

Seconde Générale et Technologique

Maths | Chapitre 6 : Equation cartésienne d'une droite

Enoncés des exercices

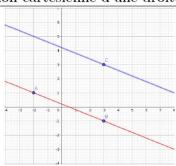
Les exercices sont classés en trois niveaux de difficulté :

- 🛨 Exercices d'application : comprendre les notions essentielles du cours
- ★★ Exercices d'entraînement : prendre les bons reflexes
- ★★★ Exercices d'approfondissement : aller plus loin

Exercices gratuits	Exercices sur abonnement*
★ 1-2-3	★ 4-5-6
★★ 7-8-9	★★ 10 − 11 − 12
★★★ 13 – 14 – 15	★★★ 16 – 17 – 18

Exercice 1 ★

Équation cartésienne d'une droite



Soit A(-2;1); B(3,-1) et C(3;3) trois points du plan muni d'un repère orthonormé.

- 1. Déterminer une équation cartésienne de la droite (AB).
- 2. Déterminer une équation cartésienne de la droite d, parallèle à (AB) passant par C.

Exercice 2 ★

<u>Utilisation d'une équation cartésienne d'une droite et position relative de deux</u> droites

 $d_1 \stackrel{\text{de}}{=} d_2$ sont deux droites d'équations cartésiennes respectives x + 2y - 4 = 0 et 2x - 3y - 3 = 0

- 1/ a) Quelle est l'ordonnée du point A d'abscisse 0 de d_1 ?
 - b) Quelle est l'ordonnée du point B d'abscisse 2 de d_1 ?
 - c) Quel est le rôle de \overrightarrow{AB} pour la droite d_1 ?
 - d) Tracer la droite d_1 .
- 2/a) Déterminer les coordonnées d'un point de d_2 .
 - b) Déterminer les coordonnées d'un vecteur directeur de d_2 .
 - c) Tracer la droite d_2 .
- 3/ On se propose de déterminer les coordonnées du point d'intersection M entre d_1 et d_2 .
 - a) Pour cela, quel système d'équations doit-on résoudre ?
 - b) Poser et résoudre ce système d'équations par la méthode de substitution.
 - c) Conclure sur les coordonnées du point M.

Exercice 3 ★

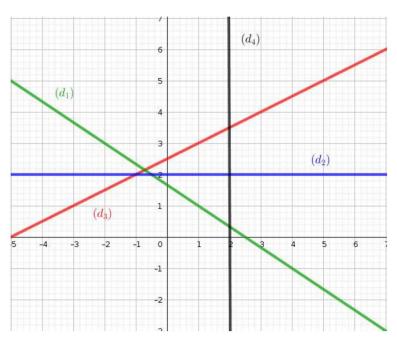
Déterminer une équation cartésienne d'une droite

Détermine une équation cartésienne de la droite passant par A(-2;1) et de vecteur directeur $\vec{u}(-3;1)$.

Exercice 4 * ★

Vecteurs directeurs

1. Par lectures graphique, donner les vecteurs directeurs des droites $d_1\,;\,d_2\,;\,d_3$ et $d_4.$

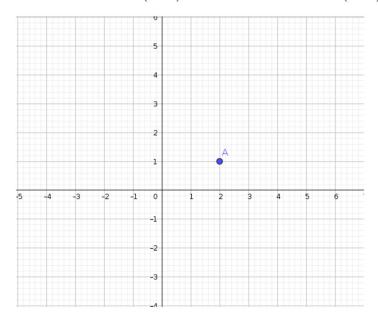


2. Dans la figure ci-dessous, construire la droite passant par A(2;1) et de vecteur directeur \vec{u} .

•
$$\vec{u} \left(\begin{array}{c} 2 \\ 3 \end{array} \right)$$

•
$$\vec{u} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

•
$$\vec{u} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$



Exercice 5 * *

Détermination du point d'intersection et de la perpendicularité de deux droites

Le plan étant rapporté à un repère orthonormé $(0; \vec{\imath}; \vec{j})$, on donne les droites \mathfrak{D} et \mathfrak{D}' données par leurs équations cartésiennes respectives suivantes :

$$4x - 2y + 4 = 0$$
 et $3x + 6y - 42 = 0$.

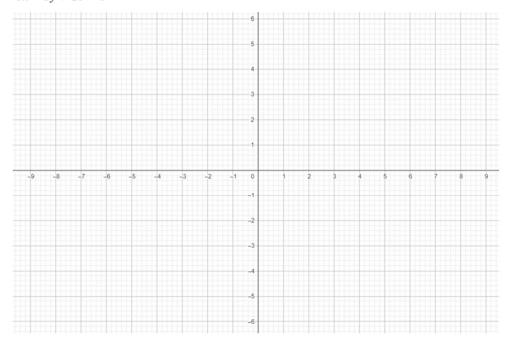
- 1. Déterminer les coordonnées du point d'intersection M de \mathfrak{D} et \mathfrak{D}' .
- 2. À l'aide d'un point A de \mathfrak{D} et d'un point B de \mathfrak{D}' , Démontrer que les droites \mathfrak{D} et \mathfrak{D}' sont perpendiculaires.

Exercice 6 * 🛨

Représenter une droite donnée par une équation cartésienne

Dans le repère orthonormé ci-dessous, représenter la droite d'équation cartésienne

$$3x - 5y + 10 = 0$$



Exercice 7 **

Equation cartésienne d'une droite du plan :

Le plan est rapporté orthonormé (O, I, J); soient les points A(-1; -3), B(3; 5), C(-1; -7).

- 1. Faire une figure
- 2. Déterminer une équation cartésienne de chacune des droites (AB) et (AC). Donner deux moyens de vérifier le résultat.
- I est le milieu du segment [BC].
 Déterminer une équation de la droite (AI) médiane issue de A dans le triangle ABC.
- 4. Déterminer une équation de la droite d qui contient C est parallèle à (AB).

Exercice 8 **

Résolution d'un système par substitution et par combinaison linéaire

1. Résoudre le système suivant par substitution :

$$\begin{cases} 3x - 2y = -1 \\ -5x - y = 2 \end{cases}$$

2. Résoudre le système suivant par combinaison linéaire :

$$\begin{cases}
-4x + 7y = 1 \\
3x - 4y = -2
\end{cases}$$

Exercice 9 **

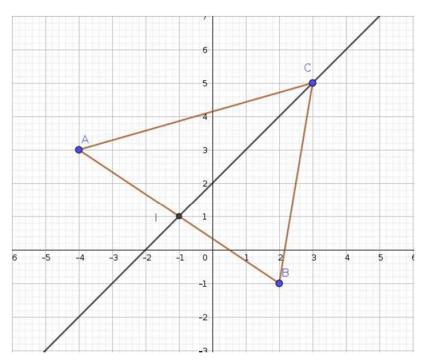
Équation d'une médiane.

Dans le plan muni d'un repère orthonormé. On donne :

A(-4;3); B(2;-1) et C(3;5).

I est le milieu de [AB].

Donner une équation cartésienne de la médiane issue de C.



Exercice 10 * *

Détermination d'une équation cartésienne et de l'équation réduite d'une droite et position relative de deux droites

Soit deux points A(2;5) et B(2;9) donnés dans un repère orthonormé $(0;\vec{\iota};\vec{\jmath})$.

- 1. Calculer les coordonnées du vecteur \overrightarrow{AB} .
- 2. Déterminer une équation cartésienne de la droite (AB).
- 3. En déduire l'équation réduite, puis le coefficient directeur ou la pente de la droite (AB).
- 4. Tracer cette droite (AB) dans le repère orthonormé $(0; \vec{\iota}; \vec{\jmath})$.
- 5. Déterminer l'équation réduite de la droite (d) passant par A de pente $\frac{7}{4}$, puis donner une équation cartésienne de (d).
- 6. Tracer cette droite (d) dans le repère orthonormé $(0;\vec{\iota};\vec{j})$. Quelle conjecture peut-on faire ?
- 7. Soit la droite(d') d'équation y = 1.
 - a) Déterminer les coordonnées du point $\mathcal C$ d'intersection des droites (d) et (d').
 - b) Montrer que le triangle *CAB* est rectangle. Conclure.

Exercice 11 * *

Résolution de systèmes d'équations par la méthode la plus adaptée

Résoudre les systèmes suivants par la méthode la plus adaptée :

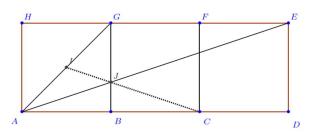
1.
$$\begin{cases} -5x + y = 0 \\ 3x - y + 1 = 0 \end{cases}$$

2.
$$\begin{cases} -2x + 3y - 1 = 0 \\ 3x - 4y + 2 = 0 \end{cases}$$

3.
$$\begin{cases} \frac{2}{3}x - 3y + 7 = 0 \\ -x + \frac{1}{2}y = 0 \end{cases}$$

Exercice 12 * *

Avec un repère.



Dans la figure ci-dessus, ABGH, BCFG et CDEF sont des carrés, les points A, B, C et D sont alignés. I est le milieu de [AG] et les droites (AE) et (BG) sont sécantes en J.

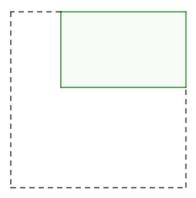
- 1. En utilisant le théorème de Thalès, exprimer BJ en fonction de DE
- 2. On se place dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AH})$. Donner les coordonées de tout les points de la figure.
- 3. Démontrer que les points I, J et C sont alignés.

Exercice 13 ***

Résolution de problème : Système d'équation à deux inconnues

Un fermier a un potager rectangulaire de longueur 50 mètres et de largeur 30 mètres. Il souhaite agrandir la surface de son potager en augmentant la longueur de x mètres et la largeur de y mètres pour ainsi obtenir un terrain carré dont le périmètre est égal à 500 mètres.

De combien de mètres le fermier devra-t-il rallonger la longueur et la largeur de son potager ?



Indications:

- Ecrire un système d'équations à deux inconnues x et y traduisant les données de l'énoncé.
- 2. Calculer x et y. Conclure.

Exercice 14 ***

Droites et paramètre.

$$\overline{\text{Soit } m \in \mathbb{R} \text{ et } (d_m) : mx + (1-m)y + 3 - m = 0}$$

- 1. Donner un vecteur directeur de (d_m) .
- 2. Pour quelle valeur de m, la droite (d_m) est-elle parallèle à l'axe des abscisses?
- 3. Pour quelle valeur de m, la droite (d_m) est-elle parallèle à l'axe des ordonnées?
- 4. A quelle condition l'origine du repère appartient-elle à (d_m) ?

Exercice 15 **

<u>Détermination de l'équation réduite et d'une équation cartésienne d'une droite du plan et droites remarquables du triangle</u>

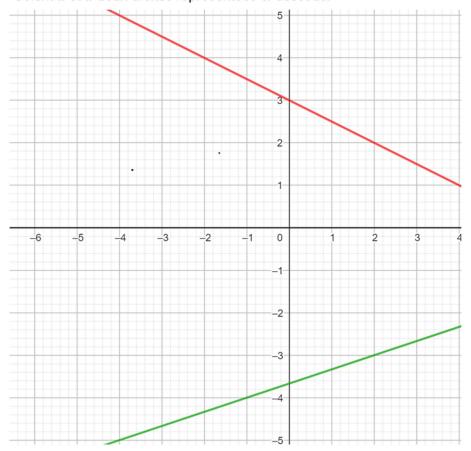
Dans le repère orthonormé (O, I, J) ci-dessous, on considère les points A et B dont on lira les coordonnées entières ainsi que le triangle OAB.

- 1. Déterminer les coordonnées du milieu *K* du segment [*AB*].
- 2. En déduire, en justifiant, le centre du cercle circonscrit au triangle *OAB*.
- 3. Déterminer, en justifiant, l'orthocentre du triangle *OAB*.
- 4. Déterminer, en justifiant comme indiqué ci-dessous, le centre de gravité du triangle *OAB*.
- a) On déterminera tout d'abord l'équation réduite de la droite (AP) avec P milieu du segment [OB] et de la droite (OK).
- b) Ensuite, on déduira une équation cartésienne de chacune de ces deux droites (AP) et (OK).
- c) Déterminer alors les coordonnées du centre de gravité L du triangle OAB en résolvant un système linéaire 2×2 que l'on déduira du 4. b).
- 5. a) Que peut-on remarquer pour les points O, L et K?
 - b) Justifier, sans calcul, cette conjecture.
 - c) Justifier, à l'aide des coordonnées des points O, L et K, cette conjecture.
- 6. a) Calculer la longueur OK.
 - b) En déduire directement à l'aide des résultats précédents la longueur *OL*.
 - c) Vérifier ce résultat par le calcul à l'aide des coordonnées du point *L*.

Exercice 16 * *

Retrouver le point d'intersection des deux droites

Soient d et d' deux droites représentées ci-dessous.



Le but de cet exercice est de retrouver le point d'intersection « disparu » des deux droites.

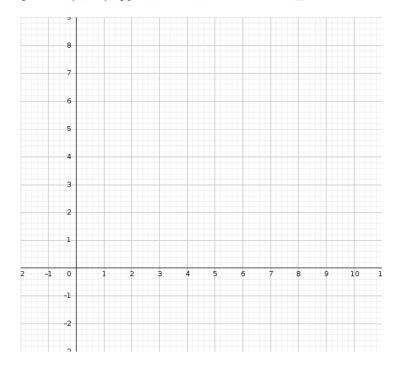
- 1. Déterminer les équations cartésiennes des deux droites.
- 2. Résoudre le système d'équations formé par ces deux droites pour trouver les coordonnées du point d'intersection.

Exercice 17 * *

Avec un paramètre.

On donne la droite d_m qui admet pour équation : (m+1)x + (3-m)y - 8m - 4 = 0 avec $m \in \mathbb{R}$.

- 1. Représenter sur le graphique ci-dessous les droites d_1 ; d_0 et d_2 . $(c.a.d\ les\ droites\ pour\ m=1, m=0\ puis\ m=2)$. Que remarquez-vous?
- 2. Prouver que le point M(7;-1) appartient à toutes les droites d_m .



Exercice 18 * *

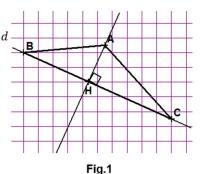
Equation cartésienne d'une droite et détermination de la distance d'un point à une droite

Sur la **figure1** ci-contre, d est une droite et A est un point du plan.

H est le projeté orthogonal de A sur d.

Par définition, la distance de A à d est le réel AH.

1. quelle est la distance de A à d lorsque A est sur d?



 Dans cette question, nous allons démontrer la condition analytique d'orthogonalité de deux vecteurs.

Pour cela on procède comme suit :

On considère la figure 2 ci-dessous dans un repère orthonormé.

Les vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$ sont orthogonaux et nous avons $\vec{u} = \overrightarrow{OM}$ et $\vec{v} = \overrightarrow{OM}$.

- a) Calculons OM^2 , ON^2 et MN^2 .
- b) Déduire la condition analytique d'orthogonalité entre $\vec{u}(x;y)$ et $\vec{v}(x';y')$.

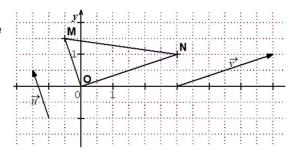


Fig.2

- 3. Dans cette question, nous avons A(3; -1)
 - et la droite d a pour équation : 2x + y 1 = 0.
 - a) Donner une équation de la droite Δ perpendiculaire à d et passant par A.
 - b) Trouver les coordonnées du point ${\cal H}\,$, intersection des droites ${\cal d}\,$ et $\Delta.$
 - c) Calculer la distance de A à d.