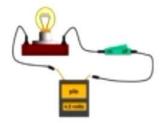


Seconde Générale et Technologique

Physique-Chimie | Chapitre 16 : Lois de l'électricité

Enoncés des exercices

Les exercices sont classés en trois niveaux de difficulté :

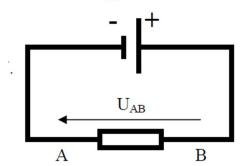

- * Exercices d'application : comprendre les notions essentielles du cours
- ★★ Exercices d'entraînement : prendre les bons reflexes
- ★★★ Exercices d'approfondissement : aller plus loin

Exercices gratuits	Exercices sur abonnement*	
★ 1-2-3	★ 4 − 5 − 6	
★★ 7-8-9	★★ 10 − 11 − 12	
** 13 – 14 – 15	★★★ 16 – 17 – 18	

Exercice 1 ★

Circuit électrique

On réalise le circuit électrique représenté ci-dessous.



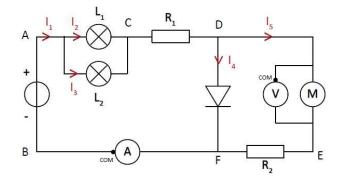
- 1° Schématiser le circuit ci-dessus.
- 2° Indiquer comment mesurer l'intensité du courant électrique qui traverse la lampe.
- 3° Positionner sur le schéma un voltmètre qui permet de mesurer la tension aux bornes de la lampe.

Exercice 2 ★

Mesurer une tension

La tension U_{AB} mesurée aux bornes du conducteur ohmique vaut 1,5 V.

- 1) Comment se nomme l'appareil qui a permis de mesurer la tension UAB mesurée aux bornes du conducteur ohmique?
- 2) Placer cet appareil sur le schéma.

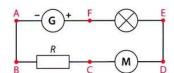

Exercice 3 🛨

Lois des mailles - Lois des noeuds

On réalise le montage schématisé ci-contre:

Données:

- I₁ = 150 mA
- $I_2 = 50 \text{ mA}$
- U_{AB} = 12,0 V
 U_{AC} = 5,0 V
 U_{CD} = 3,0 V
 U_{EF} = 1,5 V



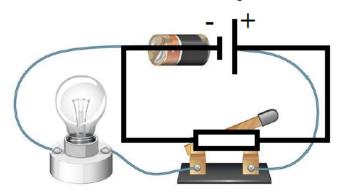
- 1. A l'aide de la loi des mailles, calculer la tension U_{DE} .
- 2. En déduire la tension aux bornes du moteur. Quelle valeur lit-on sur le voltmètre ? 3. A l'aide de la loi des nœuds, calculer I_3 et I_5 .
- 4. Quelle valeur lit-on sur l'ampèremètre ?

Exercice 4 * 🛨

Circuit électrique

On considère le circuit électrique schématisé suivant :

On donne les valeurs des tensions suivantes : U_{FA} = 12,1 V ; U_{FE} = 4,6 V ; U_{BC} = -3,2 V.


- 1° Positionner sur le schéma un voltmètre qui permet de mesurer la tension aux bornes du générateur
- 2° Ecrire la loi des mailles et calculer la valeur de la tension U_{DC} aux bornes du moteur.

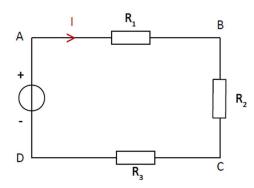
Exercice 5 * *

Mesurer l'intensité du courant

Voici le dessin d'un circuit électrique :

- 1) Comment sont branchés les éléments dans ce circuit ?
- 2) Schématiser ce circuit électrique en y plaçant un ampèremètre afin que l'intensité du courant mesurée soit positive.

Exercice 6 * 🛨


Loi d'Ohm

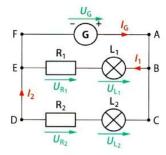
On réalise le montage schématisé ci-contre:

Données :

- U_{AD} = 15,0 V
 U_{AB} = 6,0 V
 R₁ = 40 Ω

- $R_2 = 10 \Omega$

- 1. A l'aide de la loi d'Ohm, calculer l'intensité du courant I. 2. En déduire la tension $U_{\rm BC}$. 3. A l'aide de la loi des mailles, calculer la tension $U_{\rm CD}$.


- 4. En déduire la valeur de la résistance R₃.

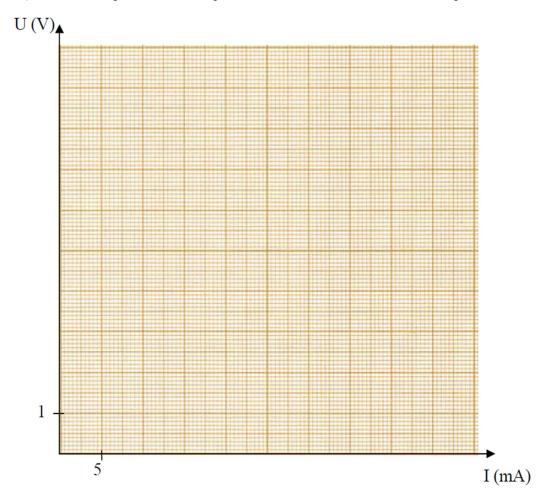
Exercice 7 **

Circuit électrique

Le circuit suivant, comporte un générateur de tension U_G = 12 V, deux conducteurs ohmiques R_1 = 20 Ω et R_2 = 40 Ω . Les intensités du courant dans les branches dérivées sont I_1 = 0,300 A et I_2 = 200 mA.

- 1° Déterminer la valeur de l'intensité du courant l_G délivrée par le générateur.
- 2° En utilisant la loi d'Ohm, déterminer la valeur de la tension aux bornes des résistances R1 et R2.
- 3° En utilisant la loi des mailles, déterminer les tensions aux bornes des lampes L1 et L2.

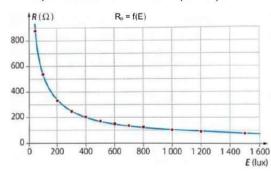
Exercice 8 **

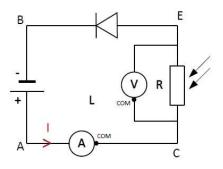

Caractéristiques d'un dipôle

On a mesuré la tension aux bornes d'un dipôle pour différentes intensités du courant qui le traversent :

I (mA)	9	22	33	40
U(V)	2	5	7	9

- 1) Sur le papier millimétré ci-dessous, tracer la caractéristique U = f(I) du dipôle et expliquer en quoi c'est un conducteur ohmique.
- 2) Que représente la pente de la droite pour ce conducteur ohmique ?
- 3) Nommer et exprimer alors la loi que vérifient la tension U et l'intensité de ce dipôle.

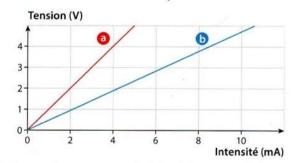




Exercice 9 **

Et la lumière fût

Une photorésistance est un dipôle dont la résistance (en ohm) varie avec la luminosité (en lux).


Données :

- U_{AB} = 6,0 V
- U_{seuil} = 3,5 V: tension minimale pour que la diode brille
- 1. Décrire l'évolution de la résistance de la photorésistance en fonction de l'éclairement.
- 2. Déterminer la valeur mesurée par le voltmètre lorsque la tension aux bornes de la diode est égale à sa tension seuil U_{soull} .
- 3. Lorsque la diode s'allume, on lit I = 10 mA sur l'ampèremètre. En déduire la valeur de R.
- 4. Déterminer l'éclairement minimal pour que la diode s'allume.
- 5. Ce montage peut-il être utilisé ainsi pour commander l'allumage de lampes extérieures ?

Exercice 10 * *

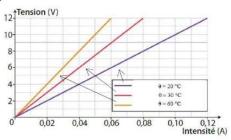
Caractéristiques de conducteurs ohmiques

On a tracé les caractéristiques de 2 conducteurs ohmiques.

- 1° Rappeler comment obtenir la caractéristique d'un conducteur ohmique.
- 2° Expliquer sans calcul à quelle courbe correspond la plus grande résistance.
- 3° Déterminer les valeurs des résistances des 2 conducteurs ohmiques.

Exercice 11 * *

J'ai tout capté!


Voici des appareils contenant un dipôle résistif qui forment chacun un type de capteur différent :

1) Associer chaque appareil au dipôle résistif qu'il contient.

On a tracé la caractéristique d'un des dipôles résisitifs précédents :

- 2) De quel dipôle s'agit-il?
- 3) Déterminer la résistance de ce dipôle lorsqu'il est soumis à une température $\theta = 60^{\circ}$ C.

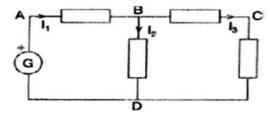
Exercice 12 * *

Application des lois de l'électricité

On réalise le montage correspondant au schéma cicontre :

Données:

- U_{AD} = 9,0 V
- R₁ = 1,0 kΩ
- $R_2 = 1.5 \text{ k}\Omega$
- L'ampèremètre affiche une valeur de 6,0 mA


- 1. A l'aide de la loi d'Ohm, déterminer la tension U_{RC}.
- 2. En déduire, à l'aide de la loi des mailles, la valeur indiquée sur le voltmètre.
- 3. Déterminer l'intensité du courant I₂.
- 4. A l'aide de la loi des nœuds, déterminer l'intensité du courant I₃.
- 5. En déduire la valeur de la résistance R₃.

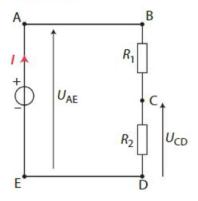
Exercice 13 ***

Circuit électrique

On souhaite déterminer toutes les informations concernant le circuit suivant :

On sait que I_2 = 100 mA et que toutes les résistances sont identiques R = 100 Ω .

- 1° Exprimer U_{AD} en fonction de I₁, I₂ et de R. Puis en fonction de I₁, I₃ et de R.
- 2° Exprimer U_{BD} en fonction de I_2 et de R, puis en fonction de I_3 et de R. En déduire l'expression de I_3 en fonction de I_2 .
- 3° Exprimer I₁ en fonction de I₂.
- 4° Exprimer UCD en fonction de UBD.
- 5° Calculer I₃, I₁, U_{BD}, U_{CD}, U_{AB} puis U_{AD}.


Exercice 14 ***

Le pont diviseur de tension

Le montage ci-contre est appelé « pont diviseur de tension » lorsque l'on compare la tension U_{CD} à la tension U_{AE} .

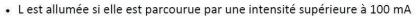
Il est souvent utilisé dans les capteurs électriques.

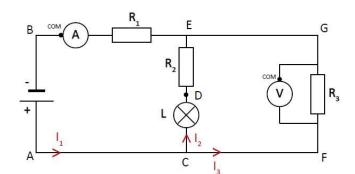
Dans ce cas, la valeur de la résistance R₂ varie selon un paramètre extérieur.

Données:

Dans les conditions d'utilisation : $R_1 = 100 \Omega$, $R_2 = 50 \Omega$ et $U_{AE} = 9.0 V$.

- 1) Citer un paramètre selon lequel peut varier la résistance R₂.
- 2) Exprimer, en justifiant, la tension U_{AE} en fonction des tensions U_{BC} et U_{CD} .
- En déduire, en justifiant, l'expression de la tension U_{AE} en fonction de l'intensité du courant I et des résistances R₁ et R₂.
- 4) Exprimer alors le rapport $\frac{U_{CD}}{U_{AE}}$ en fonction de R₁, R₂ et I.
- 5) En déduire que la tension U_{CD} est liée à la tension U_{AE} par l'expression : $U_{CD} = \frac{R_2}{R_1 + R_2} U_{AE}$.
- 6) Calculer la tension U_{CD} dans les conditions d'utilisation. Justifier alors le nom du montage utilisé.

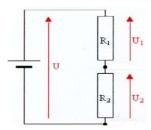

Exercice 15 **


Ca brille ou non?

On réalise le circuit électrique schématisé ci-contre :

Données :

- U_{AB} = 6,0 V
- Le voltmètre indique la valeur 4,0 V
- L'ampèremètre indique la valeur 200 mA
- $R_2 = 20 \Omega$
- $R_3 = 50 \Omega$


- **1.** En utilisant la loi des mailles, calculer la tension $U_{\rm gg}$.
- 2. A l'aide de la loi d'Ohm, calculer la valeur de la résistance R₁.
- 3. Calculer l'intensité du courant I₂.
- 4. La lampe est-elle allumée ?
- 5. Calculer la tension aux bornes de la lampe.

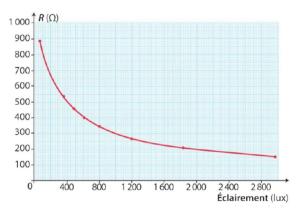
Exercice 16 * *

Le pont diviseur de tension

Lorsqu'on souhaiter abaisser une tension sans consommer de puissance, le pont diviseur est la méthode idéale. Le pont diviseur est formé de deux résistances dont les valeurs déterminent la tension de sortie (U_2 ou U_1).

On donne : U = 10V ; $R_1 = 2 \text{ k}\Omega$; $R_2 = 6 \text{ k}\Omega$.

- 1° Exprimer U en fonction de U₁ et U₂.
- 2° En déduire l'expression de l'intensité du courant I débité par le générateur en fonction de U, R_1 et R_2 .
- 3° Exprimer la tension U_2 en fonction de U, R_1 et R_2 . Calculer la valeur de cette tension. Justifier l'appellation « diviseur de tension ».
- 4° On désire obtenir une tension U_2 = 2 V, sans modifier la valeur de R_1 . Quelle doit être la valeur de R_2 ?


Exercice 17 * *

Et la lumière fût

On souhaite fabriquer une système d'allumage automatique avec un capteur sensible à la luminosité.

Pour cela, on branche en série une source de tension, une DEL et une photorésistance dont la résistance varie avec la luminosité de la façon suivante :

Données:

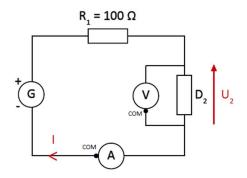
Tension aux bornes de la source de tension : $U_{source} = 9,0 V$; Tension de fonctionnement de la DEL : $U_{DEL} = 3,1 V$; Intensité du courant traversant le circuit : I = 10 mA.

ENONCE COMPACT

Déterminer l'éclairement pour lequel la DEL s'éclaire.

ENONCE DETAILLE

- Schématiser le circuit à réaliser pour fabriquer le capteur de luminosité en y indiquant les tensions et l'intensité du courant.
- Exprimer la tension U_R aux bornes de la photorésistance en fonction des tensions U_{source} et U_{DEL}.
- 3) En appliquant la loi d'Ohm à la photorésistance, en déduire que l'expression de la résistance est alors : $R = \frac{U_{source} U_{DEL}}{V_{obs}}$ puis calculer sa valeur.
- 4) Déterminer alors l'éclairement pour lequel la DEL s'éclaire.


Exercice 18 * *

Etude d'un dipôle

On réalise le circuit électrique schématisé ci-contre afin d'étudier le dipôle ${\rm D_2}$:

On fait varier la tension aux bornes du générateur. On obtient les valeurs suivantes à l'aide des 2 multimètres.

U ₂ (V)	2,0	5,0	7,0	9,0
I (mA)	10	22	33	40

- 1. Tracer le graphique de la tension U_2 en fonction de l'intensité du courant I : $U_2 = f(I)$.
- 2. En déduire la nature du dipôle D₂ et la valeur de la grandeur R₂ qui le caractérise.
- 3. Déterminer la valeur de la grandeur R₂ qui caractérise le dipôle D₂.
- **4.** A l'aide de la loi des mailles, calculer la tension U_G aux bornes du générateur lorsque I = 40 mA.
- 5. On augmente la température. A l'aide d'un ohmmètre, on mesure R'_2 = 90 Ω . Comment nomme-t-on le dipôle D_2 ? Dans quel capteur peut-on l'utiliser?