
The path to least privilege:
a practical approach to
Just-in-Time access

The way most teams handle access today is broken.

Static roles. Standing privileges. Long wait times for approvals. Manual access cleanup that
rarely happens. Security teams are underwater, and engineering teams are stuck waiting on
tickets just to do their jobs.

Meanwhile, identity has become the new perimeter—and the attack surface is exploding.
Cloud environments now hold thousands of identities, most of which are over-permissioned,
under-governed, and invisible until something goes wrong.

Just-in-time (JIT) access is the shift forward. Instead of granting standing access that lingers
indefinitely, JIT lets teams request the access they need, when they need it, and only for as
long as they need it. The result: lower risk, faster approvals, and better visibility—without
slowing anyone down.

Moving to JIT is not as simple as flipping a switch.

Most teams don’t know where to start. They aren’t sure how JIT should be implemented in
their organization, how to create policies, or how to get buy-in. Teams push back on losing
“always-on” access. Ownership is murky. And there’s the fear that security might block
progress rather than unlock it.

This guide cuts through that noise. It lays out a practical path to least privilege through JIT—
starting small, proving value, and scaling up. It’s based on what we’ve seen in the field: what
works, what doesn’t, and how teams go from concept to production.

You don’t have to boil the ocean. You just have to start.

And P0's solution to JIT gives you a way to get there without slowing teams down or giving
attackers more surface to target.

2The Path to Least Privilege

Executive summary

Most access today is a mess. It’s too slow, too broad, and not nearly secure enough.
Developers and SREs are stuck in outdated workflows—think ticket-based approvals in
ServiceNow or Jira. The process can take hours or even days, while developers are stuck,
blocked on their work, waiting for access to be manually provisioned. Meanwhile, security
teams have no real visibility into who is accessing what or why, let alone any ability to
enforce policy in real time.

Once this access is granted, it's often permanent. Access that was meant to be temporary
often persists - indefinitely. Roles are over-permissioned. Admin privileges go unrevoked.
Static credentials and hardcoded keys are embedded in scripts and stored in repositories.
All of this adds up to a huge blast radius and a real audit headache.

To make things worse, the access patterns themselves don’t reflect modern security best
practices. People get broad, persistent access instead of narrow, short-lived access. Groups
and roles are managed manually and inconsistently. There’s no continuous validation. No
accountability. And no easy way to clean things up.

An ever-growing web of users, machines, service accounts - each wired to thousands of
permissions, roles and credentials that reach deep into infrastructure. It’s not just over-
permissioned—it’s overgrown, fragmented and nearly impossible to govern at scale.

3

Problem landscape

The Path to Least Privilege

Even when manual workflows are in place to remove access, they often fail. Someone was
supposed to go clean up that role—but didn’t. The access stays in place. No one notices.
Until the wrong person uses it at the wrong time.

It’s not just a tooling problem. It’s organizational. Security wants to lock things down.
Developers want to move fast. Nobody wants to be the person who tells a team they’re
losing access. So nothing changes.

All of this makes it harder to adopt least privilege, because to get there, you first need to
understand your access landscape: what permissions are actually being used and what can
safely be removed Most teams don’t have that kind of visibility, let alone the political capital
to make sweeping changes.

Legacy orgs struggle with binary access models—you either have access or you don’t.
These systems weren’t built for today’s layered cloud environments or the explosion of
identity types.

On the other hand, startups often over-provision developers early to stay fast and
unblocked. But when it’s time to rein that access in, teams hit pushback: developers resist
losing standing access, and security doesn’t want to be the bottleneck. That tension makes
enforcing least privilege feel risky—even when everyone agrees it’s necessary.

The result? A fragile access model that everyone hates and attackers love.

4The Path to Least Privilege

5The Path to Least Privilege

The journey to JIT
If you try to roll out just-in-time access across your entire org on day one, it’ll fail. Not because
JIT doesn’t work—but because access is messy. Teams are different. The politics are real. And
change always comes with pushback.

That’s why we suggest a phased approach.

Start small, prove value, build momentum. Some customers have run this as an 8-day sprint.
Others stretch it into a multi-week rollout with phased cleanup and enforcement. You can flex
the timeline—the structure stays the same.

In the next pages, you’ll see how each stage comes together—mapped to actions, outcomes
and measurement.

P0 action plan
Audit your current elevation flows: Look at how people are getting access today.
Pull data from Jira, ServiceNow, or whatever system you’re using for manual access
requests. How long does it take to get access? How much time is wasted manually
provisioning access? What’s the denial rate? Where are unexpected one-off
approvals happening?

1.

Pick a friendly team to pilot JIT: Choose a team that wants better access, not one
that’s likely to resist. Identify a use case they currently have for elevated access
(something they’re currently making tickets for), and replace that with P0’s JIT access.
Set them up with P0’s Slack, Teams, or CLI integrations. Let them request and
approve access in real time.

2.

Measure impact: Track MTTA (mean-time-to-access) before and after. Get NPS from
pilot users. Compare the JIT access to the historically granted access: you should see
more granular resource-based permissions rather than broad admin access.

[real-life datapoint: One customer’s first policy cut MTTA by 90% — just by granting staging
DB access automatically during work hours, and requiring peer approval after hours.]

3.

Stage 1: Prove
Goal: Understand current elevated access flows and test JIT with a small team.

Start simple, not perfect: Don’t wait to revoke every permission before piloting JIT.
Start by only replacing current elevation flows– nobody loses access, so you’ll get less
resistance. Once JIT is implemented, you’ll revoke risky standing access in stage 3.

Baseline the right metrics: Benchmark MTTA. Identify frequent access escalation paths.

Start with a motivated team: Platform or infra teams usually feel the pain and are ready
to try something new.

Policy uncertainty is normal: If you’re unsure about your JIT configuration, start with
what users are already requesting.

Pushback is likely: Developers may worry JIT slows them down. Show them how it
works - instant access, without requiring slow ticket-based approvals

No clear access ownership

Approvals are rubber-stamped or consistently delayed

Standing access is rarely cleaned up

Security can’t prove who has access to what

Devs complain about access friction, but nobody owns fixing it

6The Path to Least Privilege

Key considerations

Signals that you’re in this stage:

Identify an access process that already exists and can be transitioned to JIT

Look for frequent escalations or delayed approvals

Start with a motivated team and a narrow scope

Show that JIT doesn’t mean slower access—just smarter access

7The Path to Least Privilege

What to do next

Stage 2: Deploy
Goal: Roll out JIT org-wide with real policies and real accountability.

Build org-wide access policies using identity metadata like team tags, cloud labels,
and historical request data. P0 will recommend scoped, repeatable JIT policies using
this data. Define who can request what, when, and from whom.

1.

Integrate P0 across workflows: Enable JIT access via Slack, Teams, or CLI. Integrate
P0 with your production environments, including cloud and on-premise systems.

2.

Track adoption and progress: Use P0 dashboards to measure % of requests flowing
through P0, monitor lagging teams, and surface legacy paths (e.g., Jira, ServiceNow,
static keys).

3.

Intercept legacy workflows: Send automatic nudges (via Slack, JIRA, or other tools)
when users default to old request methods. Redirect them to P0.

4.

P0 action plan

8The Path to Least Privilege

Use P0’s suggested policy templates to avoid drift; some common configurations are:

Low-risk access with no approval (e.g., staging read-only)

Production access with team lead approval (e.g., 1-hour max, justification required)

Be prepared to handle:

Inconsistent metadata (e.g., bad tags, orphaned accounts)

Teams resisting change

Confusion from parallel or duplicate access processes

Key considerations

You’ve successfully piloted JIT, but adoption isn’t widespread.

Different teams still rely on Jira or ServiceNow for access requests.

There’s a lack of consistent policy enforcement across environments.

You see some wins (e.g., MTTA improvements), but cleanup and standardization
are lagging.

Symptoms when you are in this stage

Prioritize sensitive environments (e.g., prod or customer data systems).

Deprecate legacy flows—don’t just block them, intercept and reroute users contextually.

Socialize the new model; use docs, Looms, and tooltips to reinforce how access
should work.

Show clear value; highlight MTTA reduction (e.g., 10 hours to 3 minutes).

Accelerate with templates to roll out consistent logic across teams.

What to do next

9The Path to Least Privilege

Stage 3: Secure
Goal: Clean up access risk and enforce least privilege in production.

Remove risky access
Start with permissions that haven’t been used in 90 days. Prioritize high-sensitivity
access like prod admin roles and static credentials (keys, tokens).

1.

Provide an easy path to re-request access
When cleaning up access, allow users to request JIT access to the same permissions
in P0 instead. This minimizes pushback and builds confidence in enforcement.

2.

Automate enforcement
Set policies in P0 to continuously remove unused access and trigger cleanup workflows
when violations are detected—no manual review required.

3.

Rotate and revoke credentials continuously
Use P0 to auto-rotate secrets and remove static keys across environments—ensuring
no long-lived machine access remains.

4.

P0 Action Plan

10The Path to Least Privilege

Start with easily revertible changes to build confidence
Begin with changes that can easily be reverted, such as disabling accounts and keys
rather than deleting them. If they turn out to be necessary, you can quickly revert
them through P0.

Automate cleanup and provide a path back
Access removal feels risky without a path to recovery. Ensure that users can easily
request removed access again, without opening tickets.

Don’t stop at humans
Machines are the next surface. Look for static credentials in CI pipelines, bots with
always-on IAM roles, or ephemeral jobs running with broad scopes. JIT works here
too—and often yields the biggest security wins.

Your environment is littered with unused access, static credentials, and legacy roles.

Devs and security teams worry that enforcing least privilege might break something.

Your security team is manually cleaning up access—or avoiding it due to lack of ownership.

There’s no centralized accountability for ongoing IAM hygiene.

You’re aware that non-human identities (NHIs) are completely unmanaged—and you’re
starting to feel the risk.

Key considerations

Symptoms when you are in this stage

Remove risky access
Start with access that hasn’t been used in 90 days. Then target high-sensitivity roles
(e.g., prod admin or customer data). Don’t forget static keys.

Automate enforcement
Set rules to continuously remove unused access. Flag violations. Trigger cleanup
workflows automatically.

Minimize pushback
Reinforce that access isn’t being taken away—it’s just being requested when needed.

Use data (e.g., “This access hasn’t been used in 120 days”) to back your decisions.

Lean on automation to avoid manual intervention and politics.

Tie the effort to audit milestones or compliance initiatives to reinforce urgency.

What to do next

Beyond humans: Just-in-time for machines
Once you’ve cleaned up human access, you’ll start noticing the other half of the problem—
the part nobody wants to deal with: machine identities.

These are your service accounts, IAM roles, tokens, CI/CD pipelines, Kubernetes workloads,
Lambda functions, Terraform plans, bots, scripts, and so on. They’re everywhere. And they
usually have more access than any human ever would.

That makes them one of the fastest-growing and riskiest surfaces in the cloud. And in most
orgs, they’re completely unmanaged. Static keys remain active indefinitely. Machine
identities are created once and never revisited. Expiration is rare. Rotation is manual at best.

This is where the value of automation and policy enforcement compounds. Access gets
safer, faster and easier to govern. Teams move faster. Security breathes easier. And
you’ve got a real foundation for least privilege that doesn’t depend on good intentions
and manual cleanups.

11The Path to Least Privilege

12The Path to Least Privilege

The same just-in-time principles that improve human access can be applied to
workloads and automation:

Short-lived tokens instead of long-lived keys

Access granted on a just-in-time basis, not static assignments

Key rotation and auto-expiry for credentials that cannot be replaced with short-
lived tokens

It’s the same security outcome—lower standing access, smaller blast radius, better
governance—just applied to code instead of people.

Our platform was purpose-built to manage JIT access for both human and machine
identities. P0 ties together identity metadata, cloud IAM permissions, service accounts,
ephemeral jobs, and secrets - and applies real-time policy and rotation across the entire
lifecycle. This eliminates static keys, manual scripts, and access blind spots.

Once you’ve got a handle on human access, non-human identities are the next frontier.
And JIT is how you secure them without slowing anything down.

Most organizations manage non-human identities as an afterthought. Native tools
might help you spot static keys or unused roles, but they rarely show the full picture—
let alone enforce least privilege across multiple clouds. And they don’t provide a unified
system to govern, revoke, and monitor access in real time. That’s where P0 comes in:
one identity graph, one policy engine, and one path to enforce least privilege for every
principal—human or machine.

You can’t manage what you don’t measure—and access is no exception. As you roll out just-
in-time, it’s important to track real impact. That means going beyond surface-level adoption
and digging into what’s actually improving across security, productivity, and user experience.
You can track these metrics over time using P0’s reporting dashboards.

Here are the human requestor metrics that matter most.

MTTA (mean-time-to-access)
This is your north star for user experience. How long does it take to go from “I need
access” to “I have it”? Track this before and after JIT rollout. You’ll likely see days turn
into minutes—and that matters when you’re debugging, responding to an incident,
or trying to ship on a deadline.

Metrics that matter

Here’s where JIT comes in.

13The Path to Least Privilege

Standing access footprint
Measure the total number of standing (always-on) permissions across your cloud
environment, broken down by role type, sensitivity, or business unit. The goal is to
shrink this over time—and JIT should be the driver that lets you do it safely.

Access request coverage
What percentage of access requests are now flowing through P0 instead of legacy
tools like ServiceNow or Jira? This tells you how much of your org is actually using
the new path—and where you still have holdouts.

NPS of the access experience
This is your gut check. Ask engineers and admins: how is this working for you? Are
requests faster, more predictable, less annoying? You’ll get a mix of feedback—and
that’s gold. Use it to improve the experience and build advocates.

Access granularity
Are you granting more specific, time-bound access than you were before? Look at
how many JIT policies are scoped to single roles or resources, versus broad groups or
admin access. Granularity is a proxy for maturity.

Privileged access cleanup rate
Track how many stale, risky, or unused permissions have been revoked since JIT was
implemented. If you’re doing this right, that number should keep climbing.

14The Path to Least Privilege

Reduction in long-lived credentials
Track how many hardcoded tokens, static access keys, and long-duration secrets
you’ve replaced with short-lived, time-bound alternatives. This is often your first
big win—especially in Cloud environments or CI/CD systems.

Secrets rotation frequency
How often are machine credentials rotated today? After JIT rollout, you should see
this move from quarterly (or never) to automatic and frequent (e.g., per deployment
or per session).

JIT coverage for automation workflows
What percentage of pipeline jobs, bots, or workload executions now use JIT-
generated access rather than pre-assigned roles?

Standing access reduction for service accounts
Just like with humans, you can track which service accounts had broad, permanent
roles—and how many of those have been scoped down or moved to request-
based flows.

Mean time to clean-up NHI access risks
Time from “last seen” to “access revoked” matters. Before JIT, this could be
months. With P0, unused roles or secrets can be automatically removed—and you
should be tracking how fast that cleanup happens.

Access variance across environments
Are test/staging/prod environments all using the same high-privilege service
accounts? Post-JIT, you should see more environment-specific, purpose-built
access scopes with less duplication.

Non-human identity metrics that matter

These aren’t vanity metrics. They help prove to your leadership team—and
your developers —that this isn’t just another security initiative. It’s a better
way to grant access.

15The Path to Least Privilege

You don’t need a three-year roadmap or a new security team to get started with just-in-
time access. You just need a use case, a willing team, and a little bit of pressure to do
things better.

The goal here isn’t perfection. It’s progress. Replace one ticket-based workflow. Clean up
one over-permissioned role. Pilot one policy with one team. You’ll learn more in that
process than in months of planning.

Because once teams see how fast and seamless access can be—without the overhead of
manual provisioning and risk of standing permissions—they don’t want to go back.
Just-in-time access isn’t some abstract future state. It’s something your team can run
today. It scales. It makes audits easier. It reduces blast radius. And it gives developers and
security teams what they both want: speed and safety.

Least privilege isn’t a blocker anymore. With P0 Orchestration and JIT, you can stop
waiting and start moving.

Conclusion

Contact Us
Email: info@p0.dev
Web: www.p0.dev

P0 Security is the unified access privilege platform built for modern cloud infrastructure. Where legacy PAM, IGA,
CIEM, NHIM and IAM tools fall short—particularly around non-human identities, ephemeral infrastructure and
developer velocity—P0 delivers orchestration and governance, visibility and risk posture across all cloud
environments.

With an agentless, API-native architecture, P0 helps teams enforce least privilege by default through short-lived,
just-in-time access for both human and machine identities. Security and platform teams rely on P0 to reduce blast
radius, streamline audits and eliminate manual provisioning without slowing down development.

P0 is trusted by leading organizations in fintech, healthcare, AI, and cloud-native tech, with full enterprise
deployments completed in under 60 days. Learn more at www.p0security.dev.

Copyright © 2025 P0 Security WP_Path-to-LP_072525

