

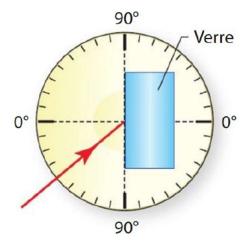
Seconde Générale et Technologique

Physique-Chimie | Chapitre 14 : Réfraction et réflexion de la lumière

Enoncés des exercices

Les exercices sont classés en trois niveaux de difficulté :

- * Exercices d'application : comprendre les notions essentielles du cours
- ★★ Exercices d'entraînement : prendre les bons reflexes
- ★★★ Exercices d'approfondissement : aller plus loin


Exercices gratuits	Exercices sur abonnement*			
★ 1-2-3	★ 4-5-6			
	★★ 10 − 11 − 12			
★★★ 13 − 14 − 15	★★★ 16 – 17 – 18			

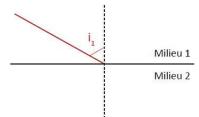
Exercice 1 ★

Je réfléchis

Le faisceau lumineux d'un laser arrive à la surface d'un bloc de verre.

- 1) Mesurer l'angle d'incidence.
- 2) En déduire l'angle de réflexion puis tracer le rayon réfléchi.

Exercice 2 ★


Construction de rayons

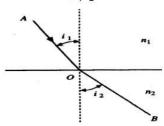
On envoie un rayon incident sur la surface séparant de l'air (milieu 1) et de l'eau (milieu 2) selon le schéma ci-contre.

Données :

• Angle d'incidence : i₁ = 50°

• Indices de réfraction: $n_1 = 1$ et $n_2 = 1,33$

1. Quels sont les 2 phénomènes subit par le rayon au niveau du point d'incidence ?


2. Indiquer les lois de Snell-Descartes pour chacun des 2 rayons issus du rayon incident.

3. Représenter approximativement ces 2 rayons.

Exercice 3 🛨

Connaître le vocabulaire

 1° Un rayon lumineux passe d'un milieu d'indice de réfraction n_1 dans un autre milieu d'indice de réfraction n_2 (figure ci-dessous).

Comment appelle-t-on?

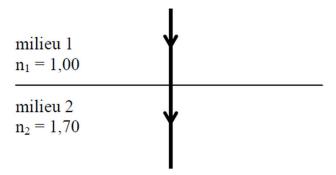
a) le rayon AO;

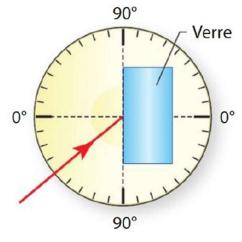
b) le rayon OB;

c) l'angle i1;

d) l'angle i2

2° Quelle valeur maximale peut prendre i2?


3° Au-delà de cette valeur maximale qu'observe-t-on ?

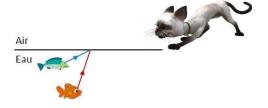


Exercice 4 * ★

Est-ce bien normal?

Un faisceau lumineux arrive en *incidence normale* sur le dioptre comme le montre le schéma suivant :

- 1) Grâce au schéma, déterminer l'angle d'incidence. Expliquer alors l'expression en italique.
- 2) Grâce au schéma, déterminer l'angle de réfraction.
- 3) Que se passe-t-il donc pour lors d'une incidence normale?

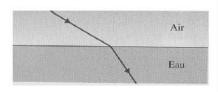

Exercice 5 * 🛨

Un poisson invisible!

Deux poissons nagent dans un aquarium. Un chat surplombe l'aquarium.

On s'intéresse à 2 rayons diffusés (en rouge) par chacun des 2 poissons et qui arrivent sur la surface séparant l'eau et l'air.

Dans cette situation, si l'angle d'incidence est supérieur à 49°, le phénomène de réfraction disparaît et la réflexion est totale.


Données :

- Angles d'incidences: Poisson 1: i, = 30° et poisson 2: i, = 60°
- Indices de réfraction : $n_{air} = 1$ et $n_{eau} = 1,33$
 - 1. Le poisson 1 est-il le poisson rouge ou le poisson bleu ? Justifier en complétant le dessin.
 - 2. Dessiner approximativement tous les rayons manquants. Expliquer la démarche.
 - 3. Quel poisson n'est pas vu par le chat?

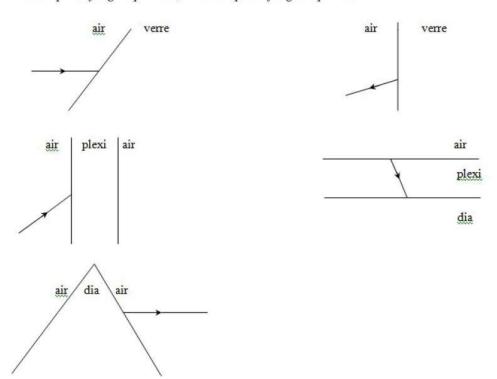
Exercice 6 * 🛨

Détermination de l'angle de réfraction

Un rayon qui se propage dans l'air se réfracte à la surface de l'eau est schématisée ci-dessous.

Données : indice de réfraction de l'air : nair = 1 ; indice de réfraction de l'eau : neau = 1.33.

- 1°Compléter le schéma en indiquant le point d'incidence I, en représentant la normale et en repérant les angles d'incidence i_1 et de réfraction i_2 .
- 2° Rappeler la loi de la réfraction de Snell-Descartes.
- 3° Calculer la valeur de l'angle de réfraction d'un rayon lumineux d'incidence i₁ = 50°.

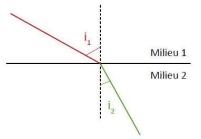

Réfractions en chaîne

Compléter les schémas suivants avec les rayons lumineux manquants et indiquer les angles d'incidence et de réfraction.

On rappelle que plus un milieu est réfringent, plus son indice est élevé et plus le rayon est proche de la normale.

Données:

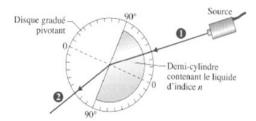
Le diamant est un milieu plus réfringent que le verre, lui-même plus réfringent que le plexiglas, luimême plus réfringent que l'eau, elle-même plus réfringente que l'air.


1

Exercice 8 **

Utilisation des lois de Snell-Descartes

On réalise l'expérience schématisée ci-contre en faisant passer un rayon lumineux d'un milieu 1 vers un milieu 2.


Données:

- Angle d'incidence : i₁ = 50,0°
 Angle de réfraction : i₂ = 42,8°
- Indices de réfraction : n₁ = 1,33 et n₂ = ?
- 1. Rappeler les lois de Snell-Descartes pour la réflexion et la réfraction.
- 2. Dessiner le rayon réfléchi.
- 3. Calculer l'indice de réfraction n, du milieu 2.
- **4.** On modifie l'angle d'incidence qui vaut maintenant $i'_1 = 25,0^\circ$. Calculer le nouvel angle de réfraction i'_2 .

Exercice 9 **

Détermination de l'indice de réfraction d'un liquide

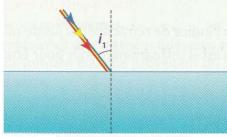
Un faisceau de lumière monochromatique est dirigé vers un demi-disque contenant un liquide.

A l'aide du dispositif ci-dessus, on réalise plusieurs mesures pour différents angles d'incidence.

i ₁ (en °)	0	10	20	30	40	
I ₂ (en °)	0	13	27	42	59	

- 1° Nommer les rayons 0 et 0.
- 2° Tracer la droite représentative des variations de sini1 en fonction de sini2.
- 3° Montrer que le rapport nair/n est égal au coefficient directeur de cette droite.
- 4° Déterminer l'indice de réfraction du liquide.

Données : indice de réfraction de l'air : nair=1.


Exercice 10 * *

Lumière polychromatique

Une lumière polychromatique est constituée de trois radiations bleue, jaune et rouge dont les longueurs d'onde sont respectivement : $\lambda_{bleu} = 485$ nm, $\lambda_{jaune} = 590$ nm et $\lambda_{rouge} = 660$ nm. Cette lumière atteint une bloc de verre avec un un angle d'incidence i_1 = 42,0 ° comme le montre le schéma suivant :

Données:

Indice de réfraction du verre pour chaque radiation : $n_{bleu} = 1,526$, $n_{jaune} = 1,474$ et $n_{rouge} = 1,428$; Indice de réfraction de l'air : $n_{air} = 1,000$.

- Exprimer puis calculer l'angle de réfraction pour chaque radiation. (REDIGER LE CALCUL POUR UNE SEULE RADIATION)
- 2) Compléter alors le schéma précédent avec les rayons réfractés.
- 3) Quelle est la radiation :
 - la plus déviée ?
 - la moins déviée ?
- 4) Quelle propriété du verre a été mise en évidence ?

Exercice 11 * *

Les verres ne sont pas tous identiques!

Dans les bacs de recyclage pour « verre », il est interdit de mettre des verres culinaires (verres, assiettes ...) et des verres spéciaux (ampoules, pare-brise ...).

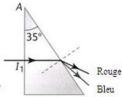
Effectivement ces verres, de par leur composition, fondent à des températures plus élevées et pourraient ainsi former des défauts dans de nouvelles bouteilles fabriquées.

L'une des grandeurs caractéristiques d'un verre est son indice de réfraction n.

Afin de les comparer, 2 verres ont été fondus en forme de cube : l'un est en pyrex, l'autre en verre de bouteille.

Sur l'une des faces du premier cube, on envoie un rayon formant un angle d'incidence i_1 = 35,0° L'angle réfracté a pour valeur i_2 = 22,1°

Données :


- Indices de réfraction : $n_{air} = 1$; $n_{pyrex} = 1,474$; $n_{bouteille} = 1,524$
- 1. Rappeler la loi de Snell-Descartes pour la réfraction.
- 2. Calculer l'indice de réfraction n, du premier cube de verre.
- 3. De quel verre est-il constitué?.
- **4.** On réalise exactement la même expérience avec le deuxième cube de verre. Calculer l'angle de réfraction obtenu.

Exercice 12 * *

Dispersion de la lumière blanche

Un rayon de lumière blanche arrive orthogonalement sur une face d'un prisme en verre, d'angle au sommet A = 35° comme l'indique le schéma. Il passe de l'air dans le verre puis se disperse en passant du verre dans l'air.

Les indices de réfraction du prisme pour les radiations rouge et bleue sont respectivement : $\underline{n}_{rouge} = 1,62$ et $\underline{n}_{bleu} = 1,65$. L'indice de réfraction de l'air est $\underline{n}_{air} = 1,00$.

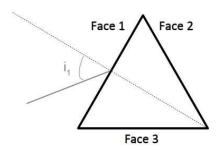
- 1° Pourquoi le rayon n'est-il pas dévié au passage air-verre au point l₁?
- 2° Montrer que l'angle d'incidence i₁ lors du passage verre-air sur la deuxième face du prisme vaut 35°.
- 3° Déterminer les valeurs ibleu et irouge de l'angle de réfraction pour les radiations bleue et rouge.
- 4° De la lumière rouge ou de la bleue, laquelle est la plus déviée ? Le schéma est-il en accord avec la réponse ?

Exercice 13 ***

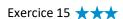
Ultrarapide...?

Une personne essaie d'observer, depuis le bord d'une piscine, deux spots lumineux immergés. Le premier spot est éclaire avec un angle de 48,7° par rapport à la verticale et le deuxième avec un angle de 60,0°.

- Schématiser la situation du premier spot (à l'aide d'un rapporteur et avec les notations appropriées).
- 2) En s'aidant de la 2^{ème} loi de Snell-Descartes pour la réfraction, déterminer où doit se situer l'œil de la personne pour voir le premier spot ?
- Compléter alors le schéma de la question 1) (à l'aide d'un rapporteur et avec les notations appropriées).
- Schématiser la situation du deuxième spot (à l'aide d'un rapporteur et avec les notations appropriées).
- 5) En s'aidant de la 2^{ème} loi de Snell-Descartes pour la réfraction, montrer que la personne ne peut pas voir le spot en restant hors de l'eau.
- 6) Quel phénomène se produit donc ? Où doit se situer l'œil de la personne pour voir le deuxième spot ? Compléter alors le schéma de la question 4).

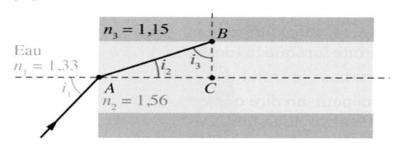

Exercice 14

Dispersion de la lumière par un prisme


On envoie de la lumière blanche sur une face 1 d'un prisme équilatéral en verre avec un angle d'incidence i, = 60,0°.

Données :

- Indice de réfraction de l'air pour toutes les couleurs : n_a =1,00
- Indice de réfraction du verre pour la lumière rouge : n_w = 1,505
- Indice de réfraction du verre pour la lumière bleue : $n_{vb} = 1,516$



- 1. Calculer l'angle de réfraction pour la couleur rouge i_{2r} et la couleur bleue i_{2b} sur la face 1 du prisme.
- 2. Compléter approximativement le schéma ci-dessus.
- 3. Quelle propriété du verre est ainsi mise en évidence ?
- 4. Montrer que l'angle d'incidence du rayon bleu sur la face 2 du prisme est i' = 25,2°.
- 5. Calculer l'angle de réfraction i'_{2b} du rayon bleu sortant de la face 2. Tracer ce rayon approximativement

Incidence limite

Lors d'une fibroscopie, un rayon lumineux se propageant dans de l'eau pénètre dans une fibre optique.

- 1° Calculer la valeur limite i_{lim} de l'angle i_3 afin que la relation suivante soit respectée : $n_2 \times \sin i_3 \ge n_3$.
- 2° a. Que peut-on dire du triangle ABC ? En déduire la relation entre les angles i_2 et i_3 .
- b. En déduire la valeur de l'angle i_2 lorsque $i_3 = i_{limite}$.
- 3° Calculer la valeur de l'angle i_1 , lorsque $i_3 = i_{limite}$.
- 4° Un rayon lumineux pourra-t-il se propager dans la fibre optique quel que soit l'angle i1?

Exercice 16 * *

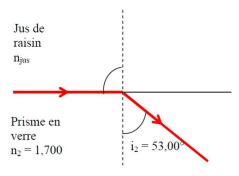
La science du vin

Dans cet exercice, on cherche à déterminer l'indice de réfraction d'un jus de raisin pour savoir s'il est suffisamment mûr pour être vendangé.

Document 1 : Quand réaliser les vendanges ?

Pour être vendangé, le raisin doit contenir 21,5% de sucre en masse c'est-à-dire que 100g de jus de raisin doit contenir 21,5g de sucre.

Avant de réaliser les vendanges, le viticulteur vérifie donc le taux de sucre du jus de raisin à l'aide réfractomètre qui mesure l'indice de réfraction du jus de raisin.


Document 2 : Lien entre le taux de sucre et l'indice de réfraction

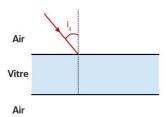
Lorsque l'on mesure l'indice de réfraction de différentes solutions de pourcentage massique connus en sucre, on obtient les résultats suivants :

% sucre	0,0	5,0	10,0	15,0	20,0	25,0	30,0
indice	1,330	1,337	1,344	1,350	1,358	1,364	1,371

Document 3 : Indice de réfraction du jus de raisin du viticulteur

La mesure de l'indice de réfraction du jus de raisin est effectuée en incidence rasante c'est-à-dire que l'angle d'incidence est $i_1 = 90,00^{\circ}$ comme le montre le schéma suivant :

- 1) Exprimer puis calculer l'indice de réfraction du jus de raisin.
- Construire le graphique de l'indice de réfraction d'un solution sucrée en fonction du pourcentage massique en sucre.
- 3) Le raisin peut-il être vendangé ? Justifier en laissant des traces de résolution sur le(s) document(s) utilisé(s).



Exercice 17 * *

Le verre: milieu dispersif ou non?

Un élève de seconde a appris qu'un prisme en verre est un système dispersif.

Il se demande alors pourquoi une vitre, également en verre, ne disperse pas la lumière blanche.

On envoie une lumière monochromatique rouge sur la première face d'une vitre avec un angle d'incidence i, = 40,0° (voir schéma ci-contre).

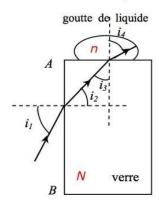
Données :

- Indice de réfraction de l'air pour toutes les couleurs : n_a = 1,00
 Indice de réfraction du verre pour la lumière rouge : n_w = 1,505
 - 1. Calculer l'angle de réfraction pour la couleur rouge i,
 - 2. Compléter approximativement le schéma ci-dessus et en déduire l'angle i' $_1$ avec lequel ce rayon frappe la $2^{\rm ème}$ face de la vitre.
 - 3. Calculer l'angle i', avec lequel le rayon sort de la 2 ème face. Compléter le schéma. Conclure.
 - 4. Ce résultat serait-il différent avec une autre lumière monochromatique.
 - 5. Expliquer pourquoi une vitre n'est pas un système dispersif contrairement à un prisme.

Exercice 18 * *

Concentration en sucre d'un jus de raisin

Avant de réaliser les vendanges, un viticulteur souhaite connaître la concentration en sucre du jus de raisin en mesurant l'indice de réfraction à l'aide d'un réfractomètre. Pour être vendangé, le raisin doit avoir une concentration en sucre $C \ge 166 \text{ g.L}^{-1}$.


On réalise la mesure de l'indice de réfraction pour des solutions de concentration connue en sucre.

Concentration en sucre (en g.L ⁻¹)	140	150	160	170	180
Indice de réfraction	1,356	1,357	1,359	1,360	1,362

La mesure est effectuée en incidence rasante $i_4 = 90^{\circ}$.

Il mesure pour ce jus de raisin, un angle de réfraction $i_1 = 49.0^{\circ}$.

Donnée: indice de réfraction du verre N=1,5.

- 1° Quelle caractéristique du jus de raisin modifie son indice de réfraction ?
- 2° Calculer l'indice de réfraction du jus de raisin testé.
- 3° La concentration en sucre est-elle suffisante pour commencer les vendanges ?