

Seconde Générale et Technologique

Maths | Chapitre 3 : Géométrie plane

Enoncés des exercices

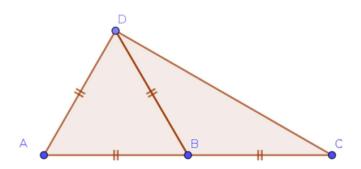
Les exercices sont classés en trois niveaux de difficulté :

- * Exercices d'application : comprendre les notions essentielles du cours
- ** Exercices d'entraînement : prendre les bons reflexes
- ★★★ Exercices d'approfondissement : aller plus loin

Exercices gratuits	Exercices sur abonnement*
★ 1-2-3	★ 4-5-6
	★★ 10 – 11 – 12
★★★ 13 – 14 – 15	★★★ 16 – 17 – 18

Exercice 1 ★

Géométrie plane



ABD est un triangle équilatéral.

BCD est un triangle isocèle en B.

Démontrer que le triangle ADC est rectangle en ${\cal D}.$

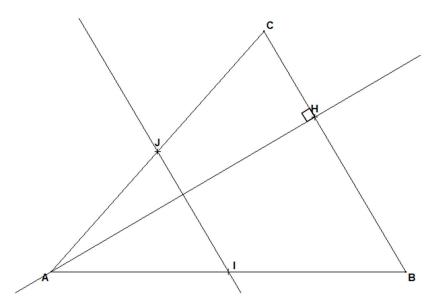
Exercice 2 ★

Triangles, droite des milieux et Aires

ABC est un triangle, I et J sont les milieux de [AB] et [AC].

La perpendiculaire à (BC) passant par A coupe [BC] en H.

Voir la figure ci-dessous :



- 1. a) Quelle conjecture peut-on faire sur le rôle de la droite (IJ) pour [AH]?
 - b) On se propose de démontrer cette conjecture. Pour cela on procède comme suit :
 - 1) Dans le triangle ABC, démontrer que (IJ) est parallèle à (BC).
 - 2) Dans le triangle ABH, soit K le point d'intersection entre les droites (IJ) et (AH). Démontrer que K est le milieu du segment [AH].
 - 3) Conclure sur le rôle de la droite (IJ) pour [AH].
- 2. On donne AH = 3 cm et BC = 4 cm.
 - a) Déterminer l'aire du triangle ABC.
 - b) Déterminer directement en utilisant les résultats précédents IJ et AK.
 - c) En déduire l'aire du triangle AII.
- 3. a) Pouvait-on obtenir directement l'aire du triangle AIJ en fonction de l'aire du triangle ABC?
- b) Si <u>oui, justifier</u> précisément, sans faire aucun calcul numérique, et en démontrant la relation entre les aires A_{AIJ} et A_{ABC} .

Exercice 3 ★

On a construit la figure ci-dessus telle que :

Les droites (AB), (EF) et (GH) sont parallèles entre elles

DH = 9

DF = 18

CG = 3

AG = 10,5

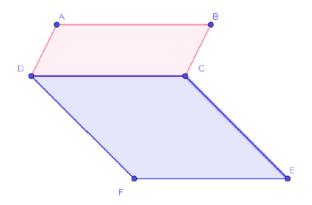
EF = 4,5

BHG = 67°

Exercice 4 * ★

Parallélogrammes

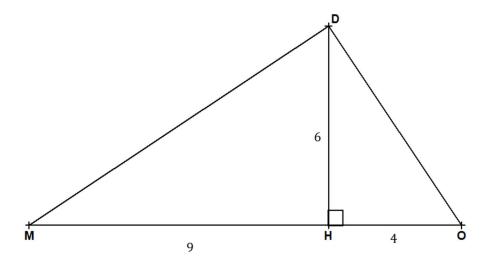
- ABCD est un parallélogramme.
- $\bullet \;\; FECD$ est un parallélogramme.



Démontrer que ABEF est un parallélogramme.

Exercice 5 * *

Triangle rectangle et Calcul d'aire



On donne la figure ci-dessus donnant les longueurs et le codage nécessaires pour répondre au problème suivant : Le triangle *OMD* est il rectangle ?

Pour répondre à cette question, on donne la mode opératoire suivant :

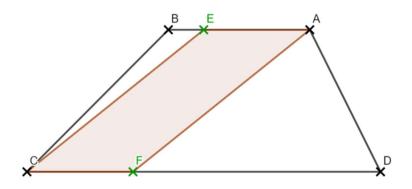
- 1. Déterminer la longueur OD.
- 2. Déterminer la longueur MD.
- 3. En déduire la nature du triangle *OMD*.
- 4. Calculer alors l'aire du triangle *OMD* de deux manières différentes.

Exercice 6 * 🛨

Déterminer la nature d'un quadrilatère

Soit ABCD un trapèze tel que le segment [CD] soit la base du trapèze.

On place le point E sur le segment [AB] et le point F sur le segment [CD] tel que AE = CF.



Quelle est la nature du quadrilatère AECF?

Exercice 7 **

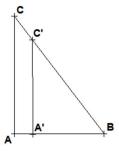
Géométrie plane : « Utiliser un raisonnement par contraposée »

Le triangle ABC est tel que AB = 3, BC = 5 et AC = 3.9.

A' est le point de [AB] tel que BA' = 2.5

C' est le point de [BC] tel que BC' = 4

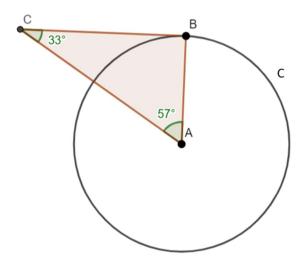
- 1. Le triangle ABC est il rectangle ?
- 2. Les droites (AC) et (A'C') sont-elles parallèles ?



Exercice 8 **

Cercle et angles

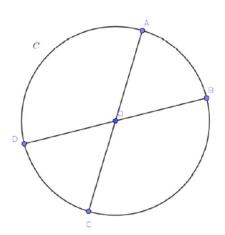
Soit C le cercle de centre A et de rayon 4 cm. On place un point B sur ce cercle et on construit le triangle ABC tels que $\widehat{ACB} = 33^{\circ}$ et $\widehat{BAC} = 57^{\circ}$.



- 1. Montrer que (BC) est la tangente au cercle C en B.
- 2. Calculer l'aire du triangle ABC
- 3. Le centre du cercle circonscrit au triangle ABC appartient-il au cercle C?

Exercice 9 **

Rectangle inscrit dans un cercle.



- C est un cercle de centre O.
- [AC] et [BD] sont des diamètres de C.

Démontrer que ABCD est un rectangle.

Exercice 10 * *

Symétrie centrale, cercle et droites

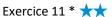
Sur la figure ci-contre, nous savons que :

[MN] est un diamètre du cercle \mathcal{C} de centre O.

La droite d_1 passant par M recoupe \underline{e} en P.

La droite d_2 parallèle à d_1 passant N recoupe \underline{e} en Q.

- 1. Par la symétrie centrale s de centre 0 :
 - a) Quel est le symétrique du point M?
 - b) Quelle est la symétrique de la droite d_1 ?
 - c) Quel est le symétrique du cercle @?
 - d) En déduire le symétrique du point P?
- 2. Déterminer alors la nature du quadrilatère MPNQ
- a) Sachant que le rayon du cercle <u>e est</u> de 3 cm et que l'angle NMP a pour mesure 30°, déterminer les valeurs exacte des longueurs MN, MP, PN.
 - b) Déduire de ces derniers résultats l'aire exacte du quadrilatère MPNQ.
 - c) Calculer l'aire exacte du disque 9 délimité par le cercle e.
 - d) Calculer le rapport ho exact égal à l'aire du quadrilatère MPNQ divisé par l'aire du disque $\mathfrak D$
 - e) Donner une valeur approchée à 10⁻² près de ce rapport, puis l'écrire en pourcentage.

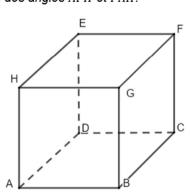


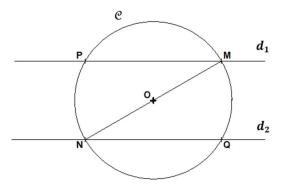
Calculer des longueurs et des angles dans un solide

Soit ABCDEFGH un cube de côté 5 cm.

Le but de cet exercice sera de déterminer la mesure des angles \widehat{AFH} et \widehat{FAH} .

- 1. Dans le carré *EFGH*, déterminer la longueur *FH*.
- 2. On admettra que le quadrilatère *AHFC* est un rectangle.
 - Déterminer une valeur approchée de l'angle \widehat{AFH} .
- En déduire une valeur approchée de l'angle *FAH*.

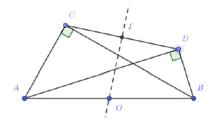




Exercice 12 * *

Deux triangles dans un demi-cercle.

- ABC et ABD sont deux triangles rectangles.
- O est le milieu de [AB].
- I est le milieu de [CD]



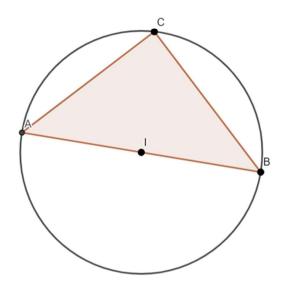
- 1. Démontrer que OCD est un triangle isocèle en O.
- 2. En déduire que OI est perpendiculaire à (CD).

Exercice 13 ***

Démonstration du théorème de l'angle inscrit

Le but de cet exercice sera de démontrer la propriété suivante :

« Si un triangle est inscrit dans un cercle et que l'un de ses côtés est un diamètre de ce cercle, alors ce triangle est rectangle »



Soit ABC un triangle inscrit dans un cercle tel que [AB] est un diamètre de ce cercle.

On note I le milieu de [AB], α l'angle \widehat{BAC} et β l'angle \widehat{ABC} .

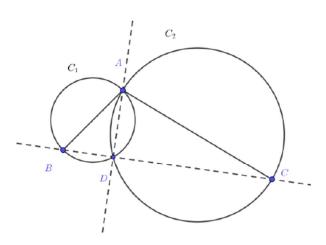
On justifiera le plus rigoureusement possible les questions suivantes.

- 1. Quelle est la nature des triangles AIC et BIC ?
- 2. Exprimer l'angle \widehat{ACB} en fonction de α et β .
- 3. En déduire que $\alpha + \beta = 90^{\circ}$.
- 4. Conclure sur la nature du triangle ABC.

Exercice 14 \star 🖈

Intersections de cercles.

- C_1 est un cercle de diamètre [AB].
- C_2 est un cercle de diamètre [AC].
- C_1 et C_2 se coupent également en D.



- 1. Démontrer que B, D et C sont alignés.
- 2. Démontrer que (AD) et (BC) sont perpendiculaires.

Exercice 15 **

Symétrie centrale, parallélogramme et triangles

ABCD est un parallélogramme de centre O.

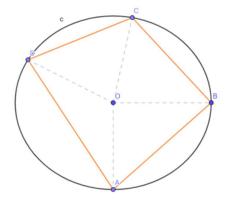
Le point F est le symétrique de D par rapport à B et Le point E est le symétrique de A par rapport à C.

- 1. Faire une figure.
- 2. Dans le triangle OEF, démontrer que les droites (CB) et (EF) sont parallèles.
- 3. La droite (CB) coupe la droite (AF) en K. Démontrer que K est le milieu de [AF].
- 4. Démontrer que la droite (AB) coupe le segment [CF] en son milieu L.

Exercice 16 * *

Démonstration : Le quadrilatère inscriptible

Soit ABC un triangle inscrit dans un cercle C de centre O. On place le point D sur le cercle C.



1. Montrer que dans le quadrilatère ABCO, on a :

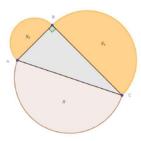
$$2\widehat{BAO} + 2\widehat{BCO} + \widehat{AOC} = 360^{\circ}$$

- 2. Que vaut la somme des angles $2\widehat{DAO} + 2\widehat{DCO} + \widehat{AOC}$?
- 3. En déduire que $\widehat{BAD} + \widehat{BCD} = 180^{\circ}$. Que remarque-t-on pour les angles \widehat{ABC} et \widehat{ADC} ?
- 4. On suppose maintenant que le point D n'appartienne pas au cercle C. Les angles \widehat{BAD} et \widehat{BCD} sont-ils supplémentaires ?
- 5. En déduire la propriété du quadrilatère inscriptible illustrée dans cet exercice.

Exercice 17 * *

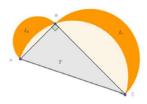
Lunules d'Hipp crate

- 1. ABC est un triangle rectangle en B.
 - S_1 , S_2 et S sont les aires délimitées des demi-cercles de diamètres [BC], [AB] et [AC].



Démontrer que $S_1 + S_2 = S$

- 2. Dans le même triangle ABC rectangle en B.
 - L₁ est la lunule délimitée par le demi-cercle de diamètre [AB] et le demi-cercle de diamètre [AC].
 - L_2 est la lunule délimitée par le demi-cercle de diamètre [BC] et le demi-cercle de diamètre [AC].
 - T est l'aire du triangle ABC.



Démontrer que $T = L_1 + L_2$

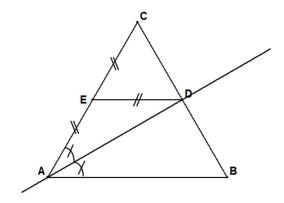
Exercice 18 * *

D'un triangle équilatéral à un quadrilatère particulier

Sur la figure ci-contre, le triangle ABC est équilatéral. E est le milieu de [AC] et $D \in [BC]$.

- a) Quelle conjecture peut-on faire sur la position du point D sur le segment [BC] ?
 - b) Démontrer cette conjecture.

Indication: On montrera d'abord que $\widehat{EDA} = \widehat{DAB}$



- 2. a) Construire A' symétrique de A par rapport à D
 - b) Quelle conjecture peut-on faire sur la position des droites (ED) et (CA')?
 - c) Démontrer cette conjecture.
- 3. Soit E' le point d'intersection des droites (ED) et (BA').
 - a) Quelle conjecture peut-on faire sur la position du point E' sur le segment [BA']?
 - b) Démontrer cette conjecture.