The evolution of Privileged
Access Management



Why PAM matters more than ever

Privileged Access Management (PAM) was born from a simple operational need: to manage and
rotate shared admin passwords on servers. But today's infrastructure looks nothing like it did twenty
years ago. We now have ephemeral microservices, automated CI/CD pipelines, and production
systems spanning cloud consoles, Kubernetes clusters, and APIs. This explosion in complexity—and
the increasing number of identities, both human and machine—has outgrown the assumptions of
legacy PAM.

What was once a vault for root passwords must now be an orchestration layer for short-lived, least-
privileged access across hybrid and cloud-native environments. PAM is no longer just about
compliance—it's critical to reducing access risk in production systems.

First, what is PAM?

Privileged Access Management (PAM) is how organizations control access to sensitive production
systems—Ilike servers, databases, cloud consoles, and Kubernetes clusters. These systems carry high
risk: a single security incident or outage can cause significant business disruption. PAM ensures that
only the right identities—human or machine—get access, only for what they need to do, only when
they need it, and always under audit.

It addresses two control layers:

¢ Authentication (authn): who is requesting access

e Authorization (authz): what they're allowed to do
Earlier solutions focused on Privileged Account Management—securing high-risk accounts and their
credentials, like root or admin passwords. These tools emphasized storing, rotating, and tracking use
of privileged accounts. Privileged Access Management is broader: once the entity has verified their
identity with a privileged account, what access do they receive? PAM manages the full lifecycle of
access—who can reach sensitive systems, when, and with what permissions.
The constants and the evolution
While infrastructure has evolved—from static on-prem servers to dynamic, cloud-native services—
the core goals of PAM have remained the same:

¢ Short-lived access (across authn and authz)

e Least privilege

e Auditability
What has changed are the assumptions: how identities are provisioned, what counts as a production

system, and how infrastructure behaves. Each shift introduced new risks—and new patterns for
implementing PAM.

The Evolution of Privileged Access Management 2



Contents

What got us here

Phase 1: Vault-led PAM (on-prem, 1990s-2010s)

Phase 2: Bastion-led PAM (early cloud era, 2010s)

Phase 3: API-led PAM (cloud-native era, 2020s-)

API-led PAM vs legacy PAM: What's different?

What's next for API-led PAM? Securing Al agents

Conclusion

10



https://docs.google.com/document/d/19z5oiV1y3elqVaO5EwAndpWnqv1OJ-ix/edit#heading=h.ailvexos6ocj
https://docs.google.com/document/d/19z5oiV1y3elqVaO5EwAndpWnqv1OJ-ix/edit#heading=h.qtvi4xlsncs9
https://docs.google.com/document/d/19z5oiV1y3elqVaO5EwAndpWnqv1OJ-ix/edit#heading=h.wipfjmfexw93
https://docs.google.com/document/d/19z5oiV1y3elqVaO5EwAndpWnqv1OJ-ix/edit#heading=h.p0vf3nksgghp
https://docs.google.com/document/d/19z5oiV1y3elqVaO5EwAndpWnqv1OJ-ix/edit#heading=h.sopzrnh01p8h

What got us here

Each phase in the evolution of PAM emerged to address new business, security and governance challenges.
In the following pages, we'll explore these phases: vault-led PAM (1990s-2010s), bastion-led PAM (early
cloud era, 2010s), and API-led PAM (cloud-native era, 2020s-).

We'll conclude with an explanation of what today's modern PAM solutions must do to adapt to hybrid and
cloud-native environments, as well as widespread use of Al and non-human identities.

Phase 1: Vault-led PAM Phase 3: API-led PAM
(on-prem, 1990s-2010s) (cloud-native era, 2020s-)

Phase 2: Bastion-led PAM
(early cloud era, 2010s)

v Phase 1: Vault-led PAM
(on-prem, 1990s-2010s)

PAM began in the late 1990s, when enterprise infrastructure was mostly static. Vendors
like CyberArk pioneered vault-based tools to manage administrator access to servers,
network devices, and databases inside corporate data centers.

Authentication was handled via vaulted credentials: admins checked out root passwords
or SSH keys, which were automatically rotated after use. This created short-lived
authentication by design.

Authorization was straightforward: keys mapped to specific systems, and access was
granted per system or role. Least privilege was relatively easy to enforce—access was
deterministic and scoped to a known set of assets.

Auditability came from credential logs and session recordings. Vaults tracked who
accessed which credentials and when. These patterns aligned with compliance needs
such as SOX and PCI-DSS.

The on-prem environment—fixed IPs, static servers, and centralized perimeters—fit
this model well. In this phase, Privileged Account Management and Privileged Access
Management were often interchangeable.

Why this broke: As infrastructure grew, so did the number of credentials, systems, and
users. Manual rotation and secret sprawl became operational bottlenecks. PAM
remained effective—but increasingly fragile and slow-moving.

The Evolution of Privileged Access Management 4



M-

Phase 2: Bastion-led PAM
(early cloud era, 2010s)

In the early 2010s, enterprises began moving production workloads to public cloud
platforms like AWS and Azure. The systems needing privileged access—VMs,
databases, and storage—remained familiar, but the environment became ephemeral
and elastic. IPs were dynamic, and servers could be spun up and shut down in minutes.

Phase 1 vault-based PAM solutions struggled to keep up. The sheer number of hosts
and speed of change made managing static credentials impractical. Admins either
reused shared secrets or skipped vaults entirely for operational speed.

Authentication still relied on SSH keys and static credentials. SSO adoption had started
but wasn't yet widespread. Authorization challenges began to emerge. Most teams
lacked tools to assign fine-grained, temporary access. As a result, users were granted
standing access to VMs—broad permissions that persisted indefinitely.

Why did authorization lag? Because infrastructure was changing too quickly for static
access lists to keep up. The scale, ephemerality, and manual provisioning meant that
once access was granted, it was rarely revoked. Enforcing least privilege became
difficult in practice.

To compensate, teams introduced bastion hosts—jump servers at the edge of cloud
networks that funneled admin traffic. Engineers logged into the bastion (typically via
SSH key or enterprise SS0), then into the target systems. Some organizations adopted
Teleport, an identity-aware proxy that authenticated users via SSO and granted access
based on role and context.

These solutions improved control, but came with trade-offs:
e \/aults were still used, but secret sprawl was common.
e Bastions introduced friction: multi-hop workflows and brittle configurations.
e Authorization remained coarse: access often implied full admin privileges within large

scopes.

Why this broke: Bastions didn't address the core issue—persistent entitlements in dynamic
environments. Developers started bypassing controls. PAM solutions became less effective.

The Evolution of Privileged Access Management 5



Phase 3: Next-gen, API-led PAM

(cloud-native era, 2020s-)

By the 2020s, infrastructure had transformed again. Organizations were fully cloud-native.
Production systems were no longer just VMs—they included cloud consoles, serverless
workloads, Kubernetes clusters, and APIs. “Logging into a box" became just one of many
access flows.

Authentication matured. Human users authenticated through SSO providers like Okta and
Azure AD. Machines and workloads used short-lived credentials—AWS STS tokens, Azure
Managed |dentities, GCP workload identity federation. Static secrets were increasingly
deprecated. Passwordless, ephemeral authentication became standard practice.

The challenge shifted decisively to authorization: what should an authenticated identity be
allowed to do, and for how long?

Persistent access to cloud IAM roles or permissions became one of the biggest risks.
Breaches like SolarWinds (2020) and Uber (2022) showed how attackers could exploit
standing entitlements or leaked credentials to move laterally and escalate privilege across
cloud accounts.

Technologically, this period saw the emergence of sophisticated cloud APIs for managing
IAM. These made it possible to move away from infrastructure-based solutions like bastions
or proxies. Building on these APIs, modern PAM practices took shape:

e Just-in-Time (JIT) access: Grant access only when requested, for a defined task and
duration.

¢ Granular entitlements: Define narrowly scoped policies—e.g., read-only access to an S3
bucket, temporary admin to a Kubernetes namespace.

e Least privilege enforcement: Not just for users, but also for non-human identities like
service accounts and IAM roles, and eventually, for Al agents

¢ (Cloud-native auditability: Use AWS CloudTrail, GCP Audit Logs, or equivalents to track
access and feed signals to SIEMs and SOAR tools.

In parallel, a new category—CIEM (Cloud Infrastructure Entitlement Management)—
emerged as part of CSPM/CNAPP platforms. These tools helped visualize over-permissioned
identities and reduce sprawl. However, CIEM tools focused on visibility—they surfaced risks
but did not control or provision access. PAM platforms, by contrast, serve as the enforcement
layer—deciding who gets access, when, and how.

At the same time, developer expectations changed. With faster shipping cycles and cloud-
native workflows, PAM could no longer slow teams down. Modern solutions had to integrate
with CLI tools, CI/CD pipelines, and approval systems—delivering JIT access without
compromising developer velocity.

In this era, PAM is no longer about secrets. It is about governing privilege dynamically—
across identity, context, and time.

The Evolution of Privileged Access Management 6



5 API-led PAM vs legacy PAM: What's different?

Modern PAM is no longer a vault—it’'s an orchestration layer:
e |dentity providers (e.g., Okta, Azure AD) handle authn for users and devices.
e (loud IAM APIs handle JIT role provisioning and deprovisioning,.
e Approval workflows initiate JIT access and revoke it when the task ends.

e Audit pipelines stream events to SIEM/SOAR platforms for detection and
response.

ephemeral, least-privileged, and fully auditable access—by design.

But in modern environments, enforcement alone is not sufficient. Access is
provisioned dynamically across multiple control planes—cloud IAM, Kubernetes,
GitHub, CI/CD pipelines—many of which operate outside the direct reach of the
PAM tool. To enforce policies like least privilege or JIT access, PAM needs to
understand the full picture of what access already exists, how it's granted, and
whether it's still needed.

This is why next-gen PAM platforms rely on a continuously updated access data
layer—a model of all human, non-human and agentic identities, their effective
entitlements, associated credentials, and the systems they can access. We refer
to this as Access DNA.

Earlier generations of PAM didn't need this layer—because access passed
through a vault or a bastion that also served as the point of enforcement. But in
today’s decentralized, API-driven infrastructure, enforcement is only effective
when built on top of access-aware analysis.

In addition, API-led PAM platforms will use Gen Al to improve the capabilities of
the Access DNA layer. These capabilities include, but are not limited to:

Predictive insights on where standing access or secrets will become a risk.
Smart recommendations for role refinement, privilege reduction, or access
expiry.

e Automating access decisions using ML-models trained on signals such as
prior usage, peer / role comparison and identity behaviors

The Evolution of Privileged Access Management



What's next for API-led PAM? Securing Al agents

As organizations adopt Al agents across engineering and operations, PAM systems
must adapt—not with new principles, but by applying existing ones to a new
identity type.

Tools like Claude, Cursor, and others may access privileged systems like GitHub
directly or through a Model Context Protocol (MCP).

As with users and service accounts, this access must be governed. The same
principles apply:

e Short-lived access: Agents should use ephemeral credentials, never persistent
secrets or PATs.

e |Least privilege: Access should be narrowly scoped to the specific task or
repository, not broad admin rights.

e Auditability: Actions taken by agents must be logged and attributable—
especially when access involves sensitive systems or data.

In some cases, privileged actions—such as modifying infrastructure or accessing
production databases—should be subject to just-in-time (JIT) elevation and require
human approval.

API-led PAM systems will evolve to treat agents as first-class identities.

The core principles—short-lived access, least privilege and auditability—remain
the same.

Modern PAM platforms will extend their control planes to manage agents (like
Claude) and provision access to privileged systems (like GitHub) through native IAM

APlIs.

MCPs may act as intermediaries, brokering these access requests in real time.

The Evolution of Privileged Access Management



Conclusion

PAM's core objectives haven't changed: enforce least privilege, ensure short-lived access,
and maintain auditability. But the context in which PAM operates has shifted dramatically.

Today, organizations manage a mix of cloud-native systems as well as on-prem
infrastructure. Legacy PAM tools—nbuilt for static environments and credential vaulting—
can't meet the scale, speed, or integration needs of these environments.

Modern PAM must:

e Operate across hybrid infrastructure without requiring proxies or bastions

Integrate with identity providers and cloud IAM APIs

Support fine-grained, just-in-time access for all identity types

Deploy quickly and scale without extensive services or operational overhead

The cost of getting this wrong isn't just complexity—it's persistent privilege, unmanaged
access, and security gaps that legacy systems can't see or fix.

The Evolution of Privileged Access Management



P/ SECURITY

Contact Us

Email: info@pO0.dev
Web: www.p0.dev

PO Security is the unified access privilege platform built for modern hybrid and multi-cloud environments.

Where legacy IAM, PAM, and IGA tools fall short — particularly around non-human identities, ephemeral
infrastructure and developer velocity — PO delivers orchestration and governance, visibility and risk posture
across all cloud environments.

With an agentless, API-native architecture, PO helps teams enforce least privilege by default through short-
lived, just-in-time access for both human and machine identities. Security and platform teams rely on PO to

reduce blast radius, streamline audits and eliminate manual provisioning without slowing down development.

PO is trusted by leading organizations in fintech, healthcare, Al, and cloud-native tech, with full enterprise
deployments completed in under 60 days. Learn more at www.pOsecurity.dev.

Copyright © 2025 PO Security WP_PAMEvo_072525



