
REFHE: Fully Homomorphic ALU

Zvika Brakerski2, Offir Friedman1, Daniel Golan1, Alon Gurni1, Dolev
Mutzari1, and Ohad Sheinfeld1

1 dWallet Labs, research@dwalletlabs.com
2 Advisor to dWallet Labs

Abstract. We present a fully homomorphic encryption scheme which
natively supports arithmetic and logical operations over large “machine
words”, namely plaintexts of the form Z2n (e.g. n = 64). Our scheme
builds on the well-known BGV framework, but deviates in the selection
of number field and in the encoding of messages. This allows us to support
large message spaces with only modest effect on the noise growth.
Arithmetic operations (modulo 2n) are supported natively similarly to
BGV-style FHE schemes, and we present an efficient bootstrapping pro-
cedure for our scheme. Our bootstrapping algorithm has the feature that
along the way it decomposes our machine word into bits, so that during
bootstrapping it is possible to perform logical operations (essentially ad-
dressing each bit in the message independently). This means that during
a single bootstrapping cycle we can perform logical operations on n bits.
For example, a “greater than” operation (if x > y output 1, otherwise
0), only requires a single subtraction and a single bootstrapping cycle.
Along the way we present a number of new tools and techniques, such as
a generalization of the BGV modulus switching to a setting where the
plaintext and ciphertext moduli are ideals (and not numbers).

1 Introduction

Fully homomorphic encryption (FHE) [RAD+78,Gen09a] allows us to compute
on encrypted data without decrypting it first and without any knowledge of
the secret key. This makes it a prominent privacy enhancing technology with
numerous potential applications [GH19,CJP21a]. Whereas there is ample mo-
tivation for using FHE in the real world, its utilization in practice is hindered
by the overhead it incurs in computation and in storage. More explicitly, the re-
sources, say in running time, required to run a computation over encrypted data
may be orders of magnitude longer than running the same computation in the
clear. Narrowing this gap to a tolerable level has been a major research direction
of the FHE community for over a decade, and indeed some success has recently
been reported, notably the recent announcement of the integration of Swift FHE
into Apple devices as a part of iOS 18 [BTR24]. However the overhead remains
prohibitive (or at least quite restrictive) for many desirable applications.

There are two main paradigms in the literature for practically-oriented FHE
candidates. Both rely on structure related to the Learning with Errors (LWE)
[Reg05] and Ring Learning with Errors (RLWE) [LPR13a], as put forth in

2

[BV11b,BV11a,GSW13]. The first is a more direct extension [BV11b,BV11a] and
is utilized in the BGV, B/FV, CKKS schemes [BGV12,Bra12,FV12,CKKS17]
and their successors, and is of a more arithmetic nature. We therefore refer
to these as arithmetic schemes. Software libraries that take this approach in-
clude [HS20, SEA11, CKKS16]. The second follows the paradigm of [GSW13,
DM14, CGGI20] and is more native for boolean operations, and we therefore
refer to them as boolean schemes. Software libraries that take this approach
include [Zam21, tfh17]. Let us discuss these approaches in slightly more detail
below.

Arithmetic Schemes. These schemes natively support arithmetic operations
over some plaintext modulus p. In BGV and B/FV the operations are carried out
exactly over a discrete ring, whereas in CKKS, they are real valued and noisy,
but they are all natively arithmetic. When implemented naively, this approach
leads to exorbitant information overhead. Namely to very large ciphertexts that
encrypt a small amount of data. This is partly mitigated by the use of batching :
the ability to encrypt multiple plaintexts in parallel “slots” in the same cipher-
text, and apply operations on them in parallel. Batching reduces the amortized
overhead, both in terms of storage and in terms of computation, since an oper-
ation on the ciphertext corresponds to operations on many plaintexts.

Importantly, batching uses algebraic properties of the RLWE problem, and
in particular requires a specific relation between p and the number field over
which the scheme is defined. In particular this means that the strongest form of
batching requires p which is an odd prime with some specific structure. There are
techniques in the literature that allow to trade off the “amount of batching” with
the form of the modulus [GHS12,HS21]. These techniques use field extensions
to produce plaintext spaces of the form GF(pd). Thus it is possible to batch
finite-field elements of size, e.g., 264, but it is not possible to properly batch
plaintexts from the ring Z264 . We are not aware of solutions that allow batching
for message spaces such as those targeted in this work, namely Zp for a large p,
specifically for p being a power of 2.

Either way, batching requires both aggregation of a large amount of data per
ciphertext and the ability to split this large amount of data into small amounts
(to fit in each slot) in such a way that per-slot homomorphic operations remain
useful. This is simply not the case when we wish to work with large integers,
which is how many modern computer systems operate.

As in all known approaches for FHE, if one wishes to compute functionali-
ties with a-priori unbounded depth, then a bootstrapping operation needs to be
executed periodically. Bootstrapping [Gen09b] reduces the “noise component”
that exists in all known FHE candidates. The noise grows with every homo-
morphic operation, and must be kept below a certain threshold to maintain the
correctness of the scheme. Bootstrapping, therefore, is the process that allows to
reduce the noise level so that additional homomorphic operations can be carried
out. Bootstrapping essentially requires to apply the decryption algorithm ho-
momorphically over the ciphertext. This requires applying operations that are
not “natively” arithmetic, such as rounding or truncation of least significant

REFHE: Fully Homomorphic ALU 3

bits. Therefore, whereas bootstrapping is heavy on resources in all known FHE
instantiations, arithmetic schemes generally struggle with bootstrapping more
than boolean ones. This is likewise the case for any non-arithmetic operation, in
particular boolean operations like “greater than” are challenging to implement.

Boolean Schemes. In these schemes, each ciphertext essentially encrypts a
single bit. It is possible to pack multiple ciphertexts into a more compact repre-
sentation, and various optimizations have been introduced in [DM14,CGGI20],
but homomorphic operations are still performed at the bit level. This allows to
perform logical operations natively. A particularly successful approach is taken
by the TFHE scheme [CGGI20]. This proposed a way to perform the bootstrap-
ping operation very efficiently, and therefore elect to perform bootstrapping after
(or rather, as a part of) every operation. This framework makes it harder to work
with data types that are naturally composed of multiple bits, such as number
modulo p. In boolean schemes, one needs to represent large numbers as a se-
quence of bits and apply the appropriate boolean circuits to perform operations
like addition and multiplication. This is possible, and indeed works naturally
even for moduli of the form 2n, but requires a large number of bootstrapping
operations even for the simplest of operations (e.g. adding two n bit numbers as
integers modulo n). We note that boolean schemes are very convenient for logical
operations, e.g. “if” statements. For example, boolean comparison between two
numbers, i.e. the predicate a ≥ b, can be computed as easily as the difference
a− b. Note that this is not the case for arithmetic schemes.

The Challenge: Arithmetic-Logic Unit for Machine Words. Our goal
when using FHE is to be able to take existing code and convert it into running
homomorphically with as little change as possible. Indeed, our algorithms and
data types should remain oblivious to our choice of privacy preserving technique.
We may therefore put forth the task of constructing a homomorphic framework
that natively supports the “standard” operations of computer programs. In par-
ticular, this includes arithmetics over integers modulo 2n, since integer data
types in most architectures are of this form. At the same time we wish to be
able to execute conditional statements, and apply logical operations on the bits
of our numbers.3 Indeed, the “slogan” for our goal is to implement an “Arith-
metic Logic Unit” (ALU) inspired by such components that exist in CPUs. Such
a unit would support arithmetics modulo 2n, as well as logical operations at the
bit level.

We note that both aforementioned approaches are universal (a.k.a Turing
complete) and therefore allow in principle to implement an ALU. However, when
concrete efficiency is concerned, if the native representation is only arithmetic
or only boolean, then a change of representation will be required for some op-
erations, which is usually prohibitive in terms of resources. This work therefore
focuses on the following question.

Is it possible to design an FHE scheme that natively supports arithmetics
modulo Z2n and supports boolean operations as well?

3 We are not considering float-point operations at this point.

4

1.1 Our Contribution – FHE for Arithmetic and Logical Operations

We present a number of novel ideas that allow us to break from the existing
paradigm and present a fully homomorphic encryption scheme with new capa-
bilities. We first show how to construct a BGV-style scheme with native support
for arithmetics over Z2n while not incurring the penalty that is usually associ-
ated with such plaintexts in “legacy” BGV. We then present a bootstrapping
algorithm for our scheme which not only performs the “standard” bootstrap-
ping features of reducing the noise in the ciphertext, but also, along them way,
provides us access to the n individual bits in the binary representation of our
Z2n message. This allows us, in the course of bootstrapping, to perform logical
operations natively. Thus achieving both arithmetic and boolean logic without
additional overhead.

For the first part, we construct an encryption scheme whose native plain-
text space is Z2n (where n is a parameter). We show that arithmetic homo-
morphic operations (addition, multiplication) over this plaintext space can be
performed essentially the same as in BGV-style FHE. However, the parameters
of the scheme and noise scaling are comparable to BGV with plaintext {0, 1}.
This is a crucial difference since prior to this work, a plaintext space of Z2n meant
an additional factor of 2nd in the noise, when evaluating a depth d arithmetic
circuit. In contrast, in our scheme the growth would be roughly nO(d), which as
explained above is comparable to binary plaintext. This has a cascading effect
on all parameters of the scheme, since mild noise growth allows to reduce the
so-called “noise ratio” of the underlying algebraic LWE problem, which in turn
upgrades the security level of the scheme, which then allows to reduce the size of
other parameters and maintain the same security level as previous schemes. As a
result, we can instantiate our scheme with very large plaintext spaces that were
previously prohibitive, with only minimal loss in performance. We note that we
did not explore the possibility of batching in our scheme, so we only consider
the setting of a single message per ciphertext. However, it may be possible to
incorporate batching into our framework as well.

This is achieved by examining the properties of the BGV scheme in the
algebraic setting (i.e. when it is based on structures stemming from the RLWE
assumption and similar ones). We notice that, under the hood, BGV encryption
can seemlessly be made to support any message space that is defined by an ideal
in the ring where the scheme is defined (the ring of integers of some number field,
or a subring thereof). This property was already noticed in the context of the
NTRU scheme by Hoffstein and Silverman [HS00], and was used in the context
of FHE in a number of works, e.g. [CLPX18, BCIV20]. However, these works
fell short of achieving the goal of naturally supporting Z2n since they insisted
on sticking with the use of cyclotomic number fields which has indeed been
prevailing in the FHE literature. We deviate from this paradigm and show that
working with non-cyclotomic number fields opens the door for great versatility
in the design of the message space. We view this as a major contribution of
this work. Indeed, this modification requires us to use algebraic variants of LWE
that are defined over such number fields. Whereas this is not as widely used in

REFHE: Fully Homomorphic ALU 5

the literature, we notice that to the best of our knowledge there is no reason to
speculate that cyclotomic number fields would lead to more secure constructions
(in fact, some argue that the opposite is more likely). We provide a detailed
discussion on the security of algebraic LWE in our context.

As an additional contribution, we discuss the possibility of creating “Double
CRT” encoding of the ciphertexts in our scheme. Double CRT [HS20] is a way
to encode ciphertexts that relies on the decomposition of the ciphertext modulus
into prime ideals of a cyclotomic ring. This implies a representation of a large
ciphertext as an array of fairly-small numbers, where addition and multiplication
in the ring translates into pointwise addition and multiplication of the elements
of the array. Whereas on the face of it we may not use Double CRT in our scheme,
since we do not know how to decompose ordinary integers into prime ideals in
our ring, we show that it is possible to take the opposite approach and construct
the ciphertext modulus as a product of “simple” ideals. This would indeed allow
for decomposition, but would imply that the ciphertexts in our scheme are no
longer naturally represented as vectors of polynomials, where each coefficient is
in Zq for some integer q, but instead are cosets of some ideal in our ring. We
show that nevertheless it is possible to apply homomorphic evaluation in this
case.

In the second part we wish to devise a bootstrapping algorithm for our
scheme. The bootstrapping process is computationally labor-intensive since it
requires evaluating a pretty complex function. Furthermore, the noise accu-
mulation during bootstrapping directly reduces the homomorphic capacity of
the scheme after bootstrapping. Therefore, there is a lot of effort in the lit-
erature in order to reduce the complexity of bootstrapping in various FHE
schemes [GHS12,HS21,DM14,CGGI20,KDE+24]. In particular, to come up with
“decryption circuits” that require the least amount of resources and have the
least noise accumulation.

In our scheme, we manage to introduce a decryption functionality which is
both relatively mild in terms of resources, and allows us to extract the individual
bits of the message in the course of bootstrapping. This means that during
bootstrapping we can perform bit-level operations on the encrypted message,
which we leverage to obtain logical/boolean evaluation capacity for our scheme.

Our starting point is the method of [KDE+24] who proposed to bootstrap
BGV-style ciphertext by reducing the task to that of bootstrapping non-algebraic
ciphertexts (i.e. ones that are not defined over a ring). In fact, this is quite
straightforward in BGV-style encryption, since one can decompose an algebraic
ciphertext into a collection of non-algebraic ciphertexts simply by thinking about
ring elements as polynomials, and considering one coefficient at a time (see tech-
nical overview below for additional details). They then use the [CGGI20,CJP21a]
bootstrapping approach which has been designed for non-algebraic ciphertexts,
and use it essentially as a building block.

We cannot follow this blueprint as is, since our algebraic ciphertexts do not
decompose well in terms of coefficients. That is, our use of a general ideal to
define the ciphertext space means that noise in our ciphertext is not added per-

6

coefficient as in previous FHE schemes. We therefore design a novel approach
for recursive decomposition of our algebraic ciphertext into a collection of non-
algebraic ciphertexts. Essentially this works by noticing that we can extract a
non-algebraic ciphertext encrypting the least significant bit. We then bootstrap
this ciphertext and show how to use the bootstrapped ciphertext in order to
produce a non-algebraic encryption of the next bit of the message. At the end
of the process, we have bootstrapped versions of non-algebraic encryptions of
all bits of the message. This allows us to perform many logical operations “for
free”: e.g. apply any permutation or shift on the bits, remove some of the bits
or XOR them with each other. We can also apply more sophisticated operations
such as bitwise AND using a bit more work.

We refer the reader to the technical overview below for a more detailed
explanation on how our scheme works.

Finally, we consider concrete parameters for our scheme, with a plaintext
space of n = 64 bits. We implemented our scheme and report implementation-
specific details.

1.2 Other Related Works

This work addresses FHE in the circuit model. This means that we consider
computation that is represented in a combinatorial form as a circuit with boolean
or arithmetic gates. Until recently, FHE was only known to be applicable in
this model. Recently, Lin, Mook and Wichs [LMW23] introduced the first FHE
scheme that operates in the RAM model (with suitable preprocessing). Whether
our techniques have implications on RAM-FHE remains a subject for future
inquiry.

Following the preparation of this manuscript and prior to its public release,
other independent works on related topics appeared. Prior to our work, it was
not known how to bootstrap [CLPX18]-type FHE. Indeed, standard methods
for bootstrapping BGV/BFV do not seem to be applicable for such schemes.
We present a way to resolve this issue, and a different bootstrapping method
was shown in [GV24]. We note that our method, when used within our frame-
work, enables the additional functionality of binary operations for free. Another
recently published work by Boneh and Kim [BK25] presents a way to homo-
morphically manipulate large plaintext spaces, including modulo powers of two.
Their method is quite different from ours and uses nested Residue Number Sys-
tem (RNS) representation on top of the CKKS FHE scheme. Whereas their
method appears superior in terms of throughput, we believe that our method
could be preferable in terms of latency. In particular, our scheme can be used as
a leveled scheme and support a number of addition and multiplications without
requiring bootstrapping, whereas in [BK25] bootstrapping is inherent in mul-
tiplication. Furthermore, even if bootstrapping is needed, which is a sequential
process in our case, we may still be competitive with [BK25], e.g. for the plaintext
space Z2256 .

REFHE: Fully Homomorphic ALU 7

1.3 Paper Organization

Due to space limitations, some of the technical details are deferred to the supple-
mentary material. Section 2 contains a technical overview of our work. Section 3
contains preliminaries and definitions (some standard definitions are deferred to
the supplementary material). The basic scheme is presented in Section 4. The
arithmetic operations, which are an extension of the BGV technique to our set-
ting, are deferred to the supplementary material (Section C). Our bootstrapping
algorithm and the derived homomorphic boolean/logic operations are described
in Section 5 (the details of the correctness and security analysis are deferred to
supplementary material, in Section D). Implementation details and performance
are discussed in Section 6.

Our analysis for using algebraic modulus for the sake of double CRT is pro-
vided in the supplementary material (Section F). A detailed discussion on the
security of our hardness assumption in our ring is provided in the supplementary
material (Section E).

2 Technical Overview

We start with a common blueprint for LWE-based encryption. The ciphertext
is a (column) vector c, say in Zn

q , and the secret key s is a (row) vector of the
same dimension, say in Zn. The ciphertext is generated so that

s · c = µ+ pε (mod q) . (1)

We refer to q is the “ciphertext modulus” and p is the “plaintext modulus”, and
we require that p, q are coprime. The encrypted message µ can be interpreted
as an element in Zp and the variable ε is the “noise”. So long as |ε| ≪ q, it is
possible to recover m from the ciphertext.

In algebraic LWE variants, Z is replaced with some other ring. Particularly
the “ring of integers” of a number field, or a full-rank subring thereof. A very
common choice for such a ring is R = Z[x]/⟨f(x)⟩, where f is an irreducible
monic polynomial of degree n.4 A prevalent choice for f is a cyclotomic poly-
nomial, in particular of the form f(x) = xn + 1 for n being a power of 2. The
reader may keep this example in mind until we explain how we deviate from it
in this work.

Given such a ring, we may analogously consider c ∈ Rq (where Rq = R/qR),
s ∈ R so that

s · c = µ+ pε (mod qR) , (2)

where ε ∈ R and the messages are now drawn from Rp.
5 Since elements in

Rq can be represented as degree (n− 1) polynomials, the term µ+ pε (mod q)

4 This ring coincides with the ring of integers of the number field defined by f(x) in
some useful special cases, but not always.

5 In fact, algebraic variants of LWE (such as RLWE) were originally defined slightly
differently, using the dual ring. This definition allowed to prove worst-case hardness

8

can be considered one coefficient at a time. In each such coefficient there is a
message part that comes from Zp and a noise part that comes from the respective
coefficient of ε. We conclude that if all coefficients of ε are small compared to q,
denote this |ε| ≪ q, then µ ∈ Rp can be fully recovered.6

As shown in [BV11b,BV11a,BGV12], the above scheme can be made homo-
morphic and support arithmetic operations over the plaintext ring Rp. Namely,
addition and multiplication. Each such operation incurs a penalty in the size of ε,
most significantly during multiplication. Indeed, even in the most noise-efficient
multiplication methods, a depth d multiplication incurs a penalty of roughly
pd in the noise (in addition to other penalties that are not directly dependent
on p). Furthermore, arithmetics in Rp is often not what is actually required.
Indeed, common data types take a form of Zp and not of polynomials with Zp

coefficients that are multiplied modulo f(x). One way to achieve homomorphism
with respect to Zp is to encode messages m ∈ Zp as polynomials µ ∈ Rp by just
setting the free coefficient of µ to be m, and keep all other coefficients at 0 (or in
more abstract term use the fact that Zp is a subring of Rp). This indeed does the
trick but has two main drawbacks. First, the information rate achieved is quite
poor. An element in Rp can encode n elements from Zp in terms of information
content, but the homomorphic requirement forces us to lose a factor of n in
utilizing this capacity. Second, if p is large, then the noise growth is completely
prohibitive.

Prior works, starting with [SS10], proposed a way to amortize the information
utility. They show that by properly selecting f and p, it is possible to set up
the R so that Rp

∼= Zn
p , as rings, with pointwise addition and multiplication.

This means that it is possible to pack n elements from Zp and apply operations
on them in parallel (see also [GHS12] and other followup works). However, this
solution is limited to specific values of p, and to a setting where it is indeed
possible to “collect” n messages into one ciphertext. This method had been
extended to other types of plaintext spaces, specifically field or ring extensions,
see [HS21]. We are not aware of solutions that allow batching for message spaces
such as those targeted in this work, namely Zp for a large p, and in particular
p = 2ℓ for some ℓ. However, using the existing methods, even if batching can be
achieved, the noise blowup problem remains.

Using Ideal Plaintext Modulus. We notice, as others before [HS00,GC14,
CLPX18], that p needs not be in Z in order for the scheme to work. Indeed, we
may consider an ideal p in the ring R, and consider ciphertexts for which

s · c = µ+ e (mod qR) , (3)

for the problem. However, it is possible to convert into the form presented here while
paying a “penalty” in the size of the noise. See, e.g., [RSW18], and also Section E
in this work.

6 For the informed reader, we note that we work here with the so-called “coefficient
embedding”. Whereas in some cases it is useful to work with the “canonical embed-
ding” we find that for the analysis of our scheme the coefficient embedding provides
more convenience and flexibility.

REFHE: Fully Homomorphic ALU 9

where we are guaranteed that e ∈ p. For our purposes we consider p = ⟨x− 2⟩, so
we can think of e = (x−2)ε, where ε is as before. In this case, the plaintext µ is in
the ring Rp = R/p. Importantly, in many cases there is a ring homomorphism
Rp
∼= Zp for p = |f(2)| (this holds for any f(x) that is of interest in this

work). However, in a cyclotomic ring, such p can never be a power of 2. We
therefore propose to use non-cyclotomic polynomials. In particular we consider
polynomials of the form f(x) = xn − x+ 2.

We note while the FHE literature mostly uses cyclotomics, this is done for
reasons of convenience and structure (e.g. having automorphisms that can be
used for some functionalities). There is no evidence that working over cyclotomics
makes algebraic LWE more secure. In fact, some claim that to the contrary, that
the additional structure of cyclotomic rings makes them more risky in terms of
security, and designers should opt for other polynomials [BCLvV16]. We refer
the reader to Section E for a more detailed discussion.

We can now explain our scheme. Our message space is Z2n for some param-
eter n, and our ring is R = Z[x]/⟨f(x)⟩, f(x) = xn − x + 2. We require an
encoding method to map an elements m ∈ Z2n into µ ∈ Rp and vice versa. It is
important that |µ| is as small as possible, for reasons we explain below. This is
in fact not very difficult as one can verify that one can map any m into µ with
{0, 1} coefficients by simply considering the binary representation of the number
m (mod 2n). In the other direction, for any µ = µ(x), we may consider µ(2)
(mod 2n). This mapping indeed implement the aforementioned ring homomor-
phism. In addition it has the useful property that the bits of m are exactly the
coefficients of µ. This is a consequence of using the non-cyclotomic polynomial
and will be invaluable to us down the line.

Therefore, when we wish to encrypt a message m, we first encode it into
a polynomial µ and then use the above scheme. The arithmetic homomorphic
properties such as addition and multiplication work very similarly to previous
schemes, but now, instead of pd penalty for depth d multiplication as in [BGV12]
and related schemes, the penalty scales roughly with (log p)d, which is a signif-
icant improvement. We will not go into the details here, but the reason, es-
sentially, is that the noise growth factor depends on the maximal ℓ1 norm of
plaintexts in the space. Since we can encode m into µ with {0, 1} coefficient, this
factor is roughly n = log p.

We remark that in the description so far, n plays a double role. Both as a
dimension for the algebraic LWE problem and as a parameter that determines
the plaintext space. If desired we can decouple these two roles by working with
the so-called “module” version of the algebraic LWE problem. In this case c ∈ Rr

q

for some “rank” r (and likewise for s). This means that the dimension for the
LWE problem is r · n, but the plaintext space is determined by n. This subtlety
is not going to be of particular importance for this high level discussion.

Arithmetic Homomorphic Operations. Homomorphic addition and multi-
plication are performed similarly to the BGV scheme [BGV12,HS20]. Whereas
many of the subroutines carry over, there is one that requires rethinking and
updating. This is the so-called “modulus switching” procedure. The goal of this

10

operation is essentially to “shrink down” the ciphertext modulus q into a new
smaller q′. In this process, the relative noise level |ε|/q remains roughly un-
changed: |ε|/q ≈ |ε′|/q′, which means that the absolute noise level goes down
(since q′ < q). This subroutine is quite central to BGV-style schemes and it
needs to be carried out after every multiplication operation, and it also plays a
role in the bootstrapping procedure (to be discussed below). Furthermore, [HS20]
requires modulus switching in order to optimize the performance of another sub-
routine, called “key switching”, which can in principle be carried out without
modulus switching but with worse performance in terms of noise growth.

In this context, we first consider the straightforward extension of “legacy”
modulus switching to the setting where p is a general ideal. This is a relatively
straightforward extension but it requires that q = q′ (mod p). Whereas prior
to our work this was not considered a problem since essentially by definition,
the plaintext space was such that p ≪ q, q′, in our case this could be rather
prohibitive. In fact, our paradigm even supports a setting where q ≪ p. In
prior works, [GC14] considered the straightforward extension as defined above,
without noticing its drawbacks for very large p, whereas [CLPX18] did not face
this challenge since they worked with the so-called B/FV approach, and do not
perform bootstrapping, so at least asymptotically one can do without modulus
switching, an approach that is not suitable for our needs.

We propose two methods to mitigate this problem. The first is to notice that
even if α = qq′−1 (mod p) ̸= 1, so long as this value α is invertible modulo p,
it is possible to “correct” the modulus switching procedure at the cost of an
additional homomorphic scalar multiplication, which is relatively mild in terms
of noise cost. The second is to do away with the ciphertext modulus q being an
integer, and taking it as an element of the ring as well. This means that for any
q it is possible to find q′ with the proper “volume” (the volume in this context
is the index of the ideal in the ring) so that modulus switching has the desired
properties. We notice that working with such algebraic ciphertext modulus may
have additional advantages. For example, setting q =

∏
i qi, where each qi is

“small” will allow to perform modulus switching as desired, and also provide
a method for double-CRT encoding of the ciphertext, as explained above. We
elaborate on this in Section F. Finally, going back to the first method, we notice
that the scaling by α may be performed only “conceptually” without actually
performing the multiplication. We can just “carry” the α factor throughout the
computation and cancel it only at decryption (or at bootstrapping).

Bootstrapping. We now describe the bootstrapping procedure for our scheme.
As explained above, we follow [KDE+24] and rely on the TFHE bootstrapping
procedure [CGGI20] as a building block. Their goal was to bootstrap schemes
with syntax similar to Eq. (2). They do this by decomposing the ciphertext into
n non-algebraic ciphertexts, each of the form of Eq. (1). To see why this is the
case, we recall that Eq. (2) is an equality between two ring elements, which can
be seen as an equality between two polynomials of degree n−1. If we consider the
i-th coefficient of this polynomial, then on the right hand side we get µi + pεi,
and on the left hand side we get a bilinear operation on the coefficients of c

REFHE: Fully Homomorphic ALU 11

and s. This can be interpreted as a non-algebraic ciphertext that is decryptable
using the coefficient vector of s. The [KDE+24] approach is to bootstrap each
such non-algebraic ciphertext using the methods of [CGGI20], and then putting
the outcomes back together.

This approach doesn’t carry over to our setting. We embrace the basic idea of
splitting an algebraic ciphertext into multiple non-algebraic ones, but we require
a very different mechanism for this purpose, one that will ultimately also allow
us to perform boolean operations in the course of bootstrapping. To see why
this is the case, let us analyze the right hand side of Eq. (3) similarly to what
we did with Eq. (2). The i-th coefficient of of µ+ e equals µi+ ei, but now recall
that e = (x − 2)ε (mod f(x)), so ei can no longer be written as pεi as before.
Let us write down the coefficients of e for n = 4 to get a sense of what is going
on (note that εn−1 wraps around because of the modulation in f(x)).

e0 = −2ε0 − 2ε3

e1 = ε0 − 2ε1 − ε3

e2 = ε1 − 2ε2

e3 = ε2 − 2ε3

Note that other than e0, in all other components there is no guarantee that the
noise belongs to some ideal. Indeed the structure of the noise in our setting is
not axis-parallel in the coefficient embedding. Nevertheless, we notice that at
least for e0 we do have a guarantee that it can be written as e0 = 2e′0. We
may therefore extract the free coefficient from equation Eq. (3), and use it to
bootstrap and obtain a non-algebraic low-noise encryption of µ0.

It may seem that we have reached a dead end, since the other ei are not as
accommodating. To get us out of this barrier, let us consider a ciphertext for
which we are guaranteed that µ0 = 0. Namely, it is possible to write µ = xµ′. We
also notice that in our ring, since we work modulo f(x) = xn−x+2, it holds that
(x−2) = xn. It follows that we can write the right-hand side of Eq. (3), for such
a ciphertext, as xµ′ + xnε. Using a standard technique (essentially multiplying
the ciphertext by x−1 (mod q)) it is possible to remove the common factor and
convert this to one whose right hand side is µ′ + xn−1ε. Letting e′ = xn−1ε, we
can see that e′0 = −2ε1, which is again even. In fact, for every power of x it
holds that the free component of xiε is even. This is not an accident and follows
directly from our choice of ring polynomial f(x). Our approach, therefore, is to
first extract µ0, and then subtract it from the original ciphertext to obtain a
ciphertext as described above. Then extract µ1 from this ciphertext and so on.
However, implementing this approach is not without difficulties.

The first difficulty we encounter is that [CGGI20] expects a BFV-like cipher-
text, where the right-hand side is of the form ⌈q/2⌋µ0+ε̂0 (mod q). This is essen-
tial for the their bootstrapping to work. Essentially, the first step in [CGGI20]
is to mod-switch the input ciphertext such that the ciphertext modulus is a
power-of-two. This is needed for the correctness of the blind rotation step, as
the ciphertext modulus of the input should align with the power-of-two cyclo-
tomic ring degree under which the test polynomial is encrypted. We therefore

12

first convert our extracted BGV LWE encryption of µ0 to a BFV LWE encryp-
tion. Importantly, starting from a BFV-like encryption in our proposed scheme
does not solve the above issue. In this case, the right-hand side of the encryption
would be of the form ⌈q/(x− 2)⌋µ(x) + ε̂0 (mod q, xn − x+2), and so no bit of
the message µ can be extracted to begin with.

So far, we did not get into the question of what the output of the bootstrap-
ping actually looks like. We only mentioned that it is a “non-algebraic low-noise
encryption”. The right-hand side of this encryption would normally be of the
form ⌈q/2⌋µ0 + ε̂0 (mod q) for some small integer value ε̂0 ∈ Z. How can we
use it to cancel out µ0 from an algebraic ciphertext? To do this, we utilize the
versatility of the bootstrapping procedure of [CGGI20], which allows to pro-
duce non-algebraic ciphertexts with-right hand side g(µ0) + ε̂0 (mod q), for any
function g with Zq values (in fact, it is even somewhat more versatile, but this
suffices for us). We use it to recover all powers of B multiples of µ0. That is
Bjµ0 + ε̂0,j (mod q). This allows us, via subset sum, to recover an encryption
for any integer multiple of µ0. Indeed, this is only for non-algebraic ciphertexts,
but it can be extended to algebraic ciphertexts as well. We therefore recover
an algebraic ciphertext of the form (x− 2)−1µ0 + ε̂′0, which can then be scaled
to obtain a ciphertext of the form µ0 + (x − 2)ε̂′0. This ciphertext can then be
subtracted from the original algebraic encryption of µ, and allow us to continue
to µ1 and then further down the line.

To summarize, in each step of the bootstrapping, we recover an algebraic
ciphertext of the form xiµi + (x − 2)ε̂′i. We can eventually add all of these
together to obtain an encryption of µ with small noise, which concludes the
bootstrapping functionality.

Overall, even if the plaintext space is not all of Z2n but Z2k for k ≤ n,
the bootstrap complexity is dominated by k logB(Q) [CGGI20] ‘bit bootstraps’,
when the ciphertext modulus grows from q to Q, and the error grows by a
polynomial factor of k,B and log(Q).

Logical Operations. As explained above, and demonstrated in our description
of bootstrapping, in the course of bootstrapping we recover individual encryp-
tions of all bits µi, scaled by any algebraic or non-algebraic integer. This allows
us to very easily perform bitwise operations on the ciphertext. Bit shifts and per-
mutations are essentially trivial since we can recover xiµj +(x−2)ε̂′i for any i, j,
and add them together to obtain the new ciphertext. Linear GF(2) operations
over the bits of the message can likewise be computed.

More elaborate operations are also easily possible. For example the logical
“a ≥ b” predicate which outputs 1 if a ≥ b and 0 otherwise can be implemented
homomorphically by computing (arithmetically) the difference a − b (mod 2n)
and then extract the most significant bit of the difference which exactly imple-
ments the above functionality.

We may even consider further operations such as bitwise AND between ci-
phertexts, which can also be performed once we extract all bits. One way to im-
plement this is to recover non-algebraic ciphertexts of the form µi+4εi. Adding
two ciphertexts of this form, and then extracting the second-least-significant

REFHE: Fully Homomorphic ALU 13

bit, recovers the AND of the two numbers. One may think of more sophisticated
algorithms that can be carried out in this way.

2.1 Estimated Performance

To conclude the technical overview, we provide an estimate of the performance
of our scheme on its intended use-case, i.e. evaluating arithmetic circuits over a
large ring Z2k . Our benchmark for the comparison is the use of bit-by-bit TFHE
encryption [CGGI20].7 Since bootstrapping accounts for the vast majority of the
computational cost of the homomorphic evaluation, we focus on a comparative
analysis of the cost of bootstrapping.

We did not implement our bootstrapping procedure at this point, due to its
complexity. However, since our bootstrapping procedure relies on the [CGGI20]
bootstrapping procedure as a building block, we can readily compare the com-
plexity by referring to the properties of this building block.

The Setting. We consider evaluating an arithmetic circuit over Z2k , containing
addition and multiplication operations. We stress that the parameter k needs
not be identical to the REFHE ring degree n. One may think of the running
example of k = 64 (whereas n will be much larger, as discussed below).

In the case of TFHE, the circuit is broken into boolean gates. Each addition
operation will therefore require ∼ k gates, and each multiplication will require
∼ k2 gates. The application of each gate requires one application of the [CGGI20]
bootstrapping procedure that we denote by Atomic. As described above, this
operation takes as input a “BFV-like” LWE ciphertext with dimension n and
modulus q. It produces a bootstrapped LWE ciphertext of dimension N and
modulus Q.

We compare this with an instantiation of REFHE that supports multiplica-
tive depth 2 before requiring to bootstrap. Therefore, the bootstrapping cost of
REFHE in this case is k logB(Q) applications of Atomic, potentially with differ-
ent values for N,Q.

In terms of the number of Atomic calls, REFHE requires k logB(Q) such calls,
per two layers of evaluated circuit.8 The number of calls required by TFHE
depends on the structure of the circuit. At the very least, k2 calls are required if
the circuit just contains one multiplication gate.9 We will use this very minimal
setting for our comparison, but note that there are cases where the balance
leans much more significantly in our favor. For example, when computing an
inner product of d-dimensional vectors over the ring, an implementation using
TFHE requires dk2+(d−1)k calls to Atomic, whereas the REFHE cost remains
k logB(Q). For very large values of d, this can be very significant.

7 We recall that our intended use-case is a setting where batching many plaintexts
together is impractical or otherwise undesired. This leaves TFHE as a leading can-
didate for comparison.

8 We will explain below that for our parameter selection, this number can be reduced,
even to only k calls, but for now we keep the naive count k logB(Q).

9 Note that in the case where there is no multiplication, REFHE can evaluate without
bootstrapping at all.

14

We will show that even if the circuit is set up to be least favorable for REFHE,
we still expect to be competitive with the TFHE cost.

The Parameters of Atomic. Recall that Atomic takes a ciphertext with dimen-
sion n and modulus q, and produces an LWE ciphertext with dimension N and
modulus Q. Under the hood, the output LWE ciphertext is extracted from a
“Module LWE” ciphertext with module rank r and ring dimension N/r := N0.
The output ciphertext is expected to have “low noise”. The measures for the
performance of Atomic therefore are the computational complexity of execution,
and the output noise level.

Since REFHE and TFHE call Atomic with different parameters, we need to
explain the dependence of the complexity of Atomic on its various parameters.
Using key switching and modulus switching, we can set up the REFHE boot-
strapping so that the parameters of the input ciphertext to Atomic, namely n, q,
are essentially identical to those in TFHE. The effect of these parameters is
therefore transparent in our comparison.

For ease of comparison, we will also select our parameters so as to keep an-
other important value invariant. Specifically, Atomic uses digit-decomposition
gadget for the output modulus Q, with radix B′. Our value of Q will be much
larger than that of TFHE, but we will increase B′ accordingly so that logB′(Q),
i.e. the number of “digits” in Q represented in bases B′, remains invariant be-
tween our parameters and theirs.

We are left with two parameters: the output modulus bit-length ratio: ρQ =
log(QREFHE)
log(QTFHE) (which, by the invariance of logB′(Q), is also equal to

log(B′
TFHE)

log(B′
REFHE))

and the output LWE dimension ratio: ρN =
N0

REFHE(rREFHE+1)

N0
TFHE(rTFHE+1)

. Therefore, calling

Atomic with the parameters for REFHE will take ×ρQρN more than for TFHE.
That is the case because, using the double CRT representation [HS20], the cost
of each arithmetic operation on ciphertexts is proportional to N0(r + 1) logQ.
The effect on the noise will be analyzed later.

Improved Performance by Amortization. This amortization uses addi-
tional lower-level properties of Atomic. In fact, Atomic takes its input ciphertext
c and evaluates µ∗ = ⟨c, s⟩ (mod N0). It can then evaluate an arbitrary func-
tion T with range in ZQ on this value µ∗ and produce a low-noise ciphertext
c′ modulo Q s.t. ⟨c′, s⟩ ≈ T (µ∗). More details about the TFHE bootstrapping
algorithm can be found in Appendix G. By looking at the details of the proce-
dure, it is easy to see that one can also extract a ciphertext corresponding to
T (µ∗ + i) for any i that is known in advance. This means that we can take N0

s.t. q|N0. Let u = N0/q. We can then run Atomic on u ·c rather than on c itself.
This means that now T gets evaluated on u ·µ∗. Therefore, if we have u different
functions T0, . . . , Tu−1 that expect a modulo q input, we can define a function
T with modulo N0 input such that T (uµ∗ + i) = Ti(µ

∗). This means that we
can use Atomic to extract u different values computed on the same µ∗ rather

than just one. As a result, if
N0

REFHE

N0
TFHE

≤ logB(Q), we need to call Atomic only

logB(Q) · N0
TFHE

N0
REFHE

· k per bootstrapping, instead of logB(Q) · k times.

REFHE: Fully Homomorphic ALU 15

Parameter Selection. We set B′ s.t. logB′(Q) is invariant between our scheme
and TFHE. We set B such that logB(Q) = N0

REFHE/N
0
TFHE. This way we can

use maximal amortization from the previous paragraph, so that our scheme only
makes k calls to Atomic. The exact parameters are presented in Table 1.

Parameter TFHE REFHE

“Outer” radix B NA 220

Ciphertext modulus Q 232 2160

Inner radix B′ 210 250

Gadget Levels 2 2
Module rank r 3 or 2 2 or 1

ring dimension N0 512 or 1024 4096 or 8096
Noise after bootstrap ≤ 232 ≤ 2108

Remaining mult. depth 0 1

Ratios ρQ = 5, ρN = 6 or 16/3

Cost of Atomic τ1 or τ2 (reference values) 30τ1 or 80
3
τ2

Total Cost (k2 ·#mult + k ·#add) · τi ≤ 30kτi
Table 1: Parameters in the bootstrapping procedure in TFHE and REFHE

Notice that the complexity ratio between AtomicREFHE and AtomicTFHE is
between 27− 30.

We can now bound the post-bootstrapping noise in REFHE as follows. The
noise is at most linear in B′ · (N0)2. The growth in N0 and B′ in REFHE might
therefore increase the noise in Atomic by at most 28 · 240 = 248 compared to
TFHE. Choosing B = 220, we are left after bootstrapping with noise of at most

QTFHE · (N
0
REFHE)2·B′

REFHE

(N0
TFHE)2·B′

TFHE
·B = 2108.

Next, we show that using these parameters for REFHE, we can indeed sup-
port depth-1 homomorphic multiplication. To see this, observe that right before
bootstrapping, the noise increases by at most a factor of 215 due to the key-
switching and modulus switching applied to ensure that the input ciphertext
parameters closely match those in TFHE. For Q = 2160, during homomorphic
operations, the noise can increase by at most

Q

2108 · 215
= 237

while still preserving correctness. This bound is sufficient for multiplications of
depth 1.

Conclusion. For k = 64, the complexity of multiplying two numbers in Z264

using TFHE (which is k2) is, by our estimate, twice the cost of bootstrapping
in our scheme, which in addition supports additions essentially ”for free”. We
note that this is only an estimation of the dominant terms in the complexity of
homomorphic evaluation, and actual runtime could depend on implementation
details. We also emphasize that for computations over smaller plaintext spaces

16

(e.g., 28), or those requiring many Boolean operations, the TFHE scheme appears
to be preferable. Nonetheless, this comparison already shows that our scheme
should at least be in the ballpark of TFHE in terms of performance, if not
better. Furthermore, our suggested parameters here are preliminary and are not
optimized. Indeed, even with this naive choice of parameters, our scheme appears
to compete well with TFHE.

In terms of ciphertext size, which is of high importance, e.g. in blockchain
applications, our ciphertexts are expected to be smaller by an order of magnitude
or two compared to those in TFHE, as illustrated in Figure 2a (page 29).

3 Preliminaries

3.1 Notation

The security parameter is denoted by κ. We use bold letters for vectors and
matrices.

An expression that includes a multiplication of a matrix and a ciphertext,
or a vector of ciphertexts as in D · (c0, . . . , cn−1)

t is done as in the regular way,
however when a matrix entry by a vector entry, the operation is a homomorphic
scalar-by-ciphertext multiplication one.

3.2 Algebraic Number Theory

We consider a monic irreducible polynomial f(x) of degree n and integer coeffi-
cients, the number field K = Q[x]/⟨f(x)⟩, and the ring R = Z[x]/⟨f(x)⟩. Note
that this ring is not necessarily the ring of integers of K, but it is nonetheless
an order of the field (a full-rank subring of the ring of integers). For any ideal
p in R we denote Rp = R/p. For brevity, when q = ⟨q⟩ is generated by an
integer q ∈ Z, we denote Rq = R/qR. If p = ⟨x− a⟩ then there exists a ring-
isomorphism Rp

∼= Zp where p = N(p) = |f(a)| (the notation N(·) refers to the
absolute norm of the ideal which is defined as the index of the ideal in the ring:
N(p) = (R : p)). In this work we will consider ideals for which the above holds.
We are particularly interested in the setting where f(x) = xn − x + 2 for some
n, and p = ⟨x− 2⟩. This results in p = |f(2)| = 2n.

We consider two popular methods for embedding elements in K into Eu-
clidean or complex space.

– The Coefficient Embedding. For a number field K as above, it is al-
ways possible to express any element of K uniquely as a polynomial of de-
gree less than n and rational coefficients. This induces a map K → Qn

by mapping t ∈ K whose polynomial representation is t =
∑n−1

i=0 tix
i to

[t] = (t0, . . . , tn−1)
t ∈ Qn.

– The Canonical Embedding. A number field K has exactly n ring embed-
dings (injective ring homomorphisms) into C, which are induced by taking
x to the (complex) roots of f . Denote them by σi : K → C. The canonical
embedding of t is the vector JtK = (σ1(t), . . . , σn(t))

t ∈ Cn. It is also possible

REFHE: Fully Homomorphic ALU 17

to embed this vector into Rn (essentially since f is a real-valued polynomial
so its complex roots come in conjugate pairs). However, we will not require
this real embedding here. In the canonical embedding, field addition and
multiplication are done component-wise.

These embeddings induce geometric norms on elements of K by using ℓp
norms over the embedding vectors. In this work we work mostly with the coef-
ficient embedding (even though in some cases the canonical embedding would
allow for a tighter analysis). We therefore let ℓp(·) denote the ℓp norm of a field
element in the coefficient embedding.

When working with the coefficient embedding, it is useful to consider the
expansion factor of the field:

γp = γp(K) = max

{
ℓp(a · b)
ℓp(a)ℓp(b)

: a, b ∈ K

}
(4)

By default, when p is not specified, we consider the infinity norm p =∞.
For w ∈ R we define

γw = max

{
ℓ∞(a · w)

ℓ∞(a)ℓ∞(w)
: a ∈ K

}
Our secret key has small ℓ1 norm, therefore we also define:

γ̂ = max

{
ℓ∞(a · b)
ℓ1(a)ℓ∞(b)

: a, b ∈ K

}
.

Note that γ̂ ≥ γ/n. The following proposition bounds the expansion factor for
our polynomial. The proof is via a direct calculation.

Proposition 3.1. Let f(x) = xn − x + 2, then for all e1, e2 ∈ R it holds that
the expansion factor γ is upper bounded by 3n, and moreover γ̂ is upper bounded
by 3.

Proof. For e ∈ R we have:

(e1 · e2)(i) =
i∑

j=0

e
(j)
1 e

(i−j)
2 − 2

n∑
j=i+1

e
(j)
1 e

(n+i−j)
2 +

n∑
j=i

e
(j)
1 e

(n−1+i−j)
2

≤ 3 · ℓ1(e1) · ℓ∞(e2)

≤ 3n · ℓ∞(e1) · ℓ∞(e2) .

3.3 Learning with Errors and Related Problems

The Learning with Errors (LWE) problem was introduced by Regev [Reg05] and
became one of the most widely used and influential building blocks in cryptog-
raphy. We use the following definition.

18

Definition 3.1 (Learning with Errors). Let n, q ∈ N, χs a distribution over
Zn, χe a distribution over Z.

For a row vector s ∈ Zn, consider the distribution As over Zn+1
q defined as

{(a, sa+ e (mod q))}, where a is uniform in Zn
q , e is sampled from χe.

Then the (decisional) Learning with Errors (LWE) problem with respect to
parameters lweparams = (n, q, χs, χe) is to distinguish As from the uniform dis-
tribution over Zn+1

q , given an a-priori unbounded number of samples, where s is
drawn from χs.

We refer to χs as the secret distribution and to χe as the noise distribution.
The Module LWE problem (MLWE) was introduced by the name “General-

ized LWE” in [BGV12] as a generalization of the Ring LWE problem (RLWE)
[LPR10,LPR13b]. Here we use a variant that analogous to the Polynomial LWE
(PLWE) problem [RSW18], and defined as follows.10

Definition 3.2 (Module Polynomial LWE). Let f(x) be an irreducible monic
polynomial of degree n, let K = Q[x]/⟨f(x)⟩ be a number field, define the ring
R = Z[x]/⟨f(x)⟩ and let q be an ideal in this ring, denoting Rq = R/q. Let
r ∈ N, χs a distribution over Rr and χe a distribution over R.

For a row vector s ∈ Rr, consider the distribution As over Rr+1
q defined as

{(a, sa+ e (mod q))}, where a is uniform in Rr
q, e is sampled from χe.

Then the (decisional) Module Polynomial LWE problem (MPLWE) with re-
spect to parameters mplweparams = (f, n, r, q, χs, χe) is to distinguish As from
the uniform distribution over Rr+1

q , given an a-priori unbounded number of sam-
ples, where s is drawn from χs.

Remark 3.1. The special case of MPLWE where r = 1 is known as Polynomial
LWE (PLWE) [SSTX09].

Remark 3.2. Letting χe = t · χε for a ring element t which is coprime to q,
it holds that MPLWE with noise sampled from χe is equivalent to the setting
where the noise is sampled from χε.

Remark 3.3. In this work, we use the term MPLWE to refer to the module
polynomial LWE problem. We note that in prior work [RSSS17], the name MP-
LWE is used for the “middle-product” LWE problem. The latter is not directly
related to our work.

Starting with [Reg05] there are numerous hardness results relating the hard-
ness of LWE to the worst-case hardness of lattice problems, for ensembles of
lweparams that range asymptotically with the security parameter. Similarly,
there are worst-case hardness results for RLWE [LPR10, PRS17] and MLWE

10 The difference between our variant in MLWE is the same as the difference between
PLWE and RLWE. Whereas in RLWE, MLWE the secret, noise and arithmetics are
done modulo the dual ring R∨, in PLWE and MPLWE everything is defined over
R. Indeed one has to be careful when analyzing the security of such variants which
we address in the appropriate section.

REFHE: Fully Homomorphic ALU 19

[BGV12, LS15]. There are also known methods for relating PLWE security to
that of RLWE [RSW18]. These methods readily apply also to relate MPLWE
security to MLWE. See Section E for a thorough discussion about the security
of our assumptions.

4 Our Scheme

In this section, we introduce the encryption scheme, with the homomorphic
properties being discussed in the subsequent section. As global parameters for
our scheme, we consider the parameters f(x) = xn−x+2,K = Q[x]/⟨f(x)⟩,R =
Z[x]/⟨f(x)⟩, p = ⟨x− 2⟩, p = 2n, as defined in Section 3.2. We recall the ring
isomorphism Zp

∼= Rp.
The ciphertext space is defined over Rq as defined in 3.2. Unless stated

otherwise, additions and multiplications in the following sections are over Rq.
Given a ∈ R, we denote by [a]Rq ∈ R the unique ring element with coefficients
in the range [−q/2, q/2) such that [a]Rq

= a mod ⟨q⟩.
In Section 4.1 we describe an encoding - decoding procedure for elements

in Zp into elements in Rp. We proceed by introducing our encryption scheme
in Section 4.2 and analyze correctness and security in Section B. Homomorphic
properties are discussed in subsequent sections.

4.1 Messages vs. Plaintexts

Our scheme encrypts plaintexts µ which are elements in Rp, i.e. as cosets of the
ideal p. We use these plaintexts to encode messages m ∈ Zp, where we recall
that p = (R : p).

We therefore require an efficient implementation of the ring isomorphism
Zp
∼= Rp, in both directions, so that messages can be properly encoded and

decoded. In terms of terminology, we differentiate between “messages” which
are elements in Zp, and “plaintexts” which are elements in Rp. Our encoding
and decoding translate messages into plaintexts and vice versa.

We note that both Zp = Z/pZ and Rp = R/p are quotient rings, so we need
to consider specific representatives that are produced by the encoding and de-
coding. We consider two procedures Encode,Decode that run in polylog(p) time,
take as input elements from Z,R respectively, and output elements from R,Z,
and implement the ring isomorphism. We further require that Encode produces
“short” elements. Our measure of length in this context is infinity norm in the
coefficient embedding. We let Benc = maxm∈Z ∥Encode(m)∥∞.

Notably, in our scheme with p = ⟨x− 2⟩, it is possible to achieve Benc = 1
since any coset of Rp has a representative with {0, 1} coefficients obtained by
considering the binary representation of m (mod p) Namely, assume without loss
of generality that m ∈ [0, p− 1) and that m =

∑
i µi2

i, where µi ∈ {0, 1}. Then
Encode(m) = µ(x) =

∑
i µix

i is a valid encoding procedure whose output only
has {0, 1} coefficients. For Decode, we notice that given µ =

∑
i µix

i, we can
output

∑
i µi2

i (mod p).

20

We let R{0,1} denote the set of plaintexts of our scheme. That is, R{0,1} is
the set of elements in R that can be represented as degree (n− 1) polynomials
with {0, 1} coefficients.

We extend the Encode(·) function to act also on elements from R by taking
their small-coefficient representative modulo p. More formally, for µ ∈ R, we
define Encode(µ) = Encode(Decode(µ)) ∈ R{0,1}.

4.2 The Encryption Scheme

In this section we present our encryption scheme called Ring Embedding FHE
(REFHE), based on the MPLWE hardness assumption (see Definition 3.2). We
embed messages m ∈ Zp as ring elements µ = Encode(m) ∈ R{0,1}, which results
in a compact ciphertext.

Conventions ε is sampled form χe in R. e is in p. We denote by Bχε the bound
on the ℓ∞ of χε and by Bχe the bound on the ℓ∞ of (x− 2) · χε

Algorithm 4.1: The Encryption Scheme

1. Setup: pp ← REFHE.Setup(1n, 1κ) gets n the degree of the
polynomial, κ the security parmeter and Returns χs, χε, q, r
as pp, such that gcd(q, 2) = 1, the MPLWE problem with
mplweparams(f, n, r, q, χs, χε) is κ-hard, and q > q0 as defined in
lemma B.2.

2. Key Generation: (pk, sk, evk) ← REFHE.Keygen(1κ, pp). Sample
row vectors s1 ← χs, ε ← χr

ε, and a uniformly random matrix A ∈
Rr×r

q . Returns the secret key s = (1,−s1), and public key pk = (b,A)
where b = s1A+(x−2)ε. evk consists of the public parameters needed
for homomorphic evaluations - relinearization key and bootstrap key,
which we will describe through the paper.

3. Encryption: c ∈ Rr+1
q ← REFHE.Encpk(µ). For µ ∈ R{0,1}, sample

r ← χs, ε0 ← χε, ε1 ← χr
ε. Then c0 = b · r + (x − 2)ε0 + µ, c1 =

Ar+ (x− 2)ε1. Return the column vector c = (c0, c1).
4. Decryption: µ← REFHE.Decsk(c) returns [s · c]Rq mod p = [c0−

s1 · c1]Rq mod p .

When the scheme is used as an homomorphic encryption scheme, the setup
and key generation phases also depend on the homomorphic capacity, meaning in
which circuit evaluation the scheme supports. In this case for the key generation
also generates ‘Key Switch matrices’ as seen in Algorithm C.3. The decryption
REFHE.Dec might be with respect to another modulus, as the modulus changes
during the circuit evaluation due to the Key Switching and Modulus switching
Algorithms C.3, C.5.

REFHE: Fully Homomorphic ALU 21

5 Bootstrapping and Boolean Operations

We now present our bootstrapping algorithm. We start by introducing a generic
notation that will be used throughout this section. In the course of the boot-
strapping we switch between a number of forms of algebraic and non-algebraic
LWE. All of these schemes have a very similar syntax, namely a linear decryption
over some ring results in an encoding of a plaintext with some noise. To capture
this, we denote by LWEa,b

q,s(µ; ε) the set of vectors of elements in Zq such that
for a secret key s it holds that

s · c = bµ+ aε (mod q), a, b,∈ Q .

Intuitively LWEa,b
q,s(µ; ε) can be thought of as a set of ciphertexts and related ob-

jects (i.e. modulus-switching parameters) generated by a scheme which is based
on the LWE assumption. We therefore refer to such objects as “LWE cipher-
texts”.

Similarly, we denote by MPLWEa,b
q,s(µ; ε) the set of vectors of elements in

some polynomial ring R such that for a secret key s it holds that

s · c = bµ+ aε (mod q), a, b ∈ K .

MPLWEa,b
q,s(µ; ε) can be thought of as the analogous notion to MPLWEa,b

q,s(µ; ε)
but for schemes based on the MPLWE assumption. We therefore refer to such
objects as “MPLWE ciphertexts”.

We specialize the above notation to refer to objects that satisfy the syntactic
requirements of specific schemes:

BGVq,s(µ; ε) = LWE2,1
q,s(µ; ε)

BFVq,s(µ; ε) = LWE
1, q2
q,s (µ; ε)

REFHEq,s(µ; ε) = MPLWE(x−2),1
q,s (µ; ε)

We sometimes omit one or more of the parameters s, a, b when they are clear
from the context.

We use q,Q ∈ N to denote ciphertext space moduli. We use Q to denote the
modulus of a newly encrypted REFHE ciphertext, and q to denote a modulus
of a ciphertext that is the result of homomorphic operations and has poten-
tially consumed ciphertext levels (and therefore underwent modulus switching)
reaching to a level for which the modulus is q. It holds that q ≪ Q.

The rest of this section is organized as follows. In Section 5.1 we cover the
subroutines in more detail, and in Section 5.2 we present our bootstrapping
algorithm. In Section 5.3 we show how boolean operations can be preformed
homomorphically during bootstrapping.

5.1 Subroutines of the Bootstrapping Algorithm

5.1.1 Programmable Bootstrapping for B/FV This is the procedure
from [KDE+24] (based on [CGGI20]) that allows to use the programmable boot-
strapping of the TFHE scheme in order to bootstrap schemes that are based on

22

the BGV and B/FV paradigms. Implicit in the bootstrapping procedure is a pa-
rameter mapping function PMap(n, q) → (n′, q′) that maps the dimension and
modulus of an incoming LWE ciphertext into the dimension and modulus of the
bootstrapping parameters and ultimately the output ciphertext.

– Setup algorithm PB.Setup(1n, 1q, s, s′), which is a randomized algorithm that
takes as input the following values. LWE dimension and modulus parame-
ters (n, q), both given in unary representation (note that this is contrary
to standard conventions where the modulus is usually given in binary), and
a corresponding binary LWE secret key s ∈ {0, 1}n. It also takes an LWE
secret key s′ of dimension n′, where (n′, q′) = PMap(n, q). The algorithm out-
puts the programmable bootstrapping public parameters pbpp of bit length
poly(n, q, n′, log q′).

– Programmable Bootstrapping Algorithm PB.Bootstrap(pbpp, c, F) which is a
deterministic algorithm that takes as input the programmable bootstrapping
parameters pbpp an LWE ciphertext c with dimension n and modulus q, a
function F : Zq → Zq′ represented by its truth table. It outputs c′, an LWE
ciphertext with dimension n′ and modulus q′.
We overload the notation of PB.Bootstrap with respect to the last
operand. Let F be a matrix of functions: F ∈ (Zq → Zq′)

m1×m2 , then
PB.Bootstrap(pbpp, c, F) is a shorthand for the procedure that applies
PB.Bootstrap(pbpp, c, Fi,j) for every entry of F and outputs a matrixm1×m2

of LWE ciphertexts corresponding to the outputs of the executions.

5.1.2 Sample Extract We next describe how to extract a LWE sample en-
crypting the free coefficient (recall that we face the constraint of being able
to only use the free coefficient in our bootstrapping mechanism, the reason for
which is explained in Section 2) of the input REFHE ciphertext as a BFV ci-
phertext. For a field element t ∈ K we consider the operator J : K → Q to
be the operator that outputs the free coefficient u ∈ Q, of the multiplication of
t by a field element w ∈ K. Note that if we consider such a multiplication of
elements in the ring R the result is in Z and hence, viewed as a linear operator
acting on the coefficient embedding of w ∈ R, its output is a coefficient vector
in Zn. Extending J to operate on vectors of such ring elements Rr we take the
output to be a concatenation of the resulting coefficient vectors, one for each of
the ring elements, and denote it formally as J : Rr → Znr.

The extraction of the first coefficient of a REFHE ciphertext c = (c0, c1)
encrypted under the secret key s = (1,−s1) is simply ([c0]0, J(c1)), which will
output an BGV ciphertext encrypting the same message under the extracted
secret key, namely the coefficient embedding of s1.

After extraction we switch the output BGV ciphertext to a BFV ciphertext.
This is done for two reasons: the first is that TFHE requires a modulus switching
to one that is a power of 2 which is not possible for BGV since BGV requires q
and p to be coprime, and the second is that during bootstrapping we evaluate
a function that takes as input a ciphertext in which the noise term e is not
multiplied by a coefficient as in BFV.

REFHE: Fully Homomorphic ALU 23

Starting with a BGV ciphertext c, s.t. s · c = µ+ 2ε mod q, we switch it to
a BFV ciphertext c′ by multiplying by 2−1 (mod q) = (q + 1)/2, so we have:

c′ =
q + 1

2
c

and get:

s · c′ = q + 1

2
· µ+

q + 1

2
· ε mod q

=
q + 1

2
· µ+ (q + 1) · ε mod q

Since we are performing modular arithmetic modulus q, we can omit the term
q · ε and obtain:

s · c′ = q + 1

2
· µ+ ε mod q

which is indeed a BFV ciphertext.

Algorithm 5.1: Sample Extract

Input: c = (c0, c1) ∈ Rr+1
q a REFHE ciphertext encrypted under the

secret key s = (1,−s1)
Output: cBFV ∈ Znr+1 a BFV ciphertext encrypting the first coefficient
of c under the secret key (1,−[s1]) (recall that [s1] is the coefficient
vector of s1).
c′ ← ([c0]0, J(c1))
return cBFV ← q+1

2 · c
′

5.1.3 Repacking The aim of the Repacking procedure is to construct a
MPLWE ciphertext of a degree n polynomial whose n coefficients are given
under n corresponding LWE encryptions. This is done by converting each of
them into a MPLWE ciphertext that encrypts the coefficient multiplied by the
corresponding monomial xi, and sum them up at the end. This is accomplished
by applying a technique that resembles key-switching.

In what follows, we present the technique in more detail. We start with a
vector of n LWE ciphertexts: (c0, . . . , cn−1), such that:

s · ci = αi + εi (mod Q)

Next, we decompose each such ciphertext, and compute the vector c̃i =
g−1(ci) ∈ {0, 1}n⌊log2 Q⌋, by applying the binary decomposition operator on

each ci. Namely, c̃jli is the lth bit of the jth entry of ci. To this end, we use the

24

key-switching keys (as described in Section 5.2.1). Recall that the key-switching
key is a vector of MPLWE encryptions of g2,Q · s, that is, the powers of 2 gadget
vector multiplied by the secret key elements, under some key denoted here as s′.
Specifically, the key switching keys are of the following form:

aj,l + bj,ℓs
′ = 2lsj + ε̂(x) (mod Q, f)

We then compute the following subset sum (with respect to each c̃i) of the
MPLWE key-switching ciphertexts (aj,l,bj,l), and denote the resulting MPLWE
ciphertexts by (di[0],di[1]). Formally:

(di[0],di[1]) = s · ci =
∑
j,l

(aj,l,bj,l) · c̃jli

By expanding the right-hand side, we get:

di[0] + di[1]s
′ =

∑
j,l

(aj,l + bj,l · s′)c̃jli =
∑
j,l

c̃jli [2
l · sj + ε̂j,l(x)]

= αi + εi +
∑
j,l

c̃jli · ε̂j,l(x)

Finally, denote by d0 =
∑

i di[0]x
i, and by d1 =

∑
i di[1]x

i and observe that:

d0 + d1s
′ =

∑
i

(di[0] + di[1]s
′)xi = α(x) + ε(x) +

∑
i,j,l

c̃jli · ε̂j,l(x)x
i ∈ RQ,

where α(x) :=
∑

i αix
i, as desired.

Algorithm 5.2: Repacking

Input: bspp.ksk ∈ Rr×n⌊log2 Q⌋
Q key-switching keys as MPLWE ci-

phetexts
c a vector of n LWE ciphertexts

Output: a MPLWE ciphertext that encrypts the polynomial whose co-
efficients are encrypted under c.
for i = 0, . . . , n− 1 do

c̃i ← g−1(ci)

di =
∑
j,l

c̃jli · kskj,l ▷ c̃jli is the lth bit of the jth entry of ci

return

n∑
i=0

dix
i

5.2 The Bootstrapping Procedure

5.2.1 Bootstrapping Setup The procedure REFHE.BS.Setup defines public
parameters bspp, which include: a function FD, the function we evaluate dur-
ing bootstrapping, gadget decomposition elements (as defined in Section A.2);

REFHE: Fully Homomorphic ALU 25

a decomposition base B used for the decomposition, gadget vector: g = gB,Q =
(1, B1, . . . , B⌊logB Q⌋), gadget matrix G = Gg = Ik ⊗ g and a gadget decom-
position operation G−1 = G−1

g , key-switcing keys; for a secret key s generated
by REFHE.Keygen as in Algorithm 4.1 in Section 4.2 a vector of key-switching
keys consists of encryptions of the different powers of 2 multiplied by the bits of
the secret key s, namely a key-switching key kskj,l) is in a REFHE encryption
of 2l · sj where 0 ≤ l < ⌊log2 Q⌋, TFHE bootstrapping parameters; pbpp output
by the algorithm PB.Bootstrap as in Section 5.1.1.

5.2.2 Bootstrapping Algorithm

Definition 5.1. For q,Q ∈ N we define FD : Zq → ZQ to be the function that
extracts the most significant bit of its input. Specifically FD(z) represents z as
(q/2)µ + ε where ε has the smallest possible absolute value and µ ∈ {0, 1}, and
outputs µ.

Algorithm 5.3: Bootstrapping

Input: cIN = REFHEq(µ; ε) REFHE ciphertext to be bootstrapped,
bspp bootstrapping parameters obtained at scheme setup,

Parameters: FD bootstrapping function, g gadget vector, n security
parameter, q ciphertext modulus, Q ciphertext modulus of freshly
bootstrapped ciphertexts

Output: A REFHE ciphertext with dimension n and modulus Q
1: c≪ ← c′ ← cIN
2: for i = 0, . . . , n− 1 do
3: clsb ← REFHE.SampleExtract(c≪) ▷ clsb = BFVq(µ0; ε)
4: c̃← PB.Bootstrap(pbpp, clsb,g · FD) ▷ FD per Definition 5.1

5: ĉi ← c̃ ·G−1
B,Q([

xi

x−2])

6: ciMPLWE ← REFHE.Repack(n,Q, bspp.ksk, ĉ)
7: ciREFHE ← (x− 2) · ciMPLWE ▷ ciREFHE = REFHEQ(µix

i; ε′′′)
8: c′ ← c′ −ModSwitch(ciREFHE, q)
9: c≪ ← c′ · x−i (mod q)

10: return

n−1∑
i=0

ciREFHE

See supplementary material (Section D) for a discussion on correctness and
security.

5.3 Boolean Operations

We now explain how to use our bootstrapping framework in order to perform
boolean operations on the ciphertext in the course of bootstrapping. Our solution
hinges on the property that the coefficients of the encoded plaintext µ are the
bits of the message m, and those are the values that are recovered in the course

26

of our bootstrapping procedure. We start by considering boolean operations that
permute ciphertext bits, and move on to logical operations.

Permuting Ciphertext Bits. In Steps 5, 6, 7 of Algorithm 5.3 we construct
ciREFHE = REFHEQ(µix

i; ε′′′). Let us consider a slight change to Step 5 and set
ĉi ← c̃ ·G−1

B,Q([
1

x−2]), that is, the operand of G−1
B,Q(·) becomes independent of

i. In this case we get ciREFHE = REFHEQ(µi; ε
′′′) instead of the above. However,

we note that this is almost as good, since we can always multiply post-facto
by xj , for any j that we want, to obtain ci,jREFHE = REFHEQ(µix

j ; ε′′′), at the

cost of a factor γ̂ ≤ 3 increase in the noise bound. In particular, ci,iREFHE would
be the value ciREFHE from Step 7 in the algorithm, which allows to continue the
execution of the bootstrapping loop as before.

After the end of the execution of the loop, we can compute immediately any
ci,jREFHE that we want. Therefore, any shuffling of the bits may be implemented
seamlessly. Let ϕ : {0, . . . , n − 1} → {0, . . . , n − 1,⊥} be any function, then

we can return, in Step 10 of Algorithm 5.3, the value
∑n−1

i=0 c
ϕ(i),i
REFHE, where we

syntactically define c⊥,i
REFHE to indicate 0. By properly choosing ϕ, it is possible

to implement circular/non-circular shifts (e.g. ϕ(i) = i+ 1 (mod n) is a single-
slot cyclic left shift), apply bit-masks, duplicate values, extract specific bits and
perform similar operations. It is also possible to output more than one output
ciphertext, e.g. store the lower n/2 bits in one ciphertext and the upper n/2 bits
in another.

All of these operations incur a minimal penalty in terms of noise and runtime
compered to ordinary bootstrapping.

Comparisons. An additional class of logical operations is producing a boolean
value which corresponds to the truth value of some numerical comparison. It
suffices to consider the setting where we have two input ciphertexts c1, c2 en-
crypting messages m1,m2, and we wish to recover c′ that encrypts the value 1 if
m1 > m2, and 0 otherwise. This is of course instrumental for branching opera-
tions, loop variables and such. This can be achieved straightforwardly using our
techniques. First we can use arithmetic homomorphism to subtract c3 = c2− c1.
Then we can bootstrap c3 and extract a ciphertext containing only the most
significant bit of the message encrypted by c3. Indeed, by standard boolean logic
(two’s complement representation), the most significant bit is 1 if and only if the
output is negative, which is the case if and only if m1 > m2.

Multi-Bit Boolean Operations. Let us now consider operations that are
performed over multiple bits. We note that using the above, equality to 0 can be
tested by checking that both m > −1 and m < 1, which can be done using two
parallel bootstrapping sessions. Equality to 0 is also the n-bit NOR operation.
Similarly other logical operators over the n bits can be implemented.

We may then turn our attention to performing bitwise AND, say between
two numbers. That is, we have two plaintexts µ, µ′, and we want to recover µ′′

so that µ′′
i = µi · µ′

i for all i. This requires a bit more work, and we describe
one possible method for performing this operation using a constant number of
bootstrapping operations. First, we use a shuffling subroutine to split each input

REFHE: Fully Homomorphic ALU 27

operand into two ciphertexts, where all even bits are set to 0, and the odd bits
correspond to the odd bits of the original ciphertexts. That is, we have (from
LSB to MSB): µlower = (µ00µ10 · · ·µn/20), µ

upper = (µn/2+10 · · ·µn−10), and

likewise for µ′. We then add c′′lower = clower + c′lower, c′′upper = cupper + c′upper,
and notice that the even bits of the c′′lower, c′′upper are exactly the bits of µ′′.
Another bootstrapping operation will allow to reorganize the bits and obtain a
since c′′ that encrypts µ′′ as desired.

6 Performance

In this section we evaluate the performance of our scheme in comparison with
BGV and TFHE, comparing run-time and ciphertext size. Our current imple-
mentation includes encryption, decryption, and all homomorphic arithmetic op-
erations, namely, addition, multiplication, as well as modulus switching and key
switching. Bootstrapping was not implemented. We note that the tests and re-
sults presented in this section were obtained with a straight-forward implemen-
tation in which no specific optimizations were applied to enhance performance.
These results thus, reflect the raw computational costs associated with the build-
ing blocks of our scheme without the influence of advanced heuristics, algorithms
or hardware-specific optimizations, that can be found in production-ready im-
plementations for TFHE (tfhe-rs [za]) and BGV (HELib [HS20]).

Setup. Our experiments were conducted on an Apple M3 Pro laptop with 18GB
RAM on a single thread. The benchmark code will be released as part of the
library to ensure the reproducibility of our results.

Parameters. The parameters for all schemes are generated to reach a 128-bit
security according to the lattice estimator [APS15]. We generated parameters
for our scheme and for BGV so that correctness is achieved with high probability
based on the theoretical analysis in Sections 4, C. We note that a heuristic based
analysis as done in [HS20] should yield better parameters for both schemes,
yet it is not expected to shift the advantage. We instantiate the key switching
parameters with d = 2 and q = q′. Moreover, while the implementation supports
working over module of general rank r, for the concrete parameters we chose
r = 1. This achieves better efficiency for the key switching subroutine, and in
addition provides a minimal ciphertext expansion factor.

Measurements. When referring to encryption, we measure the time it takes
to encode, encrypt, and apply an initial modulus switch, on an input plaintext.
When referring to homomorphic multiplication, we measure the step of tensor
multiplication, key-switch, and modulo switch as a single multiplication com-
ponent. We account for addition when considering zero multiplication depth, in
both ciphertext size and “multiplication” runtime. The ciphertext size is mea-
sured after the first modulus switch, as this is the size required for transmission
during communication, and this is also when we initiate the timing process for
homomorphic multiplication.

Comparison with BGV. We generated parameters for the original BGV
scheme [BGV12], ensuring that correctness is achieved with high probability,

28

based on the analysis that involved bounding the ℓ∞ norms of the noise, which
were comparable to those obtained in our proposed scheme. This process was
conducted for plaintext spaces of sizes 216, 232, and 264. Below, in Figure 1 we
present a comparison of the ciphertext sizes between our scheme and BGV, us-
ing modulus sizes of 16-bit, 32-bit, and 64-bit, as a function of the supported
arithmetic multiplication depth. Note that by zero multiplication depth, we refer
to encryption that supports only a single addition. We see that the information
rate is far better in our scheme, with factor ranging from 2 to over 7.

Fig. 1: Comparison with BGV of ciphertext size growth with homomorphic ca-
pacity for different plaintext spaces.

Note that the above parameters only support a leveled homomorphic scheme
without bootstrapping. While we do not test our bootstrapping procedure ex-
perimentally, we provide our prediction as to its performance compared with
HELib [HS21]. In HELib, the largest plaintext space of the form Zp for which
bootstrap run-time is reported is 8-bit [HS21, Table 4], which takes about 130
seconds to execute and 8.3GB space usage. We note that this exploits the tech-
nique of thin-bootstrapping, in which there is no packing and a single 8-bit plain-
text is utilized per ciphertext. Without this technique, they report a 36 minute
bootstrap of a batch of 21 8-bit plaintexts [HS21, Table 2], which improves the
amortized time but yields a greater latency. In turn, they support 31 and 29 lev-
els after bootstrap, respectively. In [GIKV23], run-time was improved by x2.6,
but the circuit depth is greater. Moreover, their bootstrap technique involves
digit extraction, and so the bootstrapping circuit depth increases with plaintext
size. With our scheme, bootstrap is reduced to bootstrapping a TFHE ciphertext
that encrypts a single bit, and our noise is only O(n) times larger due to the

REFHE: Fully Homomorphic ALU 29

recursive nature of our bootstrap algorithm. In turn, we expect that ciphertext
size will not significantly increase to support bootstrap.

Comparison with tfhe-rs. The TFHE scheme requires a bootstrap operation
for each computation. In Figure 2a, we present a comparison of ciphertext sizes
between our proposed scheme and the tfhe-rs library, which supports operations
on signed or unsigned integers ranging from 8-bit to 256-bit. The size of our
ciphertext remains constant because, for a single addition, we operate over the
ring x1152 − x + 2, which corresponds to arithmetic in Z/21152. Consequently,
arithmetic operations are performed in this large modulus, and the ciphertext
size does not vary with the plaintext space.

In contrast, tfhe-rs achieves support for larger plaintext spaces by encrypting
each byte individually. This results in a linear increase in ciphertext size with
respect to the plaintext bit-length. However, this linear growth is less apparent
in the graph due to the logarithmic scale employed.

The TFHE scheme requires a bootstrap along each operation. In Figure 2a
we can see the comparison in the ciphertext size, between our scheme and the
tfhe-rs library, that exposes operations on 8-bit to 256-bit signed or unsigned
integers. Our graph is constant since in practice for a single addition we work
over x1152−x+2 for a 128-bit security, which means that we perform arithmetic
operations over Z/21152. When choosing parameters for greater homomorphic
capacity, the inital plaintext space is even larger. The way tfhe-rs work over large
plaintext spaces is to essentially encrypt each byte individually, which causes a
linear growth in the ciphertext space, which might not be clear from the graph,
since the scale is logarithmic.

(a) Ciphertext vs plaintext size.
REFHE: 4kB, 24kB, 69kB, 140kB.
TFHE: 132kB, 263kB, 527kB, 1054kB,
2107kB.

(b) Multiplication Time.
REFHE (without bootstrapping): 0.2s.
TFHE: 0.1s, 0.35s, 1.3s, 4.9s.

Fig. 2: Comparison with TFHE.

30

We observe that the ciphertext size in REFHE is considerably smaller than in
tfhe-rs, even when comparing against a 16-bit plaintext space and taking parame-
ters that permit up to three multiplications prior to bootstrapping. This discrep-
ancy becomes increasingly pronounced as the size of the plaintext space grows.
Additionally, multiplication time in tfhe-rs grows quadratically with plaintext-
space size, and takes more time than REFHE starting from 16-bit integers.

References

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Cryptology ePrint Archive, Paper 2015/046,
2015.

BBPS19. Madalina Bolboceanu, Zvika Brakerski, Renen Perlman, and Devika
Sharma. Order-LWE and the hardness of ring-LWE with entropic secrets.
In Advances in Cryptology–ASIACRYPT 2019: 25th International Confer-
ence on the Theory and Application of Cryptology and Information Secu-
rity, Kobe, Japan, December 8–12, 2019, Proceedings, Part II 25, pages
91–120. Springer, 2019.

BC22. Iván Blanco-Chacón. On the rlwe/plwe equivalence for cyclotomic number
fields. Applicable Algebra in Engineering, Communication and Computing,
33(1):53–71, 2022.

BCIV20. Carl Bootland, Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren.
Efficiently processing complex-valued data in homomorphic encryption. J.
Math. Cryptol., 14(1):55–65, 2020.

BCLvV16. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Chris-
tine van Vredendaal. NTRU prime: reducing attack surface at low cost.
Cryptology ePrint Archive, Paper 2016/461, 2016.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, Innovations in Theoretical Computer Science 2012, Cambridge, MA,
USA, January 8-10, 2012, pages 309–325. ACM, 2012.

BK25. Dan Boneh and Jaehyung Kim. Homomorphic encryption for large integers
from nested residue number systems. IACR Cryptol. ePrint Arch., page
346, 2025.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume
7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

BTR24. Fabian Boemer, Karl Tarbe, and Rehan Rishi. Announcing
swift homomorphic encryption, 2024. https://www.swift.org/blog/

announcing-swift-homomorphic-encryption/.
BV11a. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic

encryption from (standard) LWE. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 97–106. IEEE Com-
puter Society, 2011.

BV11b. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from ring-lwe and security for key dependent messages. In Phillip

https://eprint.iacr.org/2018/494.pdf
https://www.swift.org/blog/announcing-swift-homomorphic-encryption/
https://www.swift.org/blog/announcing-swift-homomorphic-encryption/

REFHE: Fully Homomorphic ALU 31

Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Pro-
ceedings, volume 6841 of Lecture Notes in Computer Science, pages 505–
524. Springer, 2011.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: fast fully homomorphic encryption over the torus. J. Cryptol.,
33(1):34–91, 2020.

CIV16. Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren. Provably
weak instances of ring-LWE revisited. Cryptology ePrint Archive, Paper
2016/239, 2016.

CJP21a. Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrap-
ping enables efficient homomorphic inference of deep neural networks. In
Shlomi Dolev, Oded Margalit, Benny Pinkas, and Alexander A. Schwarz-
mann, editors, Cyber Security Cryptography and Machine Learning - 5th In-
ternational Symposium, CSCML 2021, Be’er Sheva, Israel, July 8-9, 2021,
Proceedings, volume 12716 of Lecture Notes in Computer Science, pages
1–19. Springer, 2021.

CJP21b. Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrap-
ping enables efficient homomorphic inference of deep neural networks.
In Cyber Security Cryptography and Machine Learning: 5th International
Symposium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Proceedings
5, pages 1–19. Springer, 2021.

CKKS16. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomor-
phic encryption for arithmetic of approximate numbers. Cryptology ePrint
Archive, Paper 2016/421, 2016.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017
- 23rd International Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science,
pages 409–437. Springer, 2017.

CLPX18. Hao Chen, Kim Laine, Rachel Player, and Yuhou Xia. High-precision
arithmetic in homomorphic encryption. In Nigel P. Smart, editor, Top-
ics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA
Conference 2018, San Francisco, CA, USA, April 16-20, 2018, Proceed-
ings, volume 10808 of Lecture Notes in Computer Science, pages 116–136.
Springer, 2018.

Con09. Kieth Conrad. The different ideal. Expository papers/Lecture
notes. Available at: http://www. math. uconn. edu/ kcon-
rad/blurbs/gradnumthy/different. pdf, 2009.

DM14. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomor-
phic encryption in less than a second. Cryptology ePrint Archive, Paper
2014/816, 2014.

EHL14. Kirsten Eisentraeger, Sean Hallgren, and Kristin Lauter. Weak instances
of PLWE. Cryptology ePrint Archive, Paper 2014/784, 2014.

ELOS15. Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange. Prov-
ably weak instances of ring-lwe, 2015.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. IACR Cryptol. ePrint Arch., page 144, 2012.

32

GC14. Matthias Geihs and Daniel Cabarcas. Efficient integer encoding for ho-
momorphic encryption via ring isomorphisms. In Diego F. Aranha and
Alfred Menezes, editors, Progress in Cryptology - LATINCRYPT 2014 -
Third International Conference on Cryptology and Information Security in
Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised Se-
lected Papers, volume 8895 of Lecture Notes in Computer Science, pages
48–63. Springer, 2014.

GD84. Gary R. Greenfield and Daniel Drucker. On the discriminant of a trinomial.
Linear Algebra and its Applications, 62:105–112, 1984.

Gen09a. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting, STOC ’09, page 169–178, New York, NY, USA, 2009. Association
for Computing Machinery.

Gen09b. Craig Gentry. Fully homomorphic encryption using ideal lattices. Sympo-
sium on the Theory of Computing, page 169–178, 2009.

GH19. Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR.
In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th
International Conference, TCC 2019, Nuremberg, Germany, December 1-
5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes in Computer
Science, pages 438–464. Springer, 2019.

GHS12. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic en-
cryption with polylog overhead. In David Pointcheval and Thomas Johans-
son, editors, Advances in Cryptology – EUROCRYPT 2012, pages 465–482,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

GIKV23. Robin Geelen, Ilia Iliashenko, Jiayi Kang, and Frederik Vercauteren. On
polynomial functions modulo pe and faster bootstrapping for homomor-
phic encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 257–286. Springer, 2023.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. Cryptology ePrint Archive, Paper 2013/340, 2013.

GV24. Robin Geelen and Frederik Vercauteren. Fully homomorphic encryption
for cyclotomic prime moduli. Cryptology ePrint Archive, Paper 2024/1587,
2024.

HS00. Jeffrey Hoffstein and Joseph H Silverman. Optimizations for ntru. In Proc.
the Conf. on Public Key Cryptography and Computational Number Theory,
Warsaw, pages 77–88, 2000.

HS20. Shai Halevi and Victor Shoup. Design and implementation of HElib:
a homomorphic encryption library. Cryptology ePrint Archive, Paper
2020/1481, 2020. https://eprint.iacr.org/2020/1481.

HS21. Shai Halevi and Victor Shoup. Bootstrapping for helib. J. Cryptol., 34(1):7,
2021.

KDE+24. Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee,
Whan Ghang, and Donghoon Yoo. General bootstrapping approach for
rlwe-based homomorphic encryption. IEEE Trans. Computers, 73(1):86–
96, 2024.

LMW23. Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private in-
formation retrieval and fully homomorphic RAM computation from ring
LWE. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the
55th Annual ACM Symposium on Theory of Computing, STOC 2023, Or-
lando, FL, USA, June 20-23, 2023, pages 595–608. ACM, 2023.

https://eprint.iacr.org/2020/1481

REFHE: Fully Homomorphic ALU 33

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Monaco /
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture
Notes in Computer Science, pages 1–23. Springer, 2010.

LPR13a. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. J. ACM, 60(6):43:1–43:35, 2013.

LPR13b. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
lwe cryptography. In Annual international conference on the theory and
applications of cryptographic techniques, pages 35–54. Springer, 2013.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 700–718. Springer,
2012.

Pei16. Chris Peikert. How (not) to instantiate ring-LWE. Cryptology ePrint
Archive, Paper 2016/351, 2016.

PP19. Chris Peikert and Zachary Pepin. Algebraically structured LWE, revis-
ited. In Theory of Cryptography: 17th International Conference, TCC 2019,
Nuremberg, Germany, December 1–5, 2019, Proceedings, Part I 17, pages
1–23. Springer, 2019.

PP24. Chris Peikert and Zachary Pepin. Algebraically structured lwe, revisited.
J. Cryptol., 37(3):28, 2024.

PRS17. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudoran-
domness of ring-lwe for any ring and modulus. In Hamed Hatami, Pierre
McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 461–473. ACM, 2017.

RAD+78. Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data
banks and privacy homomorphisms. Foundations of secure computation,
4(11):169–180, 1978.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

RSSS17. Miruna Rosca, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. Middle-
product learning with errors. In Jonathan Katz and Hovav Shacham, edi-
tors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part III, volume 10403 of Lecture Notes in Computer Science,
pages 283–297. Springer, 2017.

RSW18. Miruna Rosca, Damien Stehlé, and Alexandre Wallet. On the ring-LWE
and polynomial- LWE problems. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 146–173.
Springer, 2018.

SEA11. Microsoft SEAL. Microsoft seal is an easy-to-use and powerful homomor-
phic encryption library., 2011. https://github.com/Microsoft/SEAL.

https://eprint.iacr.org/2011/501.pdf
https://eprint.iacr.org/2011/501.pdf
https://eprint.iacr.org/2019/878.pdf
https://eprint.iacr.org/2019/878.pdf
https://eprint.iacr.org/2018/170.pdf
https://eprint.iacr.org/2018/170.pdf
https://github.com/Microsoft/SEAL

34

SS10. Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In
Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th
International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 5-9, 2010. Proceedings, volume
6477 of Lecture Notes in Computer Science, pages 377–394. Springer, 2010.

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Ef-
ficient public key encryption based on ideal lattices. In Mitsuru Matsui,
editor, Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and Information
Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of
Lecture Notes in Computer Science, pages 617–635. Springer, 2009.

tfh17. tfhe. Tfhe: Fast fully homomorphic encryption library over the torus, 2017.
https://github.com/tfhe/tfhe.

za. zama ai. Tfhe-rs: A pure rust implementation of the tfhe scheme for
boolean and integer arithmetics over encrypted data. https://github.

com/zama-ai/tfhe-rs.
Zam21. Zama. Concrete: Tfhe compiler that converts python programs into fhe

equivalent, 2021. https://github.com/zama-ai/concrete.

A Standard Definitions from Cryptographic Literature

A.1 Homomorphic Encryption

We now define homomorphic encryption and its desired properties. Throughout
this section (and this work) we use κ to indicate the security parameter.

A homomorphic (public-key) encryption scheme

HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval)

is a quadruple of PPT algorithms as follows:

– Key generation: The algorithm (pk, evk, sk) ← HE.Keygen(1κ, aux) takes
a unary representation of the security parameter and auxilary input that
in our case encodes the plaintext space and the homomorphic capcity and
outputs a public encryption key pk, a public evaluation key evk, and a secret
decryption key sk.

– Encryption: The algorithm c ← HE.Encpk(µ) takes the public key pk and
a message µ ∈ Z/pZ and outputs a ciphertext c.

– Decryption: The algorithm µ∗ ← HE.Decsk(c) takes the secret key sk and
a ciphertext c and outputs a message µ∗ ∈ Z/pZ.

– Homomorphic evaluation: The algorithm cf ← HE.Evalevk(f, c1, . . . , cℓ)
takes the evaluation key evk, a function f : (Z/pZ)ℓ → Z/pZ, and a set of ℓ
ciphertexts c1, . . . , cℓ, and outputs a ciphertext cf .

Definition A.1. A homomorphic encryption scheme is said to correctly eval-
uate a circuit family F if for all f ∈ F and for all m1, . . . ,mℓ ∈ Z/pZ, the
following holds: If sk, pk are correctly generated by HE.Keygen with security pa-
rameter κ, and if ci = HE.Encpk(mi) for all i, and cf = HE.Evalpk(f, c1, . . . , cℓ),
then

https://github.com/tfhe/tfhe
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/concrete

REFHE: Fully Homomorphic ALU 35

Pr[HE.Decsk(cf) ̸= f(m1, . . . ,mℓ)] = negl(κ),

where the probability is taken over all randomness in the error and key dis-
tributions.

Furthermore, the scheme is said to compactly evaluate the family if, in ad-
dition, the running time of the decryption circuit depends only on κ and not on
its input.

The only security notion we consider in this chapter is semantic security,
namely security with respect to passive adversaries. We use its widely known
formulation as IND-CPA security, defined as follows.

Definition A.2 (IND-CPA Security).
Let (KeyGen,Enc,Dec,Eval) be a public key encryption scheme. We define

an experiment Exprcpab [A] parameterized by a bit b ∈ {0, 1} and an efficient
adversary A:

Exprcpab [A](1κ) :



(sk, pk, ek)← KeyGen(1κ)

(x0, x1)← A(1κ, pk, ek)
ct← Encpk(xb)

b′ ← A(ct)
Return b′

We say that the scheme is IND-CPA secure if for every PPT adversary A,
it holds that

Advcpa[A](κ) := |Pr{Exprcpa0 [A](1κ) = 1} − Pr{Exprcpa1 [A](1κ) = 1}| = negl(κ).

A.2 Gadget Decomposition

We present a ring generalization of the widely used “gadget decomposition”
technique [MP12]. For a ring R, a gadget vector g ∈ Rl, is a row vector of
ring elements, equipped with a (not necessarily linear) decomposition operator
g−1 : R → Rl. We require that for all x ∈ R, it holds that g · g−1(x) = x.
Namely the gadget is an “inverse” of the decomposition operator. Importantly,
the gadget is defined so as to ensure that for all x ∈ R it holds that g−1(x) is
“small”, with respect to some measure. Thus the decomposition operator allows
to trade-off size for dimension, while allowing linear reconstruction.

The gadget matrix Gg corresponding to a gadget vector g is defined as Gg =
Ik⊗g = diag(g, . . . ,g) ∈ Rk×kl (where the diag operators organizes its operands
along the block-diagonal of a matrix, with 0 in the off-diagonal), where Ik is the
identity matrix of size k. The decomposition operation, G−1

g : Rk×k′ → Rkl×k′
,

applies g−1 coordinate-wise, expanding each entry into an l-dimensional column
vectors.

More generally we may consider a gadget matrix that is generated by a set of
different gadget vectors:Gg1,...,gk

. This is defined asGg1,...,gk
= diag(g1, . . . ,gk) ∈

36

Rk×(
∑

li). The decomposition operation, denoted asG−1
g1,...,gk

: Rk×k′ → R(
∑

li)×k′

is defined analogously.

Next we define a specific class of gadgets that are commonly used in the
paper.

Definition A.3 (The Powers Gadget). Let R be either a polynomial ring
Z[x]/⟨f(x)⟩ or Z itself. For x ∈ Rq we define Decompd(x) be the decomposition

of x into the following base d representation, if x =
∑⌈logd(q)⌉

j=0 (bjd
j) for bj ∈ R/d

with coefficients smaller than ⌊d/2⌋, Decompd(x) = (b0, . . . , b⌈logd(q)⌉) ∈ R/d.
The Decompd(x) operator is the decoposition operator g−1

Powersd
corresponding

to the Powersd gadget vector: Powersqd = (1, d, . . . , d⌈logd(q)⌉) ∈ R⌈logd(q)⌉
q . We

Notice that ℓ∞(g−1
Powersd

(x)) ≤ ⌊d/2⌋.

B Correctness and Security of the Basic Scheme

To keep track of the noise, we have the following definition:

Definition B.1. Let c ∈ Rr+1
q be a ciphertext, let s ∈ Rr+1, and let µ ∈ Rp.

We define

ηs(c, µ) = min {ℓ∞(µ+ e) : e ∈ p, µ+ e = s · c (mod q)} .

We omit the subscript when s is clear from the context. We also omit µ when
clear from context

Lemma B.1. If ηs(c, µ) ≤ ⌊(q − 1)/2⌋, then REFHE.Decs(c) = µ.

Proof. By the assumption there is e ∈ p such that s · c = µ + e mod q. Since
ℓ∞(µ+ e) ≤ ⌊(q − 1)/2⌋ we also have:

[s · c]Rq = µ+ e

Now (µ+ e) mod p = µ as we wanted.

In the following sections we will use Lemma B.1 when analyzing correctness
of homomorphic evaluation. Indeed, given a function f : (Z/p)N → Z/p and
input ciphertexts c1 = REFHE.Enc(µ1), . . . , cN = REFHE.Enc(µN), let c be
the output ciphertext of the homomorphic evaluation. Then by Lemma B.1 it
suffices to bound η(c, µ) for µ = Encode ◦ f ◦ Decode(µ1, . . . , µN).

First, we analyse correctness of REFHE as an encryption scheme, without
applying additional homomorphic operations:

Lemma B.2. Let c = REFHE.Encpk(µ). Denote by q0/2 := (1 + 2 · γ̂ · ℓ1(s)) ·
Bχe

+ 1. Then ηs(c, µ) ≤ q0/2.

REFHE: Fully Homomorphic ALU 37

Proof. Notice that

s · c = b · r+ e0 + µ− s1 · (Ar+ e1)

= (s1A+ e)r+ e0 + µ− s1Ar+ s1 · e1
= µ+ r · e+ e0 + s1 · e1

Where s1, r← χs, e, e1 ∈ χr
e, e0 ∈ χe, and ℓ∞(µ) = 1. It follows that c·s = µ+e3

when e3 ≤ (1 + 2 · γ̂ · ℓ1(s)) ·Bχe
+ 1

Lemma B.3. The public-key encryption scheme REFHE is IND-CPA secure
based on the MPLWE assumption (Definition 3.2) with parameters mplweparams =
(f, n, r, q, χs, χe).

Proof (Proof Sketch.). The proof of this lemma follows the standard argument
for proving security for encryption schemes based on LWE-style assumptions.
See, e.g., [Reg05, LPR10]. The proof follows by a hybrid argument where we
consider an adversary that is given the public key pk and a ciphertext c which
are properly generated by the scheme and encrypt some value µ. We recall
Remark 3.2 with t = (x− 2).

We first replace the b vector in the public key to be sampled uniformly rather
than being computed using MPLWE. By the MPLWE assumption with secret s1,
this hybrid is computationally indistinguishable from the original experiment.

Then we replace c by a uniform vector. This is computationally indistin-
guishable from the previous hybrid again relying on MPLWE with secret r.

Finally, c is completely uniform and independent of µ, which implies the
security of the scheme.

In Section E, we relate the hardness of MPLWE to that of more commonly
used assumptions in lattice-based cryptography, such as RLWE, and discuss the
proper choice of parameters.

C Homomorphic Arithmetic Operations

In this section we present our algorithms for the homomorphic evaluation of
arithmetic operations: addition, multiplication by a scalar and multiplication of
ciphertexts. For the sake of the multiplication operations, we also introdce our
versions of the key switching and modulus switching techniques.

Homomorphic evaluation of logical operations will be implemented as a part
of our bootstrapping process, see Section 5.3 for details.

During this section there are addition and multiplication between elements
that naturally live in different spaces. some of them are in Rq (the ciphertexts),
some in p (the errors), some in R/p (the messages), and some in R (the secret
keys). Although they live in different spaces, the operations and equalities in
this section are in Rq, unless stated otherwise.

Our convention in this section is that ej ∈ p, µj is the message.

38

C.1 Addition

REFHE.Add takes two ciphertexts encrypted under the same secret key s. The
addition is performed by adding the two ciphertexts (as vectors of ring elements).

Algorithm C.1: REFHE.Add (Homomorphic Addition)

c3 ← REFHE.Add(c1, c2): Output c3 ← c1 + c2

Lemma C.1. For c3 = REFHE.Add(c1, c2) we have η(c3, µ1+µ2) ≤ η(c1, µ1)+
η(c2, µ2).

Proof. Let s · c1 = µ1 + e1, e1 ∈ p such that ℓ∞(µ1 + e1) = ηs(µ1 + e1), s · c2 =
µ2 + e2, e2 ∈ p such that ℓ∞(µ2 + e2) = ηs(µ2 + e2). Then s · (c1 + c2) =
µ1 + e1 + µ2 + e2 = (µ1 + µ2) + (e1 + e2).

C.2 Scalar Multiplication

Same as with the message, we have to encode the scalar as a polynomial that
equal to the scalar mod p. Then multiply each coordinate of the ciphertext by
it. Notice that since the norm of the encoded scalar is small, when multiplying
by it the noise grows roughly by the expansions factor, which is logarithmic in
the size of the plaintext space. In BGV this factor is linear in the size of the
plaintext space, so for large plaintext spaces we get a significant improvement
in the noise growth.

Algorithm C.2: Multiplication by a scalar

c′ ← REFHE.ScalarMult(α, c): Outputs c′ = REFHE.Encode(α) · c.

Lemma C.2. Let c be a ciphertext, then for c′ = REFHE.ScalarMult(c, α) we
have ηs(c

′, α · µ) ≤ γ ·Benc · ηs(c, µ).

Proof. Let s · c′ = µ+ e when ℓ∞(µ+ e) = ηs(µ+ e). Observe that

s · c′ = REFHE.Encode(α) · µ+REFHE.Encode(α) · e

Since ℓ∞(REFHE.Encode(α)) ≤ Benc, we have

ℓ∞(REFHE.Encode(α) · µ+REFHE.Encode(α) · e) ≤ γ ·Benc · ℓ∞(µ+ e)

Also REFHE.Encode(α)·µ+REFHE.Encode(α)·e mod p = α·REFHE.Decode(µ)
mod p as we wanted

REFHE: Fully Homomorphic ALU 39

C.3 Key switching

The following Key switching technique is based on the one presented in [HS20],
and is done in order to reduce the relative noise, in comparison to the standard
approach in [BGV12]. This is indeed a generalization of the BGV keyswitching,
which can be obtained as a special case if q = q′.

Algorithm C.3: Keyswitch

1. Key Generation: SwitchKeyGenG(q, q′, s1 ∈ Rr1
q , s2 ∈ Rr2

q′) for q|q′
outputs a matrix τs1 → s2 over Rq′ , satisfying:

s2 · τs1 → s2 = T · s1 ·G+ e (mod q′)

2. Key Switch: SwitchKey(τs1 → s2 , c1, w) outputs c2 = τs1 → s2 ·
G−1(c′1) ∈ (Rq′)

r2 for T = q′/q, and c′1 = w · c1 mod q.

w will be chosen as an elemnt in R{0,1} In order for everything to be defined
T, p need to be co-prime. In practice, we always take q′|q odd integers, so this
condition is satisfied.

Lemma C.3. Let s1, s2, q, q
′ be as in SwitchKeyGen(q, q′, s1, s2). Let c1 ∈ Rr1

q ,
c′1 = w · c1 mod q and c2 ← SwitchKey(τs1 → s2 , c1, w). Then,

s2c2 = e ·G−1(c′1) + T · s1 · c′1 mod q′

Proof. Let A = τs1 → s2 . We have:

s2 · c2 = s2 ·A ·G−1(c′1)

= (T · s1 ·G+ e) ·G−1(c′1)

= e ·G−1(c′1) + T · (s1 · c′1 + qE)

= e ·G−1(c′1) + T · (s1 · c′1 + qE)

When the equations are mod q′.

s2 · c2 = e ·G−1(c′1) + T · s1 · c′1 mod q′

Corollary C.1. Let c1 ∈ Rr1
q and c2 ← SwitchKey(τs1 → s2 , c1). Then for the

powers of d gadget GPowersd (defined in Definition A.3) we have that τs1 → s2 is

in Rr1·⌈logd(q)⌉×r2
q′ , and:

ηs2(c2, µw · T mod p) ≤ q′/q · γw · ηs1(c1, µ) + r1 · ⌊d/2⌋ · ⌈logd(q)⌉(Bχe
(q′)) · γ

Proof. Notice that

e ·G−1(c′1) + T · s1 · c′1 mod p = (Tw · µ+ Tw · e+ e′) mod p = Twµ

40

Lemma C.4 (Security). For every known s1 ∈ Rr1
q and a random s2 ← χs,

the SwitchKeyGen(s1, s2) distribution is computationally indistinguishable from
uniform.

Relinearization. Typically, homomorphic multiplication outputs a ciphertext
encrypted under s⊗s. In order to keep the dimension fixed, it is common to wrap
this procedure with a relinearization procedure that switches the key from s⊗ s
back to s. The relinearization key is SwitchKeyGen(s, s⊗s), which is considered
as part of the public key. We can then invoke REFHE.SwitchKey from s⊗ s to
s after every multiplication.

C.4 Modulus Switching

We denote y = ⌈a⌋c+p
the 1-rounding algorithm with respect to ℓ∞ for the lattice

p, meaning for a ∈ Q[x]/f(x), c ∈ R. finding a y ∈ R such that (y − c) ∈ p,
ℓ∞(y − a) ≤ 1.

Algorithm C.4: Rounding

Given an input a, output ⌈a⌋c+p = ⌊a⌋ + Encode(c − ⌊a⌋) where ⌊·⌋ is
performed saperetly to each coefficient in the coefficient embedding.

Lemma C.5. Algorithm C.4 is a 1-rounding algorithm to the lattice p with
respect to ℓ∞. Meaning ℓ∞(⌈a⌋c+p) ≤ 1, ⌈a⌋c+p = c mod p

Proof. Let a′ = ⌊a⌋, b = c(2) − a′(2) mod (2n), c′ = ⌈a⌋c+p. We need to prove
that c′ − c ∈ p and that ℓ∞(a− c′) ≤ 1. For the second claim we have

|a(i) − c′(i)| = |bi − {a(i)}| ≤ 1

And regarding the first claim, we have:

a′(2) +
∑

bi2
i = c(2) mod 2n

Now using the fact that x divides x− xn−1 = 2 we get:

a′(2) +
∑

bi2
i = c(2) mod xn

a′(2) +
∑

bi2
i = c(2) mod (x− 2)

c′(x) = a′(x) +
∑

bix
i = c(x) mod (x− 2)

As desired.

REFHE: Fully Homomorphic ALU 41

Algorithm C.5: Modulus Switching

For c ∈ Rr+1
q , c′ ← ModSwitchq,q′,w(c), outputs c′ ∈ Rr+1

q′ : c′[i] =

⌈wq′

q · c[i]⌋q−1q′wc[i]+p
, for 0 < i ≤ r + 1, for w ∈ R{0,1}

Notice that since the ciphertext contains multiple elements from R, the
rounding is done on each element seperately.

We start with a lemma on the error rate of modulus switching for (rational)
integer moduli. While this is the most efficient modulus switching we have for
our scheme, it provides a good sense of the underlying concepts.

Lemma C.6. Assume that q, q′ ∈ Z and let c be a ciphertext. Then for c′ =
ModSwitchq,q′,w(c),

η(c′, µ · wq
′

q
) ≤ γw ·

q′

q
η(c, µ) + γ̂ℓ1(s)

Proof. We have,
s · c = µ+ ϵ+ qE

and
q′w

q
s · c =

q′w

q
µ+

q′w

q
ϵ+ q′wE.

We have

s · c′ = q′w

q
µ+

q′w

q
ϵ+ q′wE + s · (c′ − q′w

q
c).

Denote v = q′w
q µ+ q′w

q ϵ+ s · (c′ − q′w
q c). then:

ℓ∞(v) ≤ q′

q
γw · η(c, µ) + ℓ∞(s · (c′ − q′w

q
c))

≤ q′

q
γw · η(c, µ) + γ̂ · ℓ1(s)

we also have
s · c′ − q′wE = v.

We have that s · c′ mod p = q′w
q s · c mod p. Therefore,

(s · c′ − q′wE) mod p =
q′w

q
(s · c− qE) mod p,

which gives us

v mod p =
q′w

q
µ

So to conclude, s · c′ mod q′ = v, for v s.t. ℓ∞(v) ≤ q′w
q · η(c, µ) + γ̂ · ℓ1(s),

and v mod p = q′w
q µ. This completes the proof.

42

Remark C.1. If q = q′ mod p and multiplication by w is trivial and we can

see from the proof that η(c′) ≤ q′

q η(c) + γ̂ℓ1(s) which removes the γw from the
noise bound. As mentioned at the beginning of this section, it may not be ideal
to choose integers q and q′ that are congruent modulo p, as this could lead to
very large ciphertext moduli values. Specifically, this condition implies q ≡ q′

(mod p), resulting in q ≥ p. This would require a much larger ciphertext modulus
than what is typically used in our implementations. For that we will have to
choose w ̸= 1 and suffer from a multiplicative expansion factor in the resulting
error. In order to overcome that we introduce the ideal modulus switching, which
will result in working modulo q which is not a rational number.

C.5 Multiplication

Algorithm C.6: Tensor multiplication

c3 ← REFHE.TensorMult(c1, c2) gets c1, c2 ∈ Rr+1
q and returns c3 =

c1 ⊗ c2 ∈ R(r+1)2

q

Given ciphertexts encrypting µ1, µ2 under s, the algorithm returns ciphertext
that encrypts µ1 · µ2 mod p under s ⊗ s. This is formalized via the following
Lemma:

Lemma C.7. Let c1, c2 be ciphertexts that encrypt µ1, µ2 under s1, s2 respec-
tively. Then

ηs⊗s(REFHE.TensorMult(c1, c2), µ1 · µ2) ≤ γ · ηs(c1, µ1) · ηs(c2, µ2)

Proof. Let s · c1 = e1, s · c2 = e2, where e1 = µ1 + e′1, e2 = µ2 + e′2, e
′
1, e

′
2 ∈ p

and ηs(c1, µ1) = ℓ∞(e1), ηs(c2, µ2) = ℓ∞(e2). Observe that

(s⊗ s) · (c1 ⊗ c2) = (s · c1) · (s · c2) = e1 · e2

and e1 · e2 mod p = (µ1 + e′1) · (µ2 + e′2) mod p = µ1 · µ2. The lemma follows.

The dimension of REFHE.TensorMult(c1, c2) is squared compared to the in-
put ciphertexts. When multiplying, we therefore first compute c4 = REFHE.SwitchKey(τs⊗s→s, c3)
and then c5 = ModSwitchq,q′,w(c4) for q, q′ determined in the scheme parame-
ters, in order to reduce the noise.

Algorithm C.7: Multiplication

c3 ← REFHE.Mult(c1, c2) gets c1, c2 ∈ Rr+1
q , sets

c4 = REFHE.SwitchKey(τs⊗s→s,REFHE.TensorMult(c1, c2), w)

and returns
c3 = ModSwitchq,q′,w′(c4)

REFHE: Fully Homomorphic ALU 43

Notice that w,w′ can be chosen in R{0,1} such that c3 encrypts the multi-
plication of the messages c1, c2 encrypt (given that the noise is small), and not
a scalar multiplication of it.

Moduli Ladder. As in [BGV12], the setup phase of the scheme in algorithm
4.1 produces also a “ladder” of the cipher text moduli that will be used during
the evaluation of the scheme. Notice that after each multiplication we perform
key switch and then modulus switch, so the evaluation key should consist of a
Public keyswitch matrix for each multiplication before the bootstrapping, and
the relevant modulus.

C.6 Optimizations

Optimization for keyswitch and modulus switch. Notice that there is
a multiplication by a scalar in both algorithms: multiplying c1 by w in Algo-
rithm C.3, and multiplying c by w in Algorithm C.5. It turns out that we can
ignore these scalar multiplications and account for them only in the final step.
Specifically, by skipping these scalar multiplications, i.e., setting w = w′ = 1,
and given bounds on ηs(c1, µ1) and ηs(c2, µ2), Algorithm C.7 provides a bound
on ηs(c3, µ1 · µ2 · α), where α is determined solely by the evaluated circuit, and
the chosen primes. This means that the multiplication algorithm effectively be-
comes a composition of multiplication and a multiplication by a known constant
scalar α.

We now claim that every circuit can be evaluated using this modified multi-
plication instead of the regular one. Indeed, we take the same circuit—with the
modified multiplication in place of the standard one, and associate with each
cell in the circuit a scalar αl ∈ Zp. Let circuit 1 represent the circuit using the
”new” multiplication and circuit 2 the one using standard multiplication. Before
computation, we can determine the scalar αl for each cell l, which is the ratio of
the value of the cell in circuit 1 to the value in circuit 2 (and we need to prove
that this ratio is independent of the inputs to the circuit).

Notice that when performing a homomorphic evaluation, we generally work
with layered circuits, where each cell corresponds to a layer that reflects the
depth of multiplications required to reach that cell. Homomorphic operations
have inputs only from the same layer, as the inputs must have the same key and
modulus, which are determined by the depth of multiplications. Returning to
our claim, we wish to show that all the cells in the same layer have the same
scalar multiplier. Indeed, we need to explain that for multiplication, addition,
and scalar multiplication. For multiplication it is clear: αl ·m1 × αlm2 × αl3 =
αl+1×m1×m2 where αl+1 depends only on αl, α.For addition: αl · (m1+m2) =
αl ·m1 + αl ·m2. And for multiplication by scalar α′ · (αl ·m) = αl · (α′ ·m).

Notice that without multiplying by scalar we have

η(ModSwitch′(c), µ) ≤ q′

q
η(c, µ) + γ̂ℓ1(s)

ηs2(SwitchKey′(c, τs1 → s2), µ) ≤ q′/q · ηs1(c, µ) + r1 · ⌊d/2⌋ · ⌈logd(q)⌉Bχe
(q′) · γ

44

There are several ways to take advantage of this, depending on the specific
usecase:

– The first and simplest approach is to always use modulus switching and
key switching without multiplying by a scalar. Then, only during the final
modulus switch before bootstrapping, multiply by a scalar w. Instead of
choosing w = q′/q mod p, choose it so that the associated scalar with the
new cell becomes 1.

– Another approach is to modify the decryption algorithm to include division
by the relevant scalar mod p. The drawback of this method is that it cannot
be applied during binary operations in bootstrapping.

– We can also attempt to influence this factor during encryption, intermediate
steps, or when choosing the moduli ladder, so that the final multiplier has
an inverse with a small l1 norm.

Tradeoff between n and r. The security of the scheme depends, among other
factors, on the product n ·r. When working with a ciphertext in Z/2n1 , the value
of n - the degree of the polynomial can be any n ≥ n1. In practice, when n1 = 64,
we use n > 64 to reduce the size of the Key Switching matrix in Algorithm C.3.

D Correctness and Security of Our Bootstrapping
Algorithm

The following theorem summarizes the properties of previous works that we
use [KDE+24,CGGI20], as described in Section 5.1.1.

Theorem D.1 (Programmable Bootstrapping, Implicit in Prior Work).
There exist polynomial time algorithms with syntax as above, with the following
properties:

– Correctness. Letting pbpp = PB.Setup(1n, 1q, s, s′), (n′, q′) ← PMap(n, q),
and then computing c′ = PB.Bootstrap(pbpp, c, F), it holds that

s′ · c′ (mod q′) = F (s · c) + e , (5)

where |e| ≤ BPB = Bχε
·poly(n, log q, n′, log q′), for some (fixed) polynomial.

– Security. There exists a distribution χs′ supported over {0, 1}n′
such that

if s′ ← χs′ then for all s

PB.Setup(1n, 1q, s, s′)
c
≈ PB.Setup(1n, 1q, 0, s′) ,

under a cryptographic hardness assumption (Module LWE).

As a derivative of Theorem D.1, we achieve the following performance.

Theorem D.2. Our bootstrapping procedure achieves the following performance.

REFHE: Fully Homomorphic ALU 45

– Correctness. Letting bspp = REFHE.BS.Setup(1n, 1q, s, s′) and (n′, q′) ←
PMap(n, q), taking c = REFHEq(µ; ε) so that ℓ∞(ε) ≤ q/poly(n, log q, n′, log q′)
for some (fixed) polynomial, and then computing c′ as the output of our boot-
strapping procedure, it holds that c = REFHEq′(µ; ε

′) where ℓ∞(ε′) ≤ BPB =
Bχε
· poly(n, log q, n′, log q′), for some (fixed) polynomial.

– Security. There exists a distribution χs′ supported over {0, 1}n′
such that

if s′ ← χs′ then for all s

REFHE.BS.Setup(1n, 1q, s, s′)
c
≈ REFHE.BS.Setup(1n, 1q, 0, s′) ,

under the cryptographic assumption of Theorem D.1 above in addition to the
MPLWE assumption.

We provide a sketch of the proof below.
Security follows from Theorem D.1, in addition to the security of key-switching

that follows from MPLWE.
We show correctness of the bootstrap Algorithm 5.3 by induction on the

iteration index i. We claim that for each 0 ≤ i < n, ciREFHE is a REFHE en-
cryption of xiµi with fresh noise ei, whose size is upper bounded by |ei| ≤
(BPB +B) · poly(n, log(Q)).

For i = 0, by the correctness of Algorithm Sample Extract 5.1, we get that
clsb = BFVq(µ0; ε) is a B/FV encryption of the free coefficient µ0. Then, by the
correctness of B/FV programmable bootstrap (Theorem D.1), c̃ consists of a
vector of B/FV ciphertexts, that encrypt µ0 · g ∈ {0,g}. Since c̃ is the output
of a bootstrap routine, its noise level is independent of the noise level of the
input ciphertext cIN. Next, we take the coefficient representation of (x − 2)−1

(mod q) ∈ R, and decompose it in base B to get G−1
B,Q([

1
x−2]). By correctness

of gadget decomposition, we have that µ0 · g ·G−1
B,Q([

1
x−2]) = [µ0

x−2]. Therefore,

ĉ0 = c̃ ·G−1
B,Q([

1
x−2]) is vector of BFV encryptions of [µ0

x−2]. The noise term in
each ciphertext is multiplied byO(B) as we instantiate the gadget decomposition
with powers of B (see Definition A.3). Then, by correctness of Repacking 5.2,
c0MPLWE is a BFV RLWE encryption of the polynomial µ ·(x−2)−1 (mod q) ∈ R.
After multiplication by (x − 2), we get a REFHE ciphertext c0REFHE encrypting
µ0, with the same error term.

The next two steps in Algorithm 5.3 are responsible for subtracting the ex-
tracted bit µ0 and prepare for the next iteration to extract the next bit µ1 of the
message. In Line (8), µ0 is homomorphically subtracted from the input ciphertext
encrypting µ. Note that a modulo switch is necessary since c0REFHE has cipher-
text modulus Q that corresponds to the maximal homomorphic capacity after
bootstrap. Then, in Line (9), we multiply by x−1 (mod q) in order to shift µ1 to
be the next free coefficient term. Note that s · c′ = xµ1+ . . .+xn−1µn−1+xn · e,
where we use xn ≡ x− 2 in R. Therefore, after multiplying by x−1 (mod q), we
have that s · c≪ = µ1 + . . .+ xn−2µn−1 + xn−1 · e.

To conclude, we get that after the first iteration, c≪ is a homomorphic en-
cryption of the “right shift”, m≫1, of m = Decode(µ). We can therefore repeat
this process n times, and by induction, in the ith iteration, we will get that c≪

46

is a REFHE encryption of µ ≪ i + 1, and that ciREFHE is an encryption of xiµi

with fresh noise. Therefore, their sum corresponds to a fresh encryption of µ as
desired.

E Security of MPLWE in Our Ring

In the section we discuss the hardness of the MPLWE problem (Definition 3.2).
We do so by first explaining how it relates to other algebraic variants of the
Learning With Errors problems. Later we argue about the security in our specific
ring, defined by polynomials of the form f(x) = xn − x+ 2.

E.1 Algebraic Variants of LWE and Their Relations

Algebraic variants of LWE work over a number field K. The Ring LWE (RLWE)
problem [LPR10] is defined over the so-called ring of integers of K, whereas the
Order LWE problem (OLWE) [BBPS19] is more general and can be instanti-
ated over any full rank subring of the ring of integers (such subrings are called
“orders”, and the ring of integers itself is the maximal order). Also relevant
to our work is the Polynomial LWE (PLWE) problem [SSTX09] which has a
somewhat simpler definition. In PLWE, all arithmetics are done in the ring itself
(rather than the “dual ring” which can be thought of as a fraction over the ring),
and noise is generated in the coefficient embedding (rather than the canonical
embedding). We provide some formal definitions below.

Let f(x) be an irreducible monic polynomial of degree n, letK = Q[x]/⟨f(x)⟩
be a number field, define the ring R = Z[x]/⟨f(x)⟩, OK to be its ring of integers
of the number field.

Definition E.1 (Module Order LWE). Let O be an order of K and q be an
ideal in the order. Denoting Oq = O/q. Let r ∈ N, χs a distribution over (O∨)r

and χε a distribution over O∨.
For a row vector s← χs, consider the distribution As over Or

q ×O∨
q defined

as {(a, sa+ ε (mod q))}, where a is uniform in Or
q, ε is sampled from χε.

Then the (decisional) Module Order LWE problem (MOLWE) with respect
to parameters molweparams = (f, n,O, r, q, χs, χε) is to distinguish As from the
uniform distribution over Or

q×O∨
q , given an a-priori unbounded number of sam-

ples, where s is drawn from χs.
We point out a few important special cases:

1. The case O = O∨ = OK is called Module-LWE (MLWE).
2. The case r = 1 is called Order-LWE (OLWE).
3. The case where both O = O∨ = OK and r = 1 is called Ring-LWE (RLWE).

Known connections between the problems are summarized in Figure 3. The
numbers on the arrows correspond to the following reductions.

11 Implicit.

REFHE: Fully Homomorphic ALU 47

MPLWE

MLWE MOLWE

OLWE PLWE

RLWE

1
,2

3

4

4

1,2

3

4

Fig. 3: Reduction relations between various relevant Algebraic LWE problems.
The numbering refers to the different security issues 1, 2, 3 and 4 numbered
below.

1. Coefficient vs. Canonical Sampling [RSW18]. Let X be a Gaussian
random variable with expected value µ and co-variance matrix Σ and V
some linear transformation. Then V X is also a Gaussian random variable
with expected value V µ and co-variance matrix V tΣV . In particular when
moving between the coefficient and canonical embedding when uses the Van-
dermonde matrix Vf defined by the complex roots of f . Thus in order to
control the error after the transformation one has to analyze the Singular
Value Decomposition (SVD) of the matrix Vf .

2. The Dual Ring [RSW18]. Every order is a full rank lattice and thus one
can define the dual of this lattice as O∨ = {α ∈ K : TrK/Q(αO) ⊆ Z}.
The trick is to multiply by an element in the co-different ideal [Con09], this
takes an instance from the dual ring to the ring itself. When this is done
the error growth by the norm of this element. As it turns out understanding
the dual ring and finding an element of small norm there is rather difficult.
In [RSW18] the authors show that it is always possible to find such element in
non-uniform time. Another options is to note that f ′(x) is always a member
of the different ideal (meaning that f ′(x)−1 is in the co-different ideal)[Cor
3.5 [Con09]] which in some cases may give a decent reduction.

3. The Order Z[x]/⟨f(x)⟩ vs. The Maximal Order [RSW18]. For any
order O of K one can define the conductor ideal CO = {x ∈ K : xOK ⊆ O}.
Multiplying by an element of the conductor can move a RLWE instance into
an OLWE instance, again increasing the error by it’s norm. In a similar way
to the co–different ideal [RSW18] shows it is always possible to find a small
element in the conductor or use f ′(x).

4. Module to Ring Reductions [PP24]. The reduction here looks at a order
O′ of higher degree in a field extension of K ′/K such that it is also a module

48

over the base order O. The reduction maintains the ”total degree” (The
degree of the module times the degree of the ring) and works for a wide class
of extension fields.

E.2 Security in Our Ring Compared to a Cyclotomic

It is a common choice to take K to be the cyclotomic field, this is done as
many structural properties are known about them. This enables faster compu-
tations [LPR13b] but also simplifies some of the security assumptions. Namely
cyclotomic polynomials are monogenic, meaning that OK = Z/⟨f(x)⟩. Further-
more as long as the defining cyclotomic numberm does not admit a lot of distinct
factors the transformation between the coefficient and canonical embeddings is
asymptotically tame [BC22]. Lastly for power of two cyclotomic one can see that
the dual ring is a scaling of the ring.

Where it comes to the polynomial f(x) = xn − x+ 2 we make the following
notes. We verified numerically that for all 2 ≤ n ≤ 64 our order R is indeed
the ring of integers. We provide the details for n = 32, 64 in Section E.3.2. For
larger values of n it becomes hard to verify square-freeness. However, there is
no evidence that working in the ring of integers provides additional security
compared to other orders. In particular we are not familiar with attacks that
exploit this. In addition it admits a good transformation between the canonical
and coefficient embeddings. For n = 2k this can be argued directly via Rouché’s
theorem similarly to the classes of polynomials describe in [RSW18]. Otherwise a
heuristic argument can be made, as the polynomial has a large gap and therefore
its roots are somewhat equidistributed in terms of their angle from the origin,
and its roots are between 1 to 3

1
n with a geometric average of 2

1
n . We calculated

numerically the largest and smallest singular values up to n = 1000, and we see
that they both scale with

√
n with a small constant, see Section E.3.3 for details.

For n = 32 and n = 64 we get (≈ 4.6,≈ 15.2) and (≈ 6.5,≈ 22.3) respectively
As for working in the dual or the ring itslef the case for our polynomial and

cyclotomics are similar, in that we have to either multiply by the inverse of
f ′(x) enlarging the error in the order of magnitude of the degree, or follow the
reduction in [RSW18].

We also point out that some have argued that cyclotomic polynomials may
be a worse choice in terms of security, compared to non-cyclotomics, since their
structure may give raise to attacks. For example, in the context of the NTRU-
Prime scheme, [BCLvV16] proposed to work with the non-cyclotomic xn−x+1
(which is quite similar to ours). They claim that working with such polynomials
can also be done quite efficiently, and is less risky in terms of security.

Lastly we want to address a line of attacks on polynomial LWE using poly-
nomials of the form xn+ax+b [EHL14,ELOS15,CIV16]. The general concept is
to start with polynomials of the form xn + b for a “large” b and show it behave
similarly to xn + ax + b for a “small” a. The first idea is that if b = q − 1 we
get that f(1) = 0 mod q which in turns means that if there is a ring equation
modulo both f and q it is possible to assign x = 1 and still obtain a valid equa-
tion. This collapses the PLWE instance into a one-dimensional instance with

REFHE: Fully Homomorphic ALU 49

small noise. Notice that this attack hinges on the coefficient embedding of the
noise e(x) being small. Peikert [Pei16] surveys such “field dependent attacks”
and concludes that they result from improper choice of noise parameters, that
is enabled by pathological properties of the number field. Our interpretation of
Peikert’s conclusion is that so long as we add the noise “properly”, i.e. in such a
way that when looking at the respective dual instance, the noise is large enough,
then no vulnerabilities are known. In essence this means that while we discuss
the transformation between the canonical and coefficient embeddings for the se-
curity reduction, this distinction may be void for practical attacks as long as we
work in the dual ring.

E.3 Properties of Our Polynomial

E.3.1 Irreducibility

Lemma E.1. The polynomial f(x) = xn− x+2 is irreducible over the integers
for n ≥ 2.

Proof. Notice that the complex roots of f have absolute value > 1, by the
triangle inequality. assume f(x) = h(x) · g(x). We have that h(0) · g(0) = 2, and
since h(0), g(0) are integers, one of them is of absolute value 1, with out loss
of generality g. Then g must have a root of absolute value ≤ 1, a contradiction
since this root is also a root of f .

E.3.2 Monogenicity It is well known that if the discriminant of a polynomial
f is square free, then Z[x]/f(x) is the ring of integers of Q(x)/f(x). For a

polynomial of the form x2k − x+2, by theorem 4 in [GD84], the discriminant is

D = 2k−1 · 2k·2k − (2k − 1)2
k−1. For k = 64:

263 · 264·2
64

− 6363

factorizes into the following primes:

1399,

315883,

1054894487,

1609025206302091,

300524395301294803,

102580173634571360137,

8668017673543442201810164494961,

1813131374962222709188812217190299

For k = 32:

231 · 232·2
32

− 3131

50

factorizes into the following primes:

53,

683,

1189674929,

72879316190189456125055364884319727806855527

So both of the polynomials are monogenic.

E.3.3 Computing Singular Values We have computed the singular values
of the polynomial xn−x+2 from n = 4 to n = 1000. See Figure 4. This suggests
a O(

√
n) bound on the singular values, similar to the power of two case.

Fig. 4: Logarithmic Fit for the square of the minimal and maximal singular values
as a function of the degree

F Optimizing Performance Using Ideal Ciphertext
Moduli

We shortly present the scheme working with Rq where q is not a rational integer.
We believe it holds both theoretical and practical significance. In particular,
we don’t need to use multiplication by w in the key switching and modulus

REFHE: Fully Homomorphic ALU 51

switching algorithms, since we can switch between input and output moduli with
an element which is congruent to 1 mod p. Indeed there are algebraic elements
which are congruent to 1 mod p of much smaller ℓ∞ norm, then rational ones.
Another advantage is that we can work with ciphertexts in the “Double CRT
Representation” [HS20] which means representing the ciphertext ring as a direct
product of Z/ni. This representation allows multiplying ciphertexts without an
FFT transformation to the frequency domain. Returning to our case, notice
that R/⟨ax− b⟩ ∼= Z/(bn− ban−1+2an), So for cipher text modulus of the from
q =

∏
⟨aix− bi⟩, we have a double CRT representation.

In particular, we notice that for our scheme it is beneficial to set up the
moduli-ladder by setting q̂j = ⟨1 − kj(x − 2)⟩ for rational integers kj ∈ Z, for
which q̂j are coprime. We then let qi = q0 ·

∏i
j=0 q̂j . Here q0 ∈ N is the “bottom

step” in the ladder, which means that as we get to decrypt or bootstrap we fall
back into the rational setting.

F.1 Algebraic Number Theory facts

N(t) i.e. the algebraic norm of the element t = ax− b (and the ideal ⟨t⟩ in our
ring is the resultant of ax − b and xn − x + 2, which is bn − ban−1 + 2an. The
quotient ring satisfies R/⟨t⟩ ∼= Z/N(t).

F.2 Changing the Scheme

The scheme remains structurally identical, where operations which previously
performed modulo q are now conducted modulo q. The only aspect of the origi-
nal scheme, as outlined in Algorithm 4.1, that requires further definition is the
decryption algorithm. However, it is important to note that our modulus ladder
ends with a rational integer. Consequently, decryption is only necessary when the
modulus is a rational integer, which ensures that the scheme functions correctly
without further modification.

Correctness and Security. Standard security assumptions talk about RLWE
type problems with respect to a rational ciphertext modulus. Although there are
assumptions with respect to alebraic ideals - as the GLWE security assumption
in [PP19], we wish to talk about a simple reduction from M/P/R/O - LWE
problems over an algebraic ciphertext modulus to a rational one. Working with
an algebraic modulus q, we can perform modulus switch to the modulus α · q
for a rational q and α a polynomial with 0,1 coefficients. Notice that ⟨q⟩|⟨α · q⟩
so in particular we get an MPLWE problem with the ciphertext modulus q -
which is rational - where we lose roughly a factor of the expansion factor in the
parameters.

We measure noise in ℓ∞ in the coefficient embedding, the same as in definition
B.1. Note that the analysis of the noise growth after encryption, and the bounds
needed for decyption stay the same.

Homomorphic Properties. Multiplication, Multiplication by scalar and Ad-
dition are the same as in integer modulus, with q replaced by q in the algorithm.

52

The analysis and bounds on the noise ηs(c,m) stay the same. There difference
is a new gadget in the key switching and a new modulus switching.

F.3 Representing the Ciphertext

Lemma F.1. Assume z mod (ax−b) (for b = 2a+1, a = k) can be written as a
polynomial of degree n−1 with coefficients in the range (−b/4(1−1/2n), b/4(1−
1/2n)) which is (⌈− b

4⌉, ⌊
b
4⌋) (ℓ∞(z) ≤ b/4). Then there is an efficient algorithm

to find this polynomial. Also there is a unique way to write it that way.

Proof. For (res) the resultant of ax − b and f(x) the generating polynomial of
the number field we have:

z =
∑

ci(
b

a
)i mod (res)

So
z · an−1 =

∑
cib

ian−1−i

Notice that the RHS is in the interval (−res/2, res/2). Indeed:

|RHS| ≤ (1− 1/2n) · b
4
· an−1 ·

∑(
b

a

)i

≤ (1− 1/2n) · b
4
· an−1 · 2

(
b

a

)n−1

≤ (1− 1/2n) · b
n

2

≤ bn − an−1

2
=

res

2

So we look at z′ = z · an−1 mod res as an element in Z and provide an algo-
rithm to write it there as a sum

∑
cib

ian−1−i. Assuming such a representation
exists, we must have c0 = z′/an−1 mod b. Similar equation holds for c1 · b ·an−2

mod (b2) and we can continue for the latter coefficients by taking mod bi every
time. Notice it also proves that there is a unique way to write the element as a
polynomial with coefficients in this range.

Lemma F.2. Every element t in R is congruent modulo ax−b (where b = 2a+1
and a = k) to a polynomial z with ℓ∞(z) ≤ b

2 ·α, where α > (1+ a
b · ζ) ≈

3
2 , and

ζ is the real positive root of xn − x− 2.

Proof. Let z =
∑

aix
i with ai ∈ Z. Define |z|(c) as the evaluation of

∑
|ai|xi at

c ∈ R, i.e., |z|(c) =
∑
|ai|ci. Consider the polynomial z with minimal |z|(ζ) that

is congruent to t modulo ax − b. We claim that this z cannot have coefficients
with absolute value larger than b

2 · α.
Indeed, if the i-th coefficient is larger, then we add or subtract axi+1−bxi to

reduce the absolute value of the i-th coefficient (by at least min(b, b
2 · (2α− 2))

) and claim that |z|(ζ) decreases. There are two cases to consider:

REFHE: Fully Homomorphic ALU 53

1. Case i < n− 1: In this case, the absolute value of the (i+ 1)-th coefficient
increases by at most a. If a · ζ < min(b, b

2 · (2α − 2)) (which holds by the
assumption on α), then |z|(ζ) decreases.

2. Case i = n − 1: The absolute value of the constant term increases by at
most 2a, and the absolute value of the x1 coefficient increases by at most a.
Therefore, |z|(ζ) decreases if

2a+ a · ζ < ζn−1 ·min(b,
b

2
· (2α− 2)),

which after dividing by ζn−1 is the same inequality as in the previous case.

Working Modulo qj. Recall that qj = q0 ·
∏
(aix−bi). 1As long as the aix−bi

are coprime (also to q0), by CRT we have R/q ≡ R/q0
∏
R/(aix − bi), so

calculations can be done coordinatewise. Notice that when doing the calculations
modulo (aix− bi) we can choose t ∈ Z as a representative in the conjugacy class
for each c ∈ R/(aix− bi), So its like working in Z/(bni − bia

n−1
i + 2ai

n) in each
coordinate, and then NTT can be used for multiplying elements in the quotient
ring efficiently.

F.4 Key Switching

We use a variant of the Key Switching presented in algorithm C.3, with q, q′ =
q, q′ and T = For that we introduce the following gadget:

CRT decomposition gadget Notice that we have the CRT isomorphism

f : R∏l
j qj
→

l∏
j

Rqj

given that the qlj are coprime. For c ∈ R∏l
j qj

we look at the gadget vector

gcrt = (f−1(ei))i. The decomposition operation g−1
crt = f(c) viewed as a vector

in Rl. Notice that this embedding is not uniquely defined. For qj = ax − b we
choose the smallest representative in absolute value in Z of c mod (ax − b).
For qj = q0 ∈ Z we choose the smallest representative in ℓ∞ in the coefficient
embedding of c mod q0.

composition with powers-of-d gadget We can compose the CRT decompo-
sition operator with the g−1

Powersd
operator. The output of g−1

crt is a vector when
each coordinate is in Z with ℓ∞ ≤ N(qj)/2 (N is the algebraic norm) or in
Rq0 with ℓ∞ ≤ q0/2. The composition is applying g−1

Powersd
to each coordinate

of the output meaning G−1
Powersd0

· g−1
crt(x). Notice that applying g−1

Powersd
result

in different vector size in each coordinate. Notice also that this operator is the
decomposition operator for the gadget gcrt ·Gpowersofd0

.

bounding the inner product To use the Keyswitch algorithm with the powers-
of-d composed to CRT decomposition gadget, we need to bound ⟨G−1(c′1), e⟩ as
seen in lemma C.3.

54

Lemma F.3. For G−1 defined above, and e defined in Algorithm C.3 we have:
⟨G−1(c′1), e⟩ ≤ ℓ∞(e) ≤ ⌊d/2⌋ · logd(N(q))Bχe

(q′)

Corollary F.1. Let c1 ∈ Rr1
q and c2 = SwitchKey(τs1 → s2 , c1) defined as in

algorithm C.3. Then for the gadget we defined above we have that τs1 → s2 is in

Rr1·⌈logd(N(q))⌉×r2
q , and if q′ = q · ⟨w⟩

ηs2(c2, µ) ≤ γw · ·ηs1(c1, µ) + r1 · ⌊d/2⌋ · ⌈logd(N(q))⌉Bχe
(q′) · γ

F.5 Modulus Switching

We now describe the modulus switching algorithm for switching from (ideal)
modulus q int (ideal) modulus q′. Formally, we let q, q′ be ideals in the ring R.
We considered the special case where q = ⟨q⟩, q′ = ⟨α · q′⟩ for (rational) integers
q, q′.

We let Ap denote a rounding algorithm for the plaintext lattice p in the
canonical embedding, with distance parameter dp. Indeed, we always select p so
that it has a short basis, so such Ap should exist, however its exact properties
are determined by the specific instantiation we choose.

We require the existence of a ratio parameter t ∈ K (we stress that t is
a fraction so usually t ̸∈ R) with the following properties: t ∈ q′ · q−1 and
furthermore t = 1 (mod p). In the integer setting, if we may take q = q′ (mod p)
then t = q′/q is a valid ratio parameter.

Algorithm F.1: Algebraic Modulus Switching

c′ ← ModSwitchq,q′,t(c), for any input c ∈ Rr+1
q , outputs c′ ∈ Rr+1

q′

such that c′[i] = ⌈t · c⌋c+p, as in Algorithm C.4. Notice that since the
ciphertext contains multiple elements from R, the rounding is done on
each element seprately.

The following lemma summarizes the performance of the algorithm.

Definition F.1. For t ∈ Q[x]/f(x) LetMt : Q[x]/f(x)→ Q[x]/f(x) be the lin-

ear operator of multiplying by t: a→ t·a. Define τ(t) = max
{

ℓ∞(At(a))
ℓ∞(a) : a ∈ Q[x]/f(x)

}
.

Notice that looking at Mt as a matrix in the coefficient embedding, τ(t) is
equal to the maximal ℓ1 of row of the matrix

Lemma F.4. Let p, q, q′, t be as above. Let c ∈ Rr+1
q be a ciphertext that en-

crypts µ under the key s. Let c′ = ModSwitchq,q′,t(c). Then

η(c′, µ) ≤ τ(t) · η(c, µ) + γ̂ · ℓ1(s)

Proof. Denote s · c = v + E where E ∈ q. By definition of ModSwitch, it holds
that

c′ = ⌈t · c⌋Ap

c+p . (6)

REFHE: Fully Homomorphic ALU 55

Then
s · c′ = t · v + t · E + ⟨c′ − t · c, s⟩ .

Denote v′ = t · v + ⟨c′ − t · c, s⟩, E′ = tE. Then

s · c′ = v′ + E′. (7)

Since t ∈ q′q−1, it holds that E′ ∈ q′. Let us now analyze the norm of v′.

ℓ∞(v′) = ℓ∞(t · v + ⟨c′ − t · c, s⟩) (8)

≤ ℓ∞(tv) + ℓ∞(⟨c′ − t · c, s⟩) (9)

≤ τ(t)ℓ∞(v) + γ̂ · ℓ1(s) . (10)

Finally, since t ≡ 1 mod p, then E′ = tE ≡ E mod p. Furthermore we
recall that c′ ≡ c mod p. Therefore

v′ = c′0 + s · c′ − E′ (11)

≡ c0 + s · c− E(mod p) (12)

= v . (13)

This concludes the proof of the lemma.

Next we show a bound on τ(t).

Lemma F.5. The map A : f → f
1+k(x−2) is reducing the ℓ∞ norm by at least

2/3 · (k + 1), meaning ℓ∞(Af) ≤ 3
2(k+1) · ℓ∞(f)

Corollary F.2. τ(1
1+k(x−2)) ≤

3
2(k+1)

Proof. We upper bound the ℓ1 norm of the rows of A as a linear operator, by
2/3 · (k + 1), which proves the lemma.

The inverse matrix of ax+ b:
The matrix A that represents multiplying by ax+ b in the coefficient embed-

ding is the following: b’s on the main diagonal, a’s is the diagonal bellow ((n−2)
a’s), A(0, n− 1) = −2a, A(1, n− 1) = a (indices are between 0 and n− 1). For
n = 4 it looks like

A =


b 0 0 −2a
a b 0 a
0 a b 0
0 0 a b


We claim that for even n, the inverse of that matrix, is 1

bn+an−1b+2an multiplied
by the following matrix B:

B[0, 0] = bn−1 + an−1

B[0, i] = 2 · (−b)i−1an−i, for i ≥ 1

B[i, i] = bn−1, for i ≥ 1

B[i, j] = (−1)j−i−1 · (2an−(j−i)bj−i−1 + an−1−(j−i)bj−i), for i ≥ 1and j ≥ i+ 1

B[i, j] = (−1)i−j · bn−1−(i−j)ai−j , for i ≥ j works also for i = j

56

For n = 4, the matrix B is given by:

B =


b3 + a3 2a3 −2a2b 2ab2

−ab2 b3 2a3 + ba2 −(2a2b+ ab2)
a2b −ab2 b3 2a3 + ba2

−a3 a2b −ab2 b3


Let’s see that it is indeed the inverse:

(B ·A)[i, i] = b ·B(i, i) + a ·B(i, i+ 1)

= bn + a ·
(
2an−1 + an−2b

)
,

for i < n− 1,

(B ·A)[n− 1, n− 1] = −2a · (−an−1) + a · an−2b+ b · bn,
(B ·A)[i, n− 1] = −2a ·B(i, 0) + a ·B(i, 1) + b ·B(i, n− 1)

= −2a · (−1)ibn−1−iai + a · (−1)i−1bn−iai−1

+ b · (−1)n−1−i−1 ·
(
2an−(n−1−i)bn−2−i + aibn−1−i

)
= 0,

(B ·A)[i, j] = b ·B(i, j) + a ·B(i, j + 1)

= b · (−1)j−i−1 ·
(
2an−(j−i)bj−i−1 + an−1−(j−i)bj−i

)
+ a · (−1)j−i ·

(
2an−(j+1−i)bj−i + an−1−(j+1−i)bj+1−i

)
= 0,

for i < j < n− 1

(B ·A)[i, j] = b ·B(i, j) + a ·B(i, j + 1)

= b · (−1)i−j · bn−1−(i−j)ai−j

+ a · (−1)i−j−1 · bn−1−(i−j−1)ai−j−1 = 0,

for j < n− 1, j < i.

For a = −k, b = 2k + 1 we can see that by multiplying by the inverse of A the
ℓ∞ of the vector is multiplied by at most the maximum between the ℓ1 of the
rows of the matrix, which is approximately 3

2k . Indeed

ℓ1 ≤
bn−1 + an−1 + 2|a|n−1 + 2|a|n−2b+ · · ·+ 2|a|bn−2

bn + an−1b+ 2an

=
bn−1 + an−1 + 2 |a|bn−1−|a|n

b−|a|

bn + an−1b+ 2an

≤ 3

2(k + 1)

Where we used that a = −k, b = 2k + 1.

Corollary F.3. Let q = ⟨a · (1+ k(x− 2))⟩, q′ = ⟨a⟩ and t = 1
1+k(x−2) . For c, c′

as in lemma F.4, we have η(c′) ≤ 3
2(k+1) · η(c) + γ̂ · ℓ1(s)

REFHE: Fully Homomorphic ALU 57

G Recalling TFHE’s Bootstrap

In this section, we recall the technique of blind rotation for bootstrapping a
TFHE ciphertext. We follow the notation in [CJP21b].

The input TFHE ciphertext c = (c0, c1, . . . , cn) admits ⟨c, s⟩ = c0s0 + c1s1 +
. . . cnsn = µ∗ = N/p · µ + e mod N , where s0 = −1 and si ∈ {0, 1}, the
ciphertext modulus N is a power of two, µ ∈ N

p Z/NZ encodes the plaintext (in

Zp) in the most significant bits of µ∗, and the noise e is bounded by N/p, and
consists of the least significant bits of µ∗.

In order to bootstrap, the rough idea is to build a test polynomial v, such
that the coefficient of xµ∗

encodes the noise-free value N
p µ corresponding to µ∗.

By homomorphically rotating the test polynomial by µ∗ positions, the value of
µ moves to the constant coefficient position, and it remains to extract it.

This rotation of v is done homomorphically, and since x−µ∗ · v is a polyno-
mial, a module LWE encryption is used during the blind rotation step of the
bootstrap. Specifically, the test polynomial is encrypted under the cyclotomic
ring Z[x]/⟨xN/2 + 1⟩. In this ring, x is a multiplicative element of order N , as
xN/2 ≡ −1.

Therefore, since µ∗ ≡ ⟨c, s⟩ mod N , we have x−µ∗
= x−⟨c,s⟩ in the N/2-

cyclotomic ring. This observation is what enables a blind rotation of the coeffi-
cients of the test polynomial v by µ∗. Specifically, blind rotation proceeds in a
sequential manner, starting from an MLWE encryption of x−c0s0 · v = xc0 · v. At
each step 1 ≤ i < n, the ciphertext is homomorphically multiplied by x−ci or by
1, conditioned on whether the secret key si. This is termed the CMux operation.
It uses the ith element of the bootstrapping key, which is a GSW encryption of
si, or equivalently, an LWE encryption of the powers of B′ gadget decomposition
of si, ((B

′)jsi)j .
After applying the blind rotation, sample extract can be used to get an LWE

encryption of the free coefficient.
We remark that the encryption of any other coefficient can be extracted in

the same manner, and we crucially utilize this fact in our amortization technique.

	REFHE: Fully Homomorphic ALU
	Introduction
	Our Contribution – FHE for Arithmetic and Logical Operations
	Other Related Works
	Paper Organization

	Technical Overview
	Estimated Performance

	Preliminaries
	Notation
	Algebraic Number Theory
	Learning with Errors and Related Problems

	Our Scheme
	Messages vs. Plaintexts
	The Encryption Scheme

	Bootstrapping and Boolean Operations
	Subroutines of the Bootstrapping Algorithm
	Programmable Bootstrapping for B/FV
	Sample Extract
	Repacking

	The Bootstrapping Procedure
	Bootstrapping Setup
	Bootstrapping Algorithm

	Boolean Operations

	Performance
	Standard Definitions from Cryptographic Literature
	Homomorphic Encryption
	Gadget Decomposition

	Correctness and Security of the Basic Scheme
	Homomorphic Arithmetic Operations
	Addition
	Scalar Multiplication
	Key switching
	Modulus Switching
	Multiplication
	Optimizations

	Correctness and Security of Our Bootstrapping Algorithm
	Security of MPLWE in Our Ring
	Algebraic Variants of LWE and Their Relations
	Security in Our Ring Compared to a Cyclotomic
	Properties of Our Polynomial
	Irreducibility
	Monogenicity
	Computing Singular Values

	Optimizing Performance Using Ideal Ciphertext Moduli
	Algebraic Number Theory facts
	Changing the Scheme
	Representing the Ciphertext
	Key Switching
	Modulus Switching

	Recalling TFHE's Bootstrap

