function Find-
Params constructs a valid linear combination based on the linear combinations of a
node’s inputs. In particular, FindParamsNaive guarantees correctness by design, while
FindParamsSearch verifies validity explicitly using the IsValid function.

If no valid linear combination can be found for the FBS parameter constraints, message
space size p and maximum linear combination norm l, then one or both of the node’s
inputs are bootstrapped. Circuit output nodes are always bootstrapped to ensure outputs
are Boolean.

The time complexity of the heuristic is O(n) when using FindParamsNaive cone
merge function, and O(n · p2) when using FindParamsSearch, where n is the number of
nodes in the circuit and p is the plaintext space size.

Limitations. The heuristic uses a greedy strategy for deciding when to bootstrap nodes
and is sensitive to the order (topological) in which nodes are processed. As a result, it
may produce suboptimal mappings, especially in circuits with multiple topological orders.
One of our goals was to develop a lightweight, on-the-fly heuristic which can be used in a
homomorphic execution runtime which does not require a complete circuit compilation
phase.

The execution time of the heuristic is pseudo-polynomial (FindParamsSearch func-
tion), as it depends on the FBS plaintext space size p. However, our experiments show that
little benefit is gained for values p > 9, as the increased cost of bootstrapping outweighs
the marginal reduction in bootstrap count.
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Algorithm 3 Search cone composition
1: function FindParamsSearch(fCu , cu, fCw , cw, fv)
2: cmin

v ← ∅
3: for all a = 1, . . . , imsize (cw) do
4: for all b = −imsize (cu) , . . . ,−1, 1, . . . , imsize (cu) do
5: cv ←

[
a · cu

∥∥ b · cw

]
6: Let f (x∥y) = fv (fCu (x) , fCw (y))

▷ f is the logic function of cone Cu ∪ Cw ∪ {v}
7: if IsValid(f, cv) then
8: if imsize (cv) ≤ imsize

(
cmin

v

)
then

9: if ∥cv∥2 <
∥∥cmin

v

∥∥
2 then

10: cmin
v ← cv

11: end if
12: end if
13: end if
14: end for
15: end for
16: return cmin

v

17: end function
18: function IsValid(f, c)
19: V0 ←

{
ϕc (x) | x ∈ Z|c|

2 , f (x) = 0
}

20: V1 ←
{

ϕc (x) | x ∈ Z|c|
2 , f (x) = 1

}
21: return V0 ∩ V1 ≡ ∅
22: end function

Cone composition example. Let us consider a node, v, with a logic function fv(x, y) =
x and y. Additionally, we assume that the gate predecessor cones are empty (Cx = Cy =
{}). The functions of the predecessors are identities, we have fCx

(x) = x and fCy
(y) = y.

The coefficients vectors are equal, cx = cy = [1]. The naive composition function returns
the coefficients cnaive = [2, 1], where 2 is the image size of cx, and the search composition
function returns csearch = [1, 1]. The image size of cnaive is 4, whereas the image size of
csearch is only 3. The truth-table and linear combination outputs for function fv are given
following table:

x fv(x) ϕcnaive(x) ϕcsearch(x)
[0, 0] 0 0 0
[0, 1] 0 1 1
[1, 0] 0 2 1
[1, 1] 1 3 2

Observe that the functions ϕcnaive and ϕcsearch are valid linear combinations for the
node v logic function as the corresponding linear combination values for fv(x) ≡ 0 and
fv(x) ≡ 1 are different.

Execution example. Consider the Boolean circuit with three inputs and two gates, as
illustrated in Figure 2, and suppose we want to map it to an FBS with Z3. The first node
visited is the XOR gate. A valid linear combination for this node is a + b, which has image
[0..2] (see Figure 2a). The next visited node is the AND gate. A linear combination for
this node is a + b + 2 · c, but its image, [0..4], overflows the Z3 space (see Figure 2b). The
AND gate’s input (the XOR gate) is bootstrapped, and a valid linear combination, z1 + c,
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[0110]
[0112]

(a) XOR

[0001 0100] 
[0213 1324]

[0110]
[0112]

(b) AND – linear combi-
nation overflows

[01]
[01]

[0112]
[0001]

(c) AND – bootstrap
XOR

[01]
[01]

[01]
[01]

[0112]
[0001]

(d) Output – bootstrap
AND

Figure 2: An example of circuit traversal for an FBS over Z3. The vectors in red (top)
represent the node’s cone truth tables, and the vectors in blue (bottom) represent the
evaluations of the node’s cone linear combination. F010(a+ b) denotes the FBS which maps
consecutive values of a + b image to Boolean values 0, 1, 0, i.e. F010(0) = 0, F010(1) = 1
and F010(2) = 0.

is found for this node (see Figure 2c). Finally, the output node o is mapped to Boolean
space using another FBS (see Figure 2d).

Implementation details. The Algorithm 1 listing has been simplified by omitting several
implementation details. Gates with a single-input f(v), same-input gates f(v, v), and
constant f(v) = cst gates are ignored because the same linear combination cv of gate
input is valid for gate output also. Furthermore, linear combinations with image sizes
larger than 216 are pruned. In the search composition function, Algorithm 3, common
nodes in the supports of Cu and Cv are only considered once. In this way obtained linear
combination coefficients are smaller.

4 Implementation and performance
A proof of concept of the proposed mapping heuristic has been implemented in python
and is publicly available1. The algorithm is parameterised by the two cone composition
methods that were previously presented. The mapping heuristics are referred to as either
as the naive heuristic or as the search heuristic. A minor discrepancy between Algorithm 1
and the implemented version is that the latter does not consider the Euclidean norm l
when evaluating the validity of a linear combination (function IsValidSize). This was
done because the Euclidean norm l exerts a lesser influence on FBS parameters when
compared to the number of plaintext divisions p. For instance, according to concrete2

estimator, increasing the norm l from 4 to 24 for p = 16 increases bootstrapping cost by
less than 2%.

In order to assess the efficacy of the proposed heuristic, we have employed Boolean
circuits from a range of benchmark suites, as well as manually generated circuits. Both
heuristics have been executed on each benchmark circuit for different values of the FBS
parameter p. For each execution, the elapsed time has been recorded, along with the
characteristics of the mapped circuit, including the number of bootstrappings, linear
combinations, the maximal Euclidean norm of the linear combinations, and so forth.

1https://github.com/ssmiler/tfhe_fbs_map
2https://github.com/zama-ai/concrete

https://github.com/ssmiler/tfhe_fbs_map
https://github.com/zama-ai/concrete
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Figure 3: Search heuristic applied to AES circuit. Mapped circuit number of bootstrappings
and estimated evaluation cost as a function of FBS size.

The experimental results demonstrate that the number of output bootstrappings does
not exhibit a monotonically decreasing trend with an increase in the value of p. To
illustrate, the blue line in Figure 3 depicts the output bootstrap count as a function of the
FBS size, p, for the search heuristic applied to the AES 128 circuit. A similar phenomenon
is observed for the naive heuristic. We think this phenomenon occurs due to the greedy
nature of the heuristics, which aim to maximise the image size of linear combinations and
consequently FBS are added too late by the heuristic. In the conducted tests, a maximal
value P was assigned for the FBS size. Subsequently, the heuristic was executed for each
value of 2 ≤ p ≤ P . The mapped circuit with the lowest metric (either evaluation cost or
bootstrapping count) value is kept as output.

The evaluation cost of a circuit is estimated as the number of circuit bootstrappings
multiplied by the cost of a single bootstrapping. The concrete compiler is used to estimate
the execution cost of a single multi-input FBS with given parameters. In order to facilitate
the utilisation of non power-of-two values for the FBS size and Euclidean norm, the
compiler code has been patched. As an example, the red line in Figure 3 illustrates the
evaluation cost of the AES circuit as a function of FBS size. It is important to note that
while the number of bootstrappings may continue to decrease with FBS size, the evaluation
cost of the circuit consistently increases for p > 6. Furthermore, starting from p = 8, the
evaluation cost will exceed that of the non-optimised circuit (i.e. the mapped circuit for
p = 2). This is due to the fact that the reduction in bootstrapping count is no longer
sufficient to compensate for the increase of a FBS cost.

4.1 EPFL combinational benchmark suite
The EPFL combinational benchmark suite [AGDM15] comprises 10 arithmetic, 10 ran-
dom/control circuits and 3 multi-million gate designs. In our experiments, we have used
the first two types of benchmarks, a total of 20 Boolean circuits. The naive and the
search heuristics are used to map each benchmark circuit to FBS. The mapping heuristic is
executed with FBS sizes varying from 2 to 15. The mapped circuit with the smallest cost
and smallest the FBS size in case of a tie is kept as the output. Furthermore, we estimate
the cost of executing a reference mapping where each Boolean circuit gate is executed as a
TFHE gate bootstrapping (i.e. FBS with size 2).

Refer to Table 1 for a comparison of the evaluation speedups of the circuits mapped
with the proposed heuristics compared to the reference mapping (column “cost”). The
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Table 1: EPFL benchmark. Evaluation cost improvements for FBS mapped circuits
(column “cost”), decrease in bootstrappings count (column “#boots.”) and corresponding
FBS sizes. Cells where no gain has been obtained are not included in the presentation.

bench naive search
cost #boots. FBS size cost #boots. FBS size

adder −64% −75% 5 (7)
bar −24% −50% 7 (10)
div −30% −52% 5 (10)
hyp −39% −62% 7 (14)
log2 −37% −56% 5 (10)
max −6% −38% 7 (8) −34% −68% 9 (15)
multiplier −49% −68% 7 (14)
sin −36% −58% 6 (11)
sqrt −54% −70% 6 (11)
square −32% −53% 5 (10)
arbiter −20% −45% 5 (8) −48% −64% 5 (8)
cavlc −36% −59% 7 (13)
ctrl −3% −37% 7 (8) −40% −61% 7 (12)
dec
i2c −1% −35% 7 (8) −34% −57% 7 (14)
int2float −8% −40% 7 (8) −49% −67% 7 (13)
mem_ctrl −4% −38% 7 (8) −31% −55% 7 (13)
priority −40% −60% 6 (11)
router −9% −40% 7 (8) −42% −63% 7 (14)
voter −38% −57% 5 (10)
avg. −3% −15% −38% −58%
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Figure 4: The average of the mapping heuristics execution time divided by the number of
circuit nodes.

two column groups (denoted as “naive” and “search”) represent the two cone composition
functions. Furthermore, two additional columns are given for the mapping with the lowest
execution cost:

• “#boots.” – difference in number of bootstrappings.

• “FBS size” – FBS size and linear combination image size (in brackets) for which this
mapping was obtained. We remind that the linear combination image size can be
larger than the FBS size in the case of negacyclic functions.

The last table row represents the average of the respective columns.
The mapping heuristic with search cone composition consistently gives better execution

cost and a lower bootstrapping number when compared to the naive cone composition.
On average, the search heuristic results in 38% reduction in execution cost and a 58%
reduction in the number of bootstrappings. The functional bootstrapping size, which
yields the lowest execution cost, is almost always smaller or equal to 9. This aligns with
the earlier observation made for the AES circuit.

Figure 4 illustrates heuristics average execution time divided by the input circuit gate
count, for each FBS size. As anticipated, the search heuristic is slower than the naive one
and scales non-linearly with FBS size due to the exhaustive search in Algorithm 3.

4.2 Trivium and Kreyvium stream ciphers
The authors of [BOS23] introduce hand-optimised implementations for Trivium/Kreyvium
stream ciphers [DC06, CCF+18] using TFHE FBS. Several approaches to implementing a
single iteration of stream ciphers are presented, beginning with gate bootstrapping and
concluding with functional bootstrapping. The most efficient solution uses a 2-bit message
space (or 3-bit in case of negacyclic functions).

The heuristics we introduce process circuit gates in the order in which they appear in
the input circuit file. This is just one of the many possible topological orders and it has
an impact on the quality of the mapped circuit. Two versions of each stream cipher have
been implemented, resulting in a total of four circuits. The code used to generate these
circuits is given in Listing 1. The difference between the two versions is in how the last
3 instructions are expressed. The second version groups together the XOR gates when
variables out_t1, out_t2 and out_t3 are computed.
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// version 1
t1 = s66 ^ s93
t2 = s162 ^ s177
t3 = s243 ^ s288 ^ k127

out = t1 ^ t2 ^ t3

out_t1 = t1 ^ (s91 & s92) ^ s171 ^ iv127
out_t2 = t2 ^ (s175 & s176) ^ s264
out_t3 = t3 ^ (s286 & s287) ^ s69

// version 2
t1 = s66 ^ s93
t2 = s162 ^ s177
t3 = s243 ^ s288 ^ k127

out = t1 ^ t2 ^ t3

out_t1 = (t1 ^ s171 ^ iv127) ^ (s91 & s92)
out_t2 = (t2 ^ s264) ^ (s175 & s176)
out_t3 = (t3 ^ s69) ^ (s286 & s287)

Listing 1: The two versions of an iteration of Trivium, underlined are Kreyvium differences.
The circuits have 15 inputs, respectively 17 for Kreyvium, and 4 outputs (out, out_t1,
out_t2 and out_t3).

The search heuristic has been applied to the four circuits with FBS sizes varying from
2 to 12. Figure 5 and Figure 6 plot the bootstrapping count and the estimated evaluation
cost for the mapped circuits. The second version demonstrates a faster convergence rate
and a lower number of required bootstrappings, with the exception of p = 7. The minimal
number of bootstrappings for these circuits is four, which is the number of outputs. This
is reached at p = 6 for Trivium and at p = 9 for Kreyvium.

Our heuristic maps the Trivium circuit to the same number of bootstrappings (8) and
the Kreyvium circuit to 20% less bootstrappings (8 instead of 10) using the same message
space Z4 as in [BOS23]. Furthermore, a solution with the same number of bootstrappings
is found for p = 3. The evaluation cost is reduced in this case due to the smaller TFHE
FBS parameters.

The mapped circuit with the lowest evaluation cost is obtained with p = 6 for Trivium
(4 bootstrappings) and for Kreyvium (5 bootstrappings). The evaluation cost is 45% less
than that of the solutions presented in [BOS23]. One significant advantage of the heuristic
proposed in this paper over [BOS23] is that circuits are automatically mapped.

Listing 2 illustrates version 2 of ciphers from Listing 1 which have been mapped to
FBS with size p = 3. The mapped circuit has 8 bootstrappings and is not dependent on
the implemented stream cipher. The first and the last 4 bootstrappings are independent
of each other. In the scenario of parallel execution, the mapped circuit has a latency
equivalent of 2 bootstrappings. When compared to [BOS23], the Kreyvium latency is
reduced by 50% (from 3 to 2) by our heuristic.
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Figure 5: Trivium stream cipher. Bootstrapping count and evaluation cost for the 2 circuit
versions. The result from [BOS23] is shown with red dots.
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Figure 6: Kreyvium stream cipher. Bootstrapping count and evaluation cost for the 2
circuit versions. The result from [BOS23] is shown with red dots.
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m1 = 2 - s66 + s93 - s162 + s177
m2 = Bootstrap(m1, [0, 1, 0, 1, 0])
m3 = 1 - s66 + s93 + s171 + iv127
m4 = Bootstrap(m3, [1, 0, 1, 0, 1])
m5 = 1 - s162 + s177 + s264
m6 = Bootstrap(m5, [1, 0, 1, 0])
m7 = 1 - s243 + s288 + k127 + s69
m8 = Bootstrap(m7, [1, 0, 1, 0, 1])
m9 = 1 + m2 - s243 + s288 + k127
out = Bootstrap(m9, [1, 0, 1, 0, 1])
m10 = 3 * m4 + s91 + s92
out_t1 = Bootstrap(m10, [0, 0, 1, 1, 1, 0])
m11 = 3 * m6 + s175 + s176
out_t2 = Bootstrap(m11, [0, 0, 1, 1, 1, 0])
m12 = 3 * m8 + s286 + s287
out_t3 = Bootstrap(m12, [0, 0, 1, 1, 1, 0])

Listing 2: Version 2 of Listing 1 which was mapped to FBS with size p = 3.

4.3 Comparison to other cryptographic primitives
In the paper [BPR24], the authors introduce a novel p − encoding of Booleans in TFHE
plaintext space Zp. In contrast to the conventional approach of encoding Booleans as
two distinct values, namely 0 and 1, the authors propose to encode them as distinct sets
of values from Zp. A p − encoding is defined as a pair {E0, E1}, where E0, E1 ⊂ 2Zp and
E0 ∩ E1 = ∅. The inputs of a Boolean gate to be evaluated are encoded as singleton sets.
The p− encoding for gate inputs are chosen such that their sum is a valid p− encoding
representing gate functionality. Let {{k0} , {k1}} be a p − encoding of an input. This
encoding is as an affine transformation of the Boolean encoding we use. The p−encoding of
x is Ex = {(k1 − k0) · x + k0} for x ∈ {0, 1}. So in this context, the sum of the p-encodings
is equivalent to a linear combination of the two-element Boolean encoding used in our
work.

There is a major difference in the manner the authors of [BPR24] encode plaintext
messages. The authors chose to split the plaintext message space into 2 · p segments for
odd p-s and to use half of the message space values, i.e. values 2 · k for 0 ≤ k < p. This
trick allows to obtain a Zp message space and to completely ignore the negacyclic property
of TFHE. In our case, we use a larger but more constrained message space, namely Z2p,
however the evaluated functions must be negacyclic.

We have implemented the cryptographic primitives described in [BPR24] and mapped
them to FBS using the proposed search heuristic. As before, we have executed the heuristic
with different FBS sizes and kept the best solution in terms of estimated execution time.
Our heuristic found the same or better solutions for all the circuits. Table 2 gives the
circuits for which a better solution is found. The search heuristic proposed in this work

Table 2: Comparison of search heuristic results with [BPR24].

bench [BPR24] search speedup#boots. FBS size #boots. FBS size
SIMON 1 9 1 6 (9) 1.07×
ASCON 5 17 7 6 (9) 1.22×
AES s-box 36 11 39 6 (12) 1.45×
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Interestingly enough the search heuristic found an equivalent solution for SIMON
function. Due to different plaintext encoding and to the use of the negacyclic property
our solution uses a smaller plaintext space Z6 instead of Z9. Listing 3 gives the solution
the search heuristic found. Observe that linear combination coefficients have the same
values as inputs encoding from [BPR24]: E0 = E1 = {0, 1} and E2 = E3 = E4 = {0, 2}. And
respectively, the output encoding Eout = {{0, 1, 4, 5, 8} , {2, 3, 6, 7}} is also the same as the
test vector Boolean values positions from Listing 3. Note that in our case because the test
vector is negacylic a FBS of size 6 is sufficient even if test vector length is 9.

m1 = 1 * b0 + 1 * b1 + 2 * b2 + 2 * b3 + 2 * b4
out = Bootstrap(m1, [0, 0, 1, 1, 0, 0, 1, 1, 0])

Listing 3: SIMON function which was mapped to FBS with size Z6.

In case of ASCON and the AES s-box the heuristic proposed in this paper obtains
solutions with smaller FBS sizes and by consequence faster. For example, for AES s-box a
45% speedup in the evaluation time is obtained.

4.4 Comparison to AutoHoG
In paper [GMZ+24] the authors proposed a circuit mapping procedure, designated Au-
toHoG, for TFHE functional bootstrapping. AutoHoG takes a Boolean circuit as input
and generates a circuit with “compound” gates, which is similar to our FBS mapping. In
addition to single-output gates, the AutoHoG authors employ the multi-output evaluation
method from [CIM19] to factor out bootstrappings with the same inputs.

In their experiments, the authors use the ISCAS’85 circuit benchmark [BF85] and the
ISCAS’89 sequential circuit benchmark [BBK89] in their experiments. We use the same
techniques to transform ISCAS’89 sequential circuits with flip-flops into combinational
circuits. The sequential circuits are unrolled for 10 clock cycles using the ABC logic
synthesis tool [Ber] (command frames -F 10 -i). Both ISCAS’85 and ISCAS’89 (after
unrolling) are mapped to 2-input gates using a complete gate library that has been
generated manually.

In AutoHoG, a single parameterisation of TFHE is employed, enabling the evaluation of
a multi-output FBS with p = 32. The authors compare the execution times of mapped
circuits with those of input circuits using the same TFHE parameters. However, the
presented speedup results may be overly optimistic, given that the input circuit can be
executed with significantly smaller TFHE parameters.

To ensure a fair comparison with AutoHoG, we execute our mapping heuristic with
FBS size varying from 2 to 32 and keep the circuit with smallest number of bootstrappings
as output. The speedup is approximated as the ratio between the number of input circuit
gates and the number of FBSs in the mapped circuit. This is equivalent to the method
used by AutoHoG to compute speedup. In this approximation, the overhead due to linear
combinations in multi-input FBS evaluation is ignored. The linear combination has a
much smaller impact on execution time than the bootstrapping part.

Table 3 and Table 4 depict the speedups of the search heuristic (column “search”) and
the speedup from AutoHoG paper. As previously, we provide the FBS size (column “FBS
size”) for which the circuit with the fewest number of bootstrappings is obtained. Observe
that the FBS size is not always equal to the maximum value 32. This indicates that fixing
the FBS size in advance is not always advantageous. The speedup of AutoHoG results has
been computed by dividing the available numeric values in [GMZ+24] (Fig. 7 and TABLE
IV). AutoHoG demonstrates enhanced speedups across the majority of benchmarks in case
of ISCAS’85 and for ISCAS’89 benchmarks our heuristic results get closer to AutoHoG
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Table 3: ISCAS’85 speedup and comparison with AutoHoG. The best benchmark-wise
speedup is presented in bold, with the exception of benchmarks for which an AutoHoG
speedup is not available.

bench search AutoHoG
speedup FBS size speedup

c17 3.00× 8 (13) 2.50×
c432 3.05× 28 (41) 2.16×
c499 3.86× 14 (27) −
c880 2.85× 15 (26) −
c1355 3.86× 14 (27) 6.03×
c1908 2.65× 32 (45) −
c2670 4.41× 29 (48) −
c3540 2.54× 31 (53) 3.90×
c5315 3.31× 25 (46) −
c6288 2.96× 26 (37) −
c7552 2.58× 23 (46) 5.68×
avg. 3.19× 4.05×

ones. This outcome was expected, given that our approach does not use the multi-output
FBS technique.

Conclusion and Perspectives
The heuristic presented in this paper has several limitations that require further attention
and need to be tackled in future works. The first issue is that the heuristic performance
depends on the order of visit of circuit nodes. As an example, two implementations of
Trivium/Kreyvium have been used (each resulting in different visit orders) to ensure the
best solution is found. Another shortcoming is to not use the multi-output FBS techniques
from [CIM19], which could potentially result in mapped circuits with a smaller number
of FBS. It would be beneficial to consider the reduction modulo p property of the input
plaintext space Zp. The authors of [BPR24] use a plaintext space Z2 to evaluate two-input
XOR gates for free, in contrast to a plaintext space Z3 and one FBS in our case.
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